1 EEEn ® [[

2008 - 68C-3F3 - Structural Execution Indexing and Iits Applications - wsumner@cs.purdue.edu - ASA

the center for education and research in information assurance and security

Structural Execution Indexing and Its Applications

Nick Sumner, Bin Xin, and Dr. Xiangyu Zhang {wsumner,Xxinb,xyzhang}@cs.purdue.edu
3) Formalizing

1) Context 4) Precise Debugging

Structural Indices

Fundamental to dynamic program analyses is the notion of identity Debugging often utilizes breakpoints to freeze an execution at

certain specific times for analysis. The more precise these

for a point within an execution. A lack of formalization has led to An Execution Description Language is a context-free grammar
Imprecise and heuristic approaches for representing execution that expresses all possible executions of a program. e.g. breakpoints are, the more precise and the faster the debugging
points. This makes analyses inherently imprecise and less useful. EDL takes place.
Construct Representation Examples . . -

We present Execution Indexing® as a formal approach to unique 1) si: Eartliu@?’ i :)he gtrowtg > laut(cj)rr;)ated del'::ugg:;\g, W|h o
identities within and between program executions and provide one g; ng S>1234 1234 rea.pom S may be set and ana yz.e y computers themselves,
intuitive approach to representing identity that has proven useful in 4) :4; consistency and correctness are crucial.
improving the correctness or precision of real world analyses. || e S e .

|] | > u u

D e S o 5) Dynamic Extraction of

2) Introduction to a9 sz R Control Structures

Structural Execution Indexing || » "« =7 S~ 1R;4 1214

3) } Ri,o1R € 121214 Several modern analyses rely on dynamically extracting control
| 3 £="Y

Execution Indexing iS a general theory Of uniquely identifying pOintS 4)52’ 777777 S StrUCtureS to refine fUture aCtiOnS Or Winnow aggregated infOrmation
1Y vo- 1) whil i '
of correspondence between program executions or points of ;; V°;d (1)*. () S »2 Ry 25) le ®) When does the iteration
correlation within a program's execution. 3) } =S we just started end?
4) void B () { B->5 | |
5) s1; This forms a crucial part of:
Structural Execution Indexing is a specific, novel approach to e r - Hierarchical Dynamic SIiCing1
Execution Indexing utilizing equivalence and similarity between Note: unstructured control flow elided only for simplicity . Execution Omission Error Detection?
dynamic control dependences of any points in an execution. T - - - _ N
******** 1) ... | The structural index of a point is the path in the derivation tree from ° ...
;2;) while (pl) ({ . ‘the root to the point in the execution. e.g.
5) get_input (buf); gg i%’(cl) (
7) void get_input (char * buf) 5) retuJ’:n; Grammar R > 8R.107Ro ¢
o) - 6) 1} Building /o =18=="Y .
1(9); \ EEEEL IR, SLA) S 7) while (C2) { R ~ 16 - Multiple threads
B S g; lfA(%”), Ry > 9R, | € » No ordering constraints
MUItlple RunS 10) == | . i : A . They can cause nondeterministic execution.
~_Two lterations ~ Zero lterations ﬂ; é 0 Consider the corresponding executions of Eyisting detect hod '|
_3,; Whécle: i(.E:utrlzgt)Jf){' 2) white (p% £aise) | 13) } ' statement 10 in the two executions below: XISHNG CIEClion MEthods warh unhecessarty:
9) read (buf,512); ‘ ig; B) Classify to prioritize Re-execute and force race
9) | . - o
: 16) s3; developer efforts: expression to classify:
2) while (pi' true) { | 4 _
sy Potential | |

3) get_input (buf);
9) read (buf,512);

2) while (pT* false) {

read (buf,512)

***) R

B

How Do We Know These Points Correspond? Rg B2
11 " I V V n | 7 n]
Beoogmzmg the same point betw?en these executions can be useful R, Ry)| RS Selectmg Dynamlc Accesses for Testmg
in various analyses, but the meaning of “same” depends on context. v v v
R* S S Numerous dvnamic memory accesses exhibit the same semantic
Structural Execution Indexing uses dynamic control dependence R . race * Infeasible to test them all
* \' - Categorize by structure and data semantics
2) while (1) { 237189234 16 5718 107 126 2371864789237 12 16107 1A + Force exhibition of maximally distant candidates

\ J
/
get_input (buf); What If Data Determines Identity Semantics? »‘<‘:~ - ‘ _ ,v‘
)

9) read (buf,512); - SNy - _
2) while (pl) e.g. event based actions (on input 'a' do.. ‘x > \‘
—_—

true Semantic Anchor Points allow the derivation tree to be re-rooted at

get_input (buf); a value for the duration of control flow centered upon that value.

false
9) read (buf, 512);

2) while (pl) { R,
References
| |Identity after this | | | S
o _ R3 R1 R3 R1 [1] Tao Wang, Abhik Roychoudhury. Hierarchical dynamic slicing. ISSTA 2007: 228-238.
6) caée b - point IS determined [2] Bin Xin, Nick Sumner, Xiangyu Zhang. Efficient program execution indexing. PLDI 2008:
7) ... by val to appear.
8) } Y v [3] Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, Rajiv Gupta. Towards locating
'y 2 135 12 37 1.2 execution omission errors. PLDI 2007: 415-424.

Dicc:vwary Park

"
e-Enterprise Center

PURDUE

UNIVERSITY

coj
Typewritten Text
2008 - 68C-3F3 - Structural Execution Indexing and its Applications - wsumner@cs.purdue.edu - ASA

