
Brent Roth (broth@purdue.edu)
Dr. Eugene Spafford (spaf@purdue.edu)

Implicit Buffer Overflow Protection
Using Memory Segregation

non-control
buffer

on heap

data pointer
on heap

func pointer
on heap

global
data pointer

global
func pointer

unified
heap

global
non-control

buffer

non-control
buffer

on stack

data pointer
on stack

func pointer
on stack

longjmp
buffer

saved FP

unified
stack

return
address

Modern Process

data pointer
on heap

func pointer
on heap
global

data pointer

pointer
data segment

global
func pointer

func pointer
on stack

pointer
stack segment

data pointer
on stack

saved FP
for non-control

saved FP
for pointer

saved FP
for control

longjmp
buffer

control
stack segment

return
address

non-control
buffer

on heap

non-control
data segment

global
non-control

buffer

non-control
stack segment

non-control
buffer

on stack

Process w/ Segregated Memory

Motivation
The memory for a single process
contains multiple forms of data.
●control data

 return addresses, saved frame
pointers, longjmp buffers, etc. that
form the call stack

 function and data pointers provide
references to memory for calling
functions and manipulating data

●non-control data
 primitive datatypes (int, char, float,
double, etc.) are used to store
program-defined data

Modern processes store these different
forms of data in the same unified stack
and unified heap in the same memory
segment. This allows a buffer overflow
of non-control data to corrupt control
data.

Modern defenses are still circumvented
by modern attacks and do not prevent
the corruption of control data. Instead
they attempt to prevent it from hijacking
control flow or detect it and terminate
the process.
● Canary
● ASLR
● Non-executable memory

The corruption of control data can still
be used for a denial-of-service attack
● Some defenses against buffer
overflow result in denial-of-service
 terminate process if detect
corruption

 force buffer overflow to result in a
segmentation fault

Goal
Segregate different forms of a data to
their own stacks and heaps in their own
memory segments within the same
process. An instruction to read/write
memory in one memory segment can
not read/write memory in a separate
memory segment. Thus, a buffer
overflow of non-control data cannot
corrupt control data. With control data
uncorrupted, recovery is more likely,
making denial-of-service harder to
achieve with a buffer overflow.

Explore architecture modifications to
further support memory segregation
and corruption prevention
●Instruction Set Extensions
●Stack Growth Direction
●Secure Indirection

1A8-2E9.pdf 1 3/23/2011 10:46:03 AM

mailto:broth@purdue.edu
mfocosi
Typewritten Text

mfocosi
Typewritten Text

mfocosi
Typewritten Text
2011 - 1A8-2E9 - Implicit Buffer Overflow Protection Using Memory Segmentation - Brent Roth - ASA

	Slide 1

