the center for education and research in information assurance and security

ε-Differential Node Privacy in Graph Data Queries

Christine Task, Chris Clifton
Computer Science and Statistics, Purdue University

Friend Network Data:

Nodes = Individuals

Edges = Friendships

Query: What is the smallest

number of individuals connecting

parts of the graph?

Neighboring Graphs:
Differ in one individual

Min-Cut(G2) = 1

Min-Cut(G1) = 2

Differentially Private Min-cut:

Randomized Query Result could be 1.37, 1.80, 1.46, ...

Differential Privacy guarantees sufficient noise that guessing which of the neighboring graphs produced the query result is unlikely. This protects individual privacy: if query results from G1 and G2 are indistinguishable, we cannot learn Alice's data.

Query Sensitivity is a measure of the maximum difference between query results on any neighboring graphs. High sensitivity queries require adding so much noise that results are useless – hence, we cannot perform such analyses and guarantee privacy.

High Sensitivity Queries:

- Graph Isomorphism
- Average Node Degree
- Graph Diameter
- PageRank
- Connected Components

Open Problems:

- Social Cluster
 Identification
- Propagation Algorithms (popularity measures)
- Subgraph Counting with unique edges

Low Sensitivity Queries:

- Subgraph Counting with unique nodes
- Degree Distribution[1]
- Min-Cut
- Graph Estimation[2]

[1] Michael Hay, et al., "Accurate Estimation of the Degree Distribution of Private Networks", IEEE International Conference on Data Mining, 2009

[2] Darakhshan J. Mir and Rebecca N. Wright, "A differentially private graph estimator", International Workshop on Privacy Aspects of Data Mining, 2009.

