

2010 - 66D-00F - Preventing Technology-Induced Errors in Healthcare: Usability Engineering - James Anderson - ASA

the center for education and research in information assurance and security

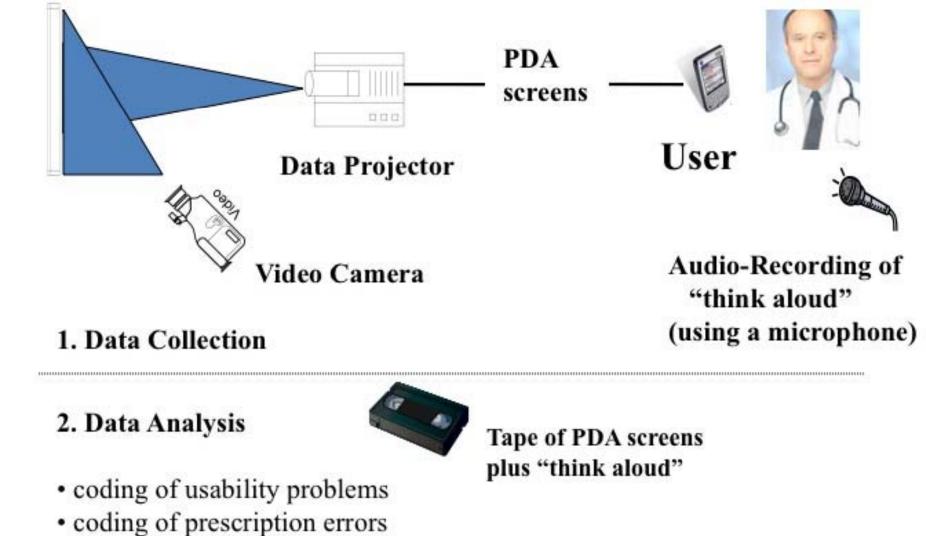
Preventing Technology-Induced Errors in Healthcare: Usability Engineering

Andre Kushniruk¹, Elizabeth Borycki¹, James Anderson², Marilyn Anderson³ ¹ School of Health Information Science, University of Victoria, ² Purdue University, ³ Anderson Consulting, West Lafayette, IN 47906

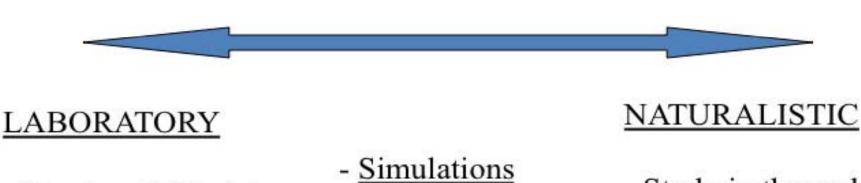
Usability Engineering in Health Care

Usability - Measures of "ease of use" of a system

1. Learning


2. Effectiveness

3. Efficiency


4. Safety

5. Enjoyability

Objective: Can usability analysis be used to predict errors in design before deployment of systems?

A Continuum of Studies and Settings (from lab to real-world and back again)

interviews

simulations

- Fixed usability lab - Experimental tasks - "think aloud" - cognitive task analysis

- Study in the real - E.g. "simulated" setting (e.g. clinic) doctor-patient -"Virtual" usability lab - Analysis of Web--Computer-based based systems - Data mining

From: Kushniruk, "Evaluation in the Design of Health Information Systems" 2001

Evaluation Design

- Subjects
 - 10 physicians who were all experienced PDA users but who had not used the program being studied

Procedure

- Each subject received training on use of the program
- Subjects were then asked to
 - · Enter medications from a paper list (as accurately as possible)
 - Read a clinical scenario involving patient cases and enter medications

