
Software Properties and Behaviors
Pascal Meunier, Purdue University CERIAS

Examples
-Unauthorized back doors obviously fail all
desirable properties

-The Comcast network failed transparency by
not disclosing the injection of reset packets; it
failed purity because the reset packets were
foreign to the stated purpose and advertised
nature of the broadband internet connections;
it failed obedience and loyalty because it
violated the control of users' TCP connections
in violation of implicit contractual agreements.

-Secret or hidden MMORPG “watch” software
(e.g., “Warden” for Wold of Warcraft) fail at
least transparency and arguably more

-DRM software for Major League Baseball
videos failed obedience and loyalty by
unexpectedly preventing users from watching
videos, because the DRM server was
decommissioned without warning

Transparency
All functions of the software

are disclosed to users

Obedience
The functions in the

software are fully under
the control of the

appropriate entities

Loyalty
The software serves only the interests of the
appropriate entities. It can't be subverted to serve the
interests of third parties, or inappropriately favor some
entities

Purity
Freedom from functions
that are foreign to the
software's advertised

nature or stated purpose

Abstract
Software has moved beyond the encoding of algorithms, to enforcing moral, ethical and legal values,
implementing tactics, strategies and essentially the will of designers, coders and organizational (e.g.,
corporate) entities, or even laws. Buyers, users and communities incur risk due to the deployment of
foreign or inappropriate behaviors. Due to code complexity, obfuscation and emergent behaviors, I posit
that the systematic study of software behaviors is an important and sometimes the main source of
reproducible and objective information on what an artifact (including infrastructure) will and will not do. I
contribute definitions of some desirable software properties useful in the context of studying the risks posed
by software behaviors: software transparency, purity, obedience and loyalty.

Discussion

Discussing the "behavior" of software artifacts and the infrastructure it depends upon and giving it
properties normally associated with sentient beings is not an attempt at superstitious or unscientific
anthropomorphism. Rather, it is the recognition that software allows authors to encode complex decisions
and policies. Software can force users to register, to choose good passwords or agree to EULAs (End User
License Agreements). Malicious software can fool users, and regular software can be fooled by
sophisticated users, resulting in "exploits" and vulnerability announcements. Software can spy on users,
phone home, and act in the interests of a vendor or even third parties by design. The tactics and goals
encoded in software aren't static due to self-update and command-and-control mechanisms. Software can
adapt and improve due to the intelligence provided by authors. Additional or updated strategies and goals
can be provided by operators.

Many software programs contain unadvertised functions that upset users when they discover them. These
functions are not bugs, but rather operations intended by their designers to be hidden from end-users. The
problem is not new -- Trojan horses and Easter Eggs were among the earliest instances -- but it is
increasingly common and a source of many risks. I define software transparency as a condition that all
functions of software are disclosed to users. Transparency is necessary for proper risk management.

Disclosure doesn't by itself remove objectionable functions. They pose risks while being irrelevant to the
software's stated purpose and utility, and are foreign to its advertised nature. Freedom from such functions
is a property that needs a name: loyalty, nonperfidiousness, fidelity, and purity come to mind, but none of
them seems exactly right. I shall call it purity. ``Pure Software" can theoretically exist without disclosure, but
disclosure would be a strong incentive, as previously discussed by Garfinkel. Purity does not mean free of
errors or unchanged since release. It's possible for pure software to contain errors or to be corrupted.

Software transparency, purity, obedience and loyalty (c.f. definitions below) are often valued but not
explicitly identified. Beyond the obvious information security risks to users,software lacking these properties
also poses business risks in the form of loss of reputation, trust, goodwill, sales, and contracts. It may be
that transparency alone is enough for some purposes, and others may also require purity, obedience and
loyalty. Loyalty is difficult to secure without transparency, purity and obedience. An explicit requirement of
whichever is appropriate would decrease risks.

52D-07F.pdf 1 3/4/2008 10:07:49 AM

coj
Typewritten Text
2008 - 52D-07F - Software Properties and Behaviors - pmeunier@cerias.net - RMPL

