the center for education and research in information assurance and security # Integrity of Graphs Without Leaking Ashish Kundu, Elisa Bertino | CS & CERIAS, Purdue University | {ashishk, bertino}@cs.purdue.edu Healthcare Example 2009 - 890-745 - Integrity of Graphs Without Leaking - Ashish Kundu - IAP | | Applications | Secure data distribution: Biological, Military. Cloud computing, Trusted systems. | |--------|--------------|--| | k-edge | Prior art | No existing prior solution for cyclic graphs. Solution for DAGs leaks [Martel et al]. | | | Challenges | Strong security requirement. Graphs are complex (much more than trees). | DAGs: Optimal cost Provably (Cryptographically) Secure Graphs with cycles: Optimal cost | | Edge
e(w,y) | Leakages | | |----------|------------------|--|--| | → | Forward-
edge | In-degree(y) ≥ 2, No. of edges incident on y ≥ 2 One edge e' is a tree-edge One more node x: wxy is a path Source graph is larger than the subgraph | | | | Cross-edge | • 1, 2, & 4. | | | | Back-edge | At least one path from y to w At least one cycle in the graph Cycle is between w and y. & 4. | | #### Role of Traversal Numbers - DAG = {DFT, Forward-edges, Cross-edges} - Cyclic Graph = {DAG, Back-edges} - Randomized Post-order Numbers (RPONs) - Randomized Pre-order Numbers (RRONs) **Lemma** 1 Let τ be the depth-first tree of a graph $\mathcal{G}(V,E)$. Let $x, y \in V$, and $e(x,y) \in E$. Let o_x and q_x refer to PON and RON of node x, respectively. With respect to the DFT τ , e(x, y) is a - tree-edge iff $o_x > o_y$, and $q_x < q_y$. - forward-edge iff $o_x > o_y$, and $q_x < q_y$. - cross-edge iff $o_x > o_y$, and $q_x > q_y$. - back-edge iff $o_x < o_y$, and $q_x > q_y$. Convey every edge as a **Tree-edge** (τ-edge) #### DAGs: χ-RRONs - χ-node 'x': endpoint of cross-edge(s). - Every other node is a τ -node. - For each χ-node 'x' and each 'y' reachable from 'x': - Compute χ-RRON: $r_x^{\chi} > r_v$, $r_v = \tau$ -RRON or χ-RRON | Θ _x : structural | χ -node: $\Theta_{\chi} = (p_{\chi}^{\tau}, r_{\chi}^{\chi})$ | |-------------------------------|--| | position of x | τ-node: $\Theta_{x} = (p_{x}^{\tau}, r_{x}^{\tau})$ | | Ψ _G : signature | $\Psi_G = H(\Theta_1,, \Theta_n);$ | | of G | Sign Ψ _G . | | Ψ _x : signature of | $\Psi_{x} = H(\Psi_{G}, \Theta_{x}, C_{x});$ | | X | Sign Ψ _x . | | Ψ_{δ} : signature | $x \in V_{\delta}$: | | of the set of | Ψ_{δ} = Aggregate Signature | | nodes V_{δ} in | of Ψ_{x} | | subgraph G_{δ} | | #### DAGs: Verification #### ✓ No leakage: every edge e(z, x) is conveyed as a tree-edge. ### Cyclic Graphs: β-RRONs,β-RPONs - β -node 'x': start node of a back-edge e(x, w). (g₆) - β -reachable 'y': node reachable from 'x' over e(x, w). (g_2 , g_3 , g_4 , g_5) - For each 'y', β-reachable from 'x': - Compute β-RRON: $r_v^{\beta} > r_x^{\beta}$, $r_x^{\beta} = \tau$ -RRON or χ-RRON of x. - Compute β-RPON: $p_v^{\ \beta} < p_x^{\ \beta}$, $p_x^{\ \beta} = \tau$ -RPON or χ-RPON of x. | Θ_{x}^{β} : structural position of x | $\Theta_{X}^{\beta} = (p_{X}^{\beta}, r_{X}^{\beta}), \Theta_{X}^{\alpha} = (p_{X}^{\tau}, r_{X}^{\tau}), \text{ or } (p_{X}^{\tau}, r_{X}^{\chi}).$ | |---|--| | Ψ _G : signature of G | $\Psi_{G} = H(\Theta_{1}^{\alpha \beta},,\Theta_{n}^{\alpha \beta}); Sign \Psi_{G}.$ | | Ψ_{x}^{β} : signature of x | $\Psi_{x}^{\beta} = H(\Psi_{G}, \Theta_{x}^{\beta}, C_{x}); \text{ Sign } \Psi_{x}.$ | Ψ_{δ} : signature of the set of $|x| \in V_{\delta}$: nodes V_{δ} in subgraph G_{δ} • If x is β -reachable or a β -node in G_{δ} , $\Omega = \Omega \cup \{\Theta_{\mathsf{x}}^{\beta}\}, \text{ Else } \Omega = \Omega \cup \{\Theta_{\mathsf{x}}^{\alpha}\}.$ • Ψ_{δ} = Aggregate Signature of $\Psi_{\chi} \in \Omega$. #### Example (RPON, τ -RRON/ χ -RRON) | β-reachable | (β-RPON, | | |-------------|------------|--| | | β-RRON) | | | g_2 | (6, 145) | | | g_3 | (-16, 156) | | | g_4 | (-29, 181) | | | g_5 | (-45, 223) | | ## Cyclic Graphs: Verification Ψ_{δ} , {Θ_x | x ∈ Ω}, G_δ User | Distributor | > User | |------------------|---| | (1) Verify | Compute Aggregate Signature Ψ_{δ} '. Ψ_{δ} ' received Ψ_{δ} : G_{δ} compromised. | | (2) Edge e(z, x) | $(p_x \ge p_z)$ OR $(r_x \ge r_z)$:
e(z, x) is <u>compromised</u> . | | (3) Content | Verification (1) Fails:
Content C _x or ⊝ _x <u>compromised</u> . | #### ✓ No leakage: - If G_{δ} does not have any cycle, every edge e(z, x)is conveyed as a tree-edge. - Else knowledge of back-edge does **not** leak any information. #### Summary - We showed that how knowledge of edge-types can be exploited to infer sensitive information. - First such technique for strong security for DAGs & Graphs | Provably secure, privacy-preserving | Integrity and confidentiality (leakage-free) | |-------------------------------------|--| | Efficient,
Optimal | Only Constant (O(1)) number of signature items to be sent to the user. DAGs: Linear (O(n)) sig. items to be computed. Cyclic graphs: Optimal (O(n*d)) sig. items to be computed. | | Simple,
Easy to implement | post-order and pre-order traversals are simple to understand and implement. | #### Security - Integrity: Proof by - reduction to security of cryptographic hash functions - reduction to security of aggregate signatures [Boneh et - Confidentiality: Proof - Randomized traversal numbers are secure. [VLDB'08] - Simple: addition or sorting of random numbers #### References - Structural Signatures for Tree Data Structures, - Ashish Kundu & Elisa Bertino, VLDB '08. - Completely-Secure Sharing of Trees and Hierarchical Content, Ashish Kundu & Elisa Bertino, CERIAS Symposium '07. (Best poster: 2nd) - Secure Dissemination of XML Content Using Structure-based - Routing, Ashish Kundu & Elisa Bertino, IEEE EDOC '06. (Best student paper) - Structural Signatures for Graph Data Structures, Ashish Kundu & Elisa Bertino,, Ready for submission.