
Jason Ortiz, Ankur Chakraborty, Pascal Meunier

Client honeypots have detected and analyzedClient makes a request to a malicious or Client honeypots have detected and analyzed
thousands of attacks

Easily detect drive-by downloads and browser
or application exploits

Check of system changes (registry changes,
process creation/termination)

Actively seek to be attacked opposed to
traditional honeypots

Client makes a request to a malicious or
compromised server

Server acts to infect the client, targeting some of
many vulnerabilities in applications

Increasing number of exploits due to better server-
side security

Large number of opportunities (apps, plug-ins…)
are vulnerable to exploits or attacks

Reply

Request Request

Attack Malicious
Server

Benign
Server

yp

We hypothesize that malicious websites could employ
several techniques designed to evade client honeypots.

The client honeypot is unaware of the existence of the content
Actively and passively detect a client honeypot

Detect presence of VM (active)

We observed that malicious websites employ social
engineering to convince users of legitimate interaction.

We surveyed approximately 5000 websites
using Honeyclient and manual navigation Scan for Client Honeypots

Detect presence of VM (active)
Detect automated clicks (active)
Detection using time restraints (active)
Use forms and CAPTCHA (passive)

But how difficult is it?

Application appears as an antivirus software
It is actually malware (usually spyware)
A forged thread report informs the user their

Built a simple HTML Server
Created a page designed to detect automation (clicking)

We found 43 attacks, many of them using a
form of social engineering to gain user’s trust
Rogue Applications

A forged thread report informs the user their
computer is infected with malware

User is tricked into running a ‘scan’ of their
system to find the infections

‘Scan’ finds hundreds of problems
Application informs the user they must

register and purchase the full version of

Created a page designed to detect automation (clicking)
Created a script which launched only after 15 seconds
Logged information on server log page

Client requests honeypot token

Server determines client is
not human and logs info

Client requests timed page

Iff time <15 sSimple
S

Simple
SL

Bare-Metal Implementation of client honeypots
Traditional honeypots use virtual environments to contain

register and purchase the full version of
the software to remove the threats

User effectively pays for malware and
disclosure of personal info

Implementing a model of user interaction
Vary amount of time spend on a single page (time

No attack (or different
attack) triggered and IP
address of client flagged

Server sends timed pageServer sends honeypot token

Server Server

Token Timed

Log

Traditional honeypots use virtual environments to contain
attacks experienced
Malicious entities can detect presence of virtual environment
(See proof of concept above)

Requires computer we can reimage
Requires remote logging of events

Data might get corrupted from attack
Attack might destroy its own trail

Vary amount of time spend on a single page (time
attacks not prevented but harder)
Parse for hidden links and avoid clicking them
Be able to fill out forms and defeat CAPTCHA

MITRE Data Set, Kathy Wang

Detecting the Presence of Virtual Machines Using the Local Data Table, Danny Quist, Val Smithg y Detecting the Presence of Virtual Machines Using the Local Data Table, Danny Quist, Val Smith

Ask for others and more details!

46F-EB9.pdf 1 3/10/2009 1:51:35 PM

coj
Typewritten Text
2009 - 46F-EB9 - Evading Client Honeypots - Jason Ortiz - SAET

