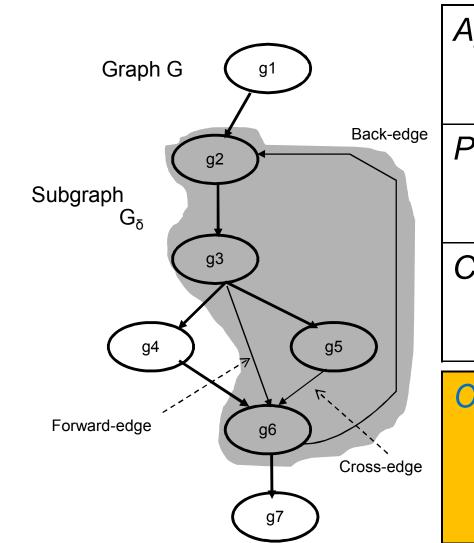
the center for education and research in information assurance and security

Integrity of Graphs Without Leaking

Ashish Kundu, Elisa Bertino | CS & CERIAS, Purdue University | {ashishk, bertino}@cs.purdue.edu

Healthcare Example



2009 - 890-745 - Integrity of Graphs Without Leaking - Ashish Kundu - IAP

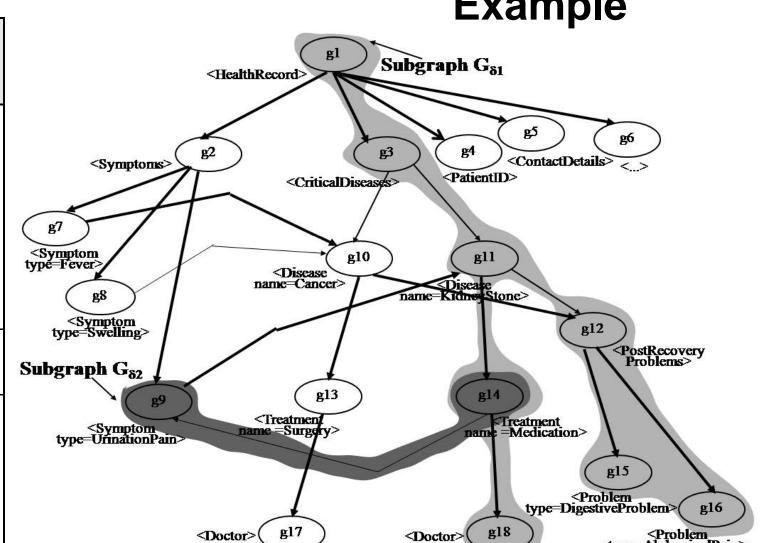
	Applications	 Secure data distribution: Biological, Military. Cloud computing, Trusted systems.
k-edge	Prior art	 No existing prior solution for cyclic graphs. Solution for DAGs leaks [Martel et al].
	Challenges	 Strong security requirement. Graphs are complex (much more than trees).

DAGs: Optimal cost

Provably (Cryptographically) Secure

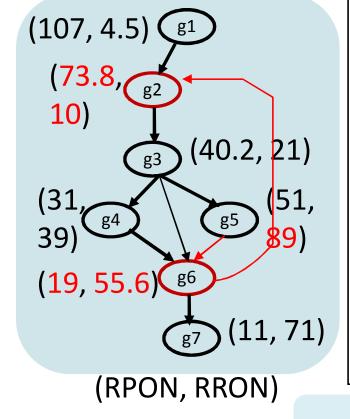
Graphs with cycles: Optimal cost

	Edge e(w,y)	Leakages	
→	Forward- edge	 In-degree(y) ≥ 2, No. of edges incident on y ≥ 2 One edge e' is a tree-edge One more node x: wxy is a path Source graph is larger than the subgraph 	
	Cross-edge	• 1, 2, & 4.	
	Back-edge	 At least one path from y to w At least one cycle in the graph Cycle is between w and y. & 4. 	



