Client-side Attacks
- Client makes a request to a malicious or compromised server
- Server acts to infect the client, targeting some of many vulnerabilities in applications
- Increasing number of exploits due to better server-side security
- Large number of opportunities (apps, plug-ins…) are vulnerable to exploits or attacks

Client Honeypots
- Client honeypots have detected and analyzed thousands of attacks
- Easily detect drive-by downloads and browser or application exploits
- Check of system changes (registry changes, process creation/termination)
- Actively seek to be attacked opposed to traditional honeypots

Targeting Real Users by Hiding Malicious Intent
We observed that malicious websites employ social engineering to convince users of legitimate interaction.

Methodology
We surveyed approximately 5000 websites using Honeyclient and manual navigation

Observations
We found 43 attacks, many of them using a form of social engineering to gain user’s trust

Example
Rogue Applications
- Application appears as an antivirus software
- It is actually malware (usually spyware)
- A forged thread report informs the user their computer is infected with malware
- User is tricked into running a ‘scan’ of their system to find the infections

Evading Honeypots by Hiding Malicious Content
We hypothesize that malicious websites could employ several techniques designed to evade client honeypots.

Proof of Concept
- Built a simple HTML Server
- Created a page designed to detect automation (clicking)
- Created a script which launched only after 15 seconds
- Logged information on server log page

Future Plans: Preventing Evasion
- Bare-Metal Implementation of client honeypots
 - Traditional honeypots use virtual environments to contain attacks experienced
 - Malicious entities can detect presence of virtual environment (See proof of concept above)
- Requires computer we can reimagine
- Requires remote logging of events
 - Data might get corrupted from attack
 - Attack might destroy its own trail

Implementing a model of user interaction
- Vary amount of time spend on a single page (time attacks not prevented but harder)
- Parse for hidden links and avoid clicking them
- Be able to fill out forms and defeat CAPTCHA

References
MITRE Data Set, Kathy Wang
Detecting the Presence of Virtual Machines Using the Local Data Table, Danny Quist, Val Smith
Ask for others and more details!