

- Attacks and Defense on Virtual Coordinate Based Routing in Wireless Sensor Networks - Jing Dongj - ENS

the center for education and research in information assurance and security

Attacks and Defense on Virtual Coordinate Based Routing in Wireless Sensor Networks

Jing Dong, Kurt Ackermann, Brett Bavar, Cristina Nita-Rotaru **Department of Computer Science, Purdue University**

Abstract	Virtual Coordinate based Routing	
Recent developments in wireless sensor networks bring about	VCS-based routing typically follows a common design: R2 - 211 > reference	node

Recent developments in whereas sensor networks oring about the need for point-to-point routing. Virtual Coordinate System (VCS) based routing presents an alternative to the traditional routing protocols with the following attractive properties:

- Proactive route discovery
- Requires only local interaction
- Requires only local state information

However, little work has been done to protect VCS-based routing. In this poster, we demonstrate several dangerous attacks against VCS-based routing and propose defense techniques.

ves based fouring typically follows a common design.

Coordinate Establishment

- A set of *reference nodes* are determined by pre-assignment or election
- The reference nodes flood *coordinate messages*
- The coordinates of each node are a vector of hop counts to each of the reference nodes and are derived from the hop count field in the coordinate messages
- Coordinate Lookup
- One or more coordinate servers maintain the coordinates of all the nodes and answer coordinate queries
- Greedy Forwarding
 - Each node forwards the message to the neighbor closest to the destination

Figure 1 Example of virtual coordinates in a small network

Coordinates of nodes without under attack

Attacker A claims coordinate 0. causing node B,C,D, E to obtain incorrect small coordinates

Attacker A claims coordinate 10, causing node B,C,D, E to obtain incorrect large coordinate

Attacker nodes compromise coordinate servers or spoof coordinate replies to cause incorrect destination coordinates in messages

Defense Mechanisms and Experimental Results

Detect Coordinate Deflation with Statistical Tests

- The epidemic effect of deflation attacks causes a large change in the distribution of coordinates in the network.
- We use Wilcoxon signed rank statistical test to detect the coordinate distribution change and hence the presence of attacks

Prevent Coordinate Deflation with One-way Hash Chain

Hop count is authenticated each hop with one way hash chain, so that intermediate nodes cannot announce coordinate messages with arbitrary small coordinates.

Stabilize Coordinates with PID Controller Technique

- Evaluate node coordinate stability with the technique of Proportional-Integral-Derivative(PID) controller
- Each node selects neighbors with stable coordinates as its parent for deriving its own coordinate
- Neighbors of the attacker will not select the attacker as their parent, thus attackers will be isolated

Experimental Results

Attacks impact routing significantly

Statistical test detects attack with high accuracy

Stabilization technique effectively mitigates oscillation attacks

PURDUE UNIVERSITY

