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Abstract

Network coding introduced a new paradigm for designing
network protocols for multi-hop wireless networks. Nu-
merous practical systems based on network coding have
been proposed in recent years demonstrating the wide
range of benefits of network coding such as increased net-
work throughput, reliability, and energy efficiency. How-
ever, network coding systems are inherently vulnerable
to a severe attack, known as packet pollution, which
presents a key obstacle to the deployment of such sys-
tems. Consequently, numerous schemes have been pro-
posed to defend against pollution attacks. A major class
of such defense mechanisms relies on cryptographic tech-
niques.
We provide the first systematic evaluation of the ex-
isting cryptographic techniques for defending against
pollution attacks. We first classify the cryptographic
schemes based on their underlying cryptographic primi-
tives (signature-based, hash-based, and MAC-based), se-
curity basis (DLP over a multiplicative group, DLP over
an ECC group, and PRF), and security steps ( sign, ver-
ify, and combine). Then, we define a unifying metric
framework to compare the schemes. Lastly, we perform
detailed analytical and experimental evaluations of a rep-
resentative set of the schemes. Our results show that all
of the schemes examined have serious limitations: They
incur prohibitive computation overhead, high communi-
cation, or are insecure in the presence of multiple attack-
ers. We conclude that while many cryptographic propos-
als for addressing pollution attacks exist, none of them
are practical for use in wireless networks.

1. Network Coding

Network coding:
Traditionally forwarder nodes store-and-forward
packets, but network coding allows these pack-
ets to be modified at forwarder nodes.
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Tradional Network coding

Network coding in wireless:
The MORE protocol is an opportunistic rout-
ing protocol for wireless networks which utilizes
intra-flow network coding.

1. Divide plain packets

into generations

2. Broadcast coded packets
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Plain packets: p1, p2, … pn

Coded packet  (c, e): e = c1p1 + c2p2 + … + cnpn

1. Buffer coded packets
2. Decode packets
3. Send ACK to source

•Higher throughput

•Robustness

•Reliability

•Energy efficiency

2. Pollution Attacks

Pollution attack on MORE:
Node A is a byzantine adversary which injects
invalid coded packets. Then, other honest
nodes will mix their valid packets with the in-
valid packets and further pollute the network.
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•Epidemic spreading

• Late discovery

•Cannot easily verify coded packets

3. Current Solutions

Taxonomy of cryptographic-based
defense schemes:
These schemes supply forwarders with a verifi-
cation mechanism.

Scheme Type Security basis

KFM[4] Hash DLP over Fp
YWRG[6] Signature DLP over Fp
ZKMH[7] Signature DLP over Fp

LCL[5] Signature DLP over Fp
CJL[3] Signature DLP over ECC

NCS1[2] Signature DLP over ECC
HomoMac[1] MAC PRF

Homomorphic cryptography:
The cryptographic functions of these schemes
are homomorphic to ensure coded packets can
be verified.

σ(α1c1 + α2c2+, ...,+αncn) =

α1σ(c1) + α2σ(c2) + ... + αnσ(cn)

4. Analysis

Communication overhead:
Defense schemes impose communication over-
head through security payloads (hashes, signa-
tures, or MACs) and large coding vectors.
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• Large coding overhead

– Upper-bounded coded packet size for wire-
less

– Lower-bounded symbol size for security

Computational overhead:
Additional computation required to compute security
steps.
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Combining time

• Large computational overhead

– Modular exponentiations

– ECC operations

– Bilinear mappings

5. Evaluation

Simulations:
Simulation results under benign conditions of
each security scheme applied to MORE along
with a BASELINE case (no security scheme).
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•HomoMac performs between 60%-75% of the
baseline

•Other schemes perform less than 20% of the
baseline
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• Significantly higher latencies for schemes be-
sides HomoMac

6. Multiple Byzantine Adversaries

Defense in the presence of multiple
byzantine adversaries:

•HomoMac is the only scheme that is sensitive
to multiple byzantine adversaries

– Relies on special key-distribution

– Number of adversaries must be known and
bounded

– Overhead increases drastically with more
byzantine adversaries

•Other schemes provide same defense despite
the number of byzantine adversaries

7. Conclusions

•Current cryptographic-based solutions are in-
practical in a wireless setting because they
each have one of the following problems

– High communication overhead due to large
symbol sizes

– High computational overhead due to costly
operations

– Poor security due to a weakness in the pres-
ence of multiple byzantine adversaries
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