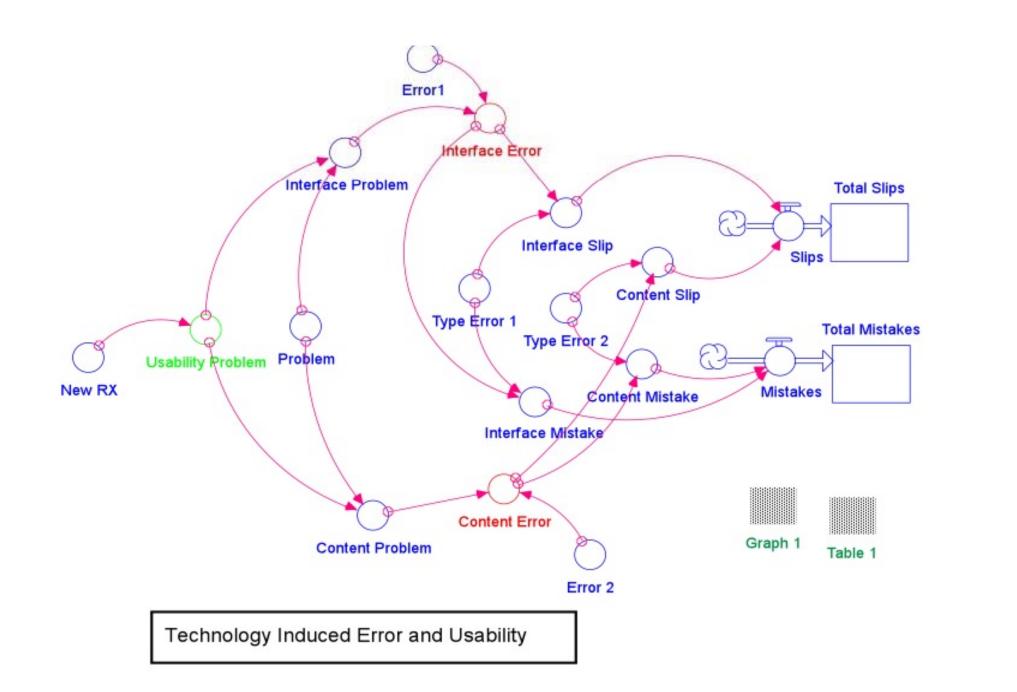
Low-cost, Portable Simulation and Usability Testing Environment

From: Kushniruk & Borycki (2006), Low-cost rapid usability engineering, Healthcare Quarterly

Example of Coded Transcript (of subject "thinking aloud" while entering a medication)

02:26 "Amoxillin, 250 capsules, po, two times a day, is that one of our options q8, darn, q8 hours times 7 days"

SUBJECT ENTERS 250 mg tid X 7 days (30 dispensed)


02:30 "Oh wait, I wanted to dispense, come back. Let me think about that, 7, 8, 24. He just got 6 extra tablets!"

USABILITY PROBLEM #1 - DISPLAY VISIBILITY - not clear

Fig. 1 Portable Handheld Usability Laboratory (Kushniruk, Triola, Borycki, Stein, & Kannry, IJMI, in press)

Analysis and Results

- The transcripts were coded in two independent passes
 - To identify usability problems
 - To identify medication errors
- Total number of coded usability problems 73
 - most frequent were problems related to display visibility (19), procedure (11), and data entry (9)
- Total number of errors in entry of meds 27
- 37% of the identified usability problems were associated with a medication entry error
- All of the errors were associated with a coded usability problem
- Can predict how often usability problem will result in an actual error (for each class of problem)

- Subjects were asked to "think aloud"
- All screens of the device were video recorded

Usability Problems and their Relationship to Medication Entry Error (using a PDA application)

Problem	# Usability Problems	Errors	% problem associated with error
EASE OF USE:			
Display Visibility	19	16	84.2
Procedure	11	0	0
Data Entry	9	7	77.8
Printing	8	1	12.5
Locating	6	1	16.7
Navigation	4	0	0
Speed	3	0	0
CONTENT:			
Database	8	0	0
Defaults	3	2	66.7
Training Manual	1	0	0

that a drop down menu should be used in order to enter "g8h"

ERROR #1 MISTAKE - "tid" entered instead of "q8h"

USABILITY PROBLEM #2 – DEFAULT INAPPRORIATE

Phase II – Input into Computer Simulation

Parameter	Value	
New RX	Random Number (0-1)	
Usability Problem	Probability = 1.00	
Interface Problem	Probability = 0.84	
Content Problem	Probability = 0.16	
Interface Error	Probability = 0.41	
Content Error	Probability = 0.167	
Interface Slip	Probability = 0.52	
Interface Mistake	Probability = 0.48	
Content Slip	Probability = 0.50	
Content Mistake	Probability = 0.50	

Conclusions

Combining results from <u>clinical simulations</u> with <u>computer-based simulations</u> may provide a useful approach to assessing the usability (and error rates) of healthcare systems

The approach is being refined (and packaged) so that it can be disseminated into healthcare organizations

Need for <u>combination</u> of clinical simulations with computer-based simulations to fully understand system impact

PURDUE UNIVERSITY