Role of Traversal Numbers

- DAG = {DFT, Forward-edges, Cross-edges}
- Cyclic Graph = {DAG, Back-edges}
- Randomized Post-order Numbers (RPONs)
- Randomized Pre-order Numbers (RRONs)



Lemma 1 Let τ be the depth-first tree of a graph $\mathcal{G}(V,E)$. Let $x, y \in V$, and $e(x,y) \in E$. Let o_x and q_x refer to PON and RON of node x, respectively. With respect to the DFT τ , e(x, y) is a

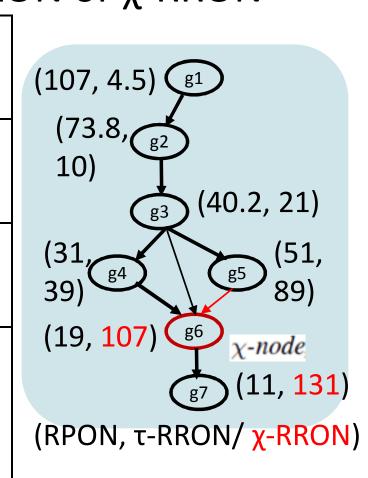
- tree-edge iff $o_x > o_y$, and $q_x < q_y$.
- forward-edge iff $o_x > o_y$, and $q_x < q_y$.
- cross-edge iff $o_x > o_y$, and $q_x > q_y$.
- back-edge iff $o_x < o_y$, and $q_x > q_y$.

Convey every edge as a **Tree-edge** (τ-edge)

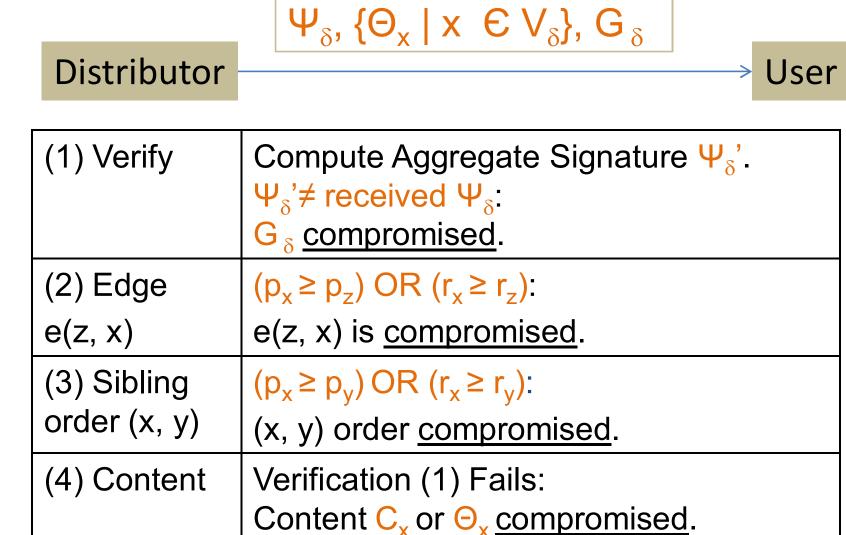
DAGs: χ-RRONs

- χ-node 'x': endpoint of cross-edge(s).
 - Every other node is a τ -node.
- For each χ-node 'x' and each 'y' reachable from 'x':
 - Compute χ-RRON: $r_x^{\chi} > r_v$, $r_v = \tau$ -RRON or χ-RRON

Θ _x : structural	χ -node: $\Theta_{\chi} = (p_{\chi}^{\tau}, r_{\chi}^{\chi})$
position of x	τ-node: $\Theta_{x} = (p_{x}^{\tau}, r_{x}^{\tau})$
Ψ _G : signature	$\Psi_G = H(\Theta_1,, \Theta_n);$
of G	Sign Ψ _G .
Ψ _x : signature of	$\Psi_{x} = H(\Psi_{G}, \Theta_{x}, C_{x});$
X	Sign Ψ _x .
Ψ_{δ} : signature	$x \in V_{\delta}$:
of the set of	Ψ_{δ} = Aggregate Signature
nodes V_{δ} in	of Ψ_{x}
subgraph G_{δ}	



DAGs: Verification



✓ No leakage:

every edge e(z, x) is conveyed as a tree-edge.

Cyclic Graphs: β-RRONs,β-RPONs

- β -node 'x': start node of a back-edge e(x, w). (g₆)
- β -reachable 'y': node reachable from 'x' over e(x, w). (g_2 , g_3 , g_4 , g_5)
- For each 'y', β-reachable from 'x':
 - Compute β-RRON: $r_v^{\beta} > r_x^{\beta}$, $r_x^{\beta} = \tau$ -RRON or χ-RRON of x.
 - Compute β-RPON: $p_v^{\ \beta} < p_x^{\ \beta}$, $p_x^{\ \beta} = \tau$ -RPON or χ-RPON of x.

