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‘ Abstract I

Network coding introduced a new paradigm for designing
network protocols for multi-hop wireless networks. Nu-
merous practical systems based on network coding have
been proposed in recent years demonstrating the wide
range of benefits of network coding such as increased net-
work throughput, reliability, and energy efficiency. How-
ever, network coding systems are inherently vulnerable
to a severe attack, known as packet pollution, which
presents a key obstacle to the deployment of such sys-
tems. Consequently, numerous schemes have been pro-
posed to defend against pollution attacks. A major class
of such defense mechanisms relies on cryptographic tech-
niques.

We provide the first systematic evaluation of the ex-
isting cryptographic techniques for defending against
pollution attacks. We first classify the cryptographic
schemes based on their underlying cryptographic primi-
tives (signature-based, hash-based, and MAC-based), se-
curity basis (DLP over a multiplicative group, DLP over
an ECC group, and PRF), and security steps (sign, ver-
ify, and combine). Then, we define a unifying metric
framework to compare the schemes. Lastly, we perform
detailed analytical and experimental evaluations of a rep-
resentative set of the schemes. Our results show that all
of the schemes examined have serious limitations: They
incur prohibitive computation overhead, high communi-
cation, or are insecure in the presence of multiple attack-
ers. We conclude that while many cryptographic propos-
als for addressing pollution attacks exist, none of them
are practical for use in wireless networks.

‘ 1. Network Coding |

Network coding:
Traditionally forwarder nodes store-and-forward

packets, but network coding allows these pack-
ets to be modified at forwarder nodes.
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Network coding in wireless:

The MORE protocol is an opportunistic rout-
ing protocol for wireless networks which utilizes
intra-flow network coding.
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e Higher throughput
e Robustness

e Reliability

e Energy efficiency

Wireless Network Coding
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2. Pollution Attacks

Pollution attack on MORE:

Node A is a byzantine adversary which injects
invalid coded packets. Then, other honest
nodes will mix their valid packets with the in-
valid packets and further pollute the network.
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e Epidemic spreading
e Late discovery

e Cannot easily verify coded packets

3. Current Solutions

Taxonomy of cryptographic-based
defense schemes:

These schemes supply forwarders with a verifi-
cation mechanism.

Scheme Type | Security basis
KFM[4] Hash | DLP over F,
YWRG[6] | Signature| DLP over F,
ZKMH[7] | Signature| DLP over F,
LCL[5]  Signature| DLP over F,
CJL[3] |Signature DLP over ECC
NCS;[2] |Signature DLP over ECC
HomoMac([1l]| MAC PRF

Homomorphic cryptography:

The cryptographic functions of these schemes
are homomorphic to ensure coded packets can
be verified.
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‘ 4. Analysis |

Communication overhead:

Defense schemes impose communication over-
head through security payloads (hashes, signa-
tures, or MACs) and large coding vectors.
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e Large coding overhead

— Upper-bounded coded packet size for wire-
ess

— Lower-bounded symbol size for security
Computational overhead:

Additional computation required to compute security

steps.
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e Large computational overhead

— Modular exponentiations
— ECC operations
— Bilinear mappings

‘ 5. Evaluation I

Simulations:

Simulation results under benign conditions of
each security scheme applied to MORE along
with a BASELINE case (no security scheme).
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e HomoMac performs between 60%-75% of the
baseline

e Other schemes perform less than 20% of the
baseline
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e Significantly higher latencies for schemes be-
sides HomoMac

6. Multiple Byzantine Adversaries |

Defense in the presence of multiple
byzantine adversaries:

e HomoMac is the only scheme that is sensitive
to multiple byzantine adversaries

— Relies on special key-distribution

— Number of adversaries must be known and

bounded

— Overhead increases drastically with more
byzantine adversaries

e Other schemes provide same defense despite
the number of byzantine adversaries

‘ 7. Conclusions I

e Current cryptographic-based solutions are in-
practical in a wireless setting because they
each have one of the following problems

—High communication overhead due to large
symbol sizes

— High computational overhead due to costly
operations

— Poor security due to a weakness in the pres-
ence of multiple byzantine adversaries
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