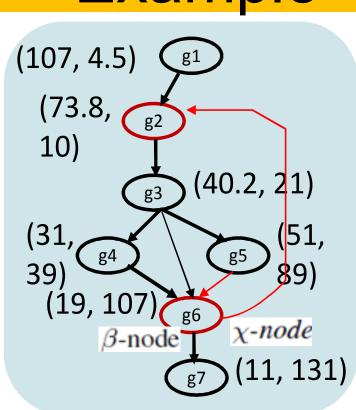
Θ_{x}^{β} : structural position of x	$\Theta_{X}^{\beta} = (p_{X}^{\beta}, r_{X}^{\beta}), \Theta_{X}^{\alpha} = (p_{X}^{\tau}, r_{X}^{\tau}), \text{ or } (p_{X}^{\tau}, r_{X}^{\chi}).$
Ψ _G : signature of G	$\Psi_{G} = H(\Theta_{1}^{\alpha \beta},,\Theta_{n}^{\alpha \beta}); Sign \Psi_{G}.$
Ψ_{x}^{β} : signature of x	$\Psi_{x}^{\beta} = H(\Psi_{G}, \Theta_{x}^{\beta}, C_{x}); \text{ Sign } \Psi_{x}.$

 Ψ_{δ} : signature of the set of $|x| \in V_{\delta}$: nodes V_{δ} in subgraph G_{δ}

• If x is β -reachable or a β -node in G_{δ} , $\Omega = \Omega \cup \{\Theta_{\mathsf{x}}^{\beta}\}, \text{ Else } \Omega = \Omega \cup \{\Theta_{\mathsf{x}}^{\alpha}\}.$

• Ψ_{δ} = Aggregate Signature of $\Psi_{\chi} \in \Omega$.

Example



(RPON, τ -RRON/ χ -RRON)

β-reachable	(β-RPON,	
	β-RRON)	
g_2	(6, 145)	
g_3	(-16, 156)	
g_4	(-29, 181)	
g_5	(-45, 223)	

Cyclic Graphs: Verification

 Ψ_{δ} , {Θ_x | x ∈ Ω}, G_δ

User

Distributor	> User
(1) Verify	Compute Aggregate Signature Ψ_{δ} '. Ψ_{δ} ' received Ψ_{δ} : G_{δ} compromised.
(2) Edge e(z, x)	$(p_x \ge p_z)$ OR $(r_x \ge r_z)$: e(z, x) is <u>compromised</u> .
(3) Content	Verification (1) Fails: Content C _x or ⊝ _x <u>compromised</u> .

✓ No leakage:

- If G_{δ} does not have any cycle, every edge e(z, x)is conveyed as a tree-edge.
- Else knowledge of back-edge does **not** leak any information.

Summary

- We showed that how knowledge of edge-types can be exploited to infer sensitive information.
- First such technique for strong security for DAGs & Graphs

Provably secure, privacy-preserving	Integrity and confidentiality (leakage-free)
Efficient, Optimal	 Only Constant (O(1)) number of signature items to be sent to the user. DAGs: Linear (O(n)) sig. items to be computed. Cyclic graphs: Optimal (O(n*d)) sig. items to be computed.
Simple, Easy to implement	post-order and pre-order traversals are simple to understand and implement.

Security

- Integrity: Proof by
 - reduction to security of cryptographic hash functions
 - reduction to security of aggregate signatures [Boneh et
- Confidentiality: Proof
 - Randomized traversal numbers are secure. [VLDB'08]
 - Simple: addition or sorting of random numbers

References

- Structural Signatures for Tree Data Structures,
- Ashish Kundu & Elisa Bertino, VLDB '08.
- Completely-Secure Sharing of Trees and Hierarchical Content, Ashish Kundu & Elisa Bertino, CERIAS Symposium '07. (Best poster: 2nd)
- Secure Dissemination of XML Content Using Structure-based
- Routing, Ashish Kundu & Elisa Bertino, IEEE EDOC '06. (Best student paper)
- Structural Signatures for Graph Data Structures, Ashish Kundu & Elisa Bertino,, Ready for submission.

