
A Serious Form of Attack: SN2K -
Software-based Need-to-Know Attacks
A hi h K d CS & CERIAS P d U i it (hi hk@ d d)Ashish Kundu, CS & CERIAS, Purdue University (ashishk@cs.purdue.edu)

Existing Programming Models: Insecure

Client

Client implicitly trusts
Service Provider

Attack Tree for SN2K: Force client to send extra sensitive data

Ask an extra
parameter in
the interface

(Breadth attack)

Ask an extra field
in the type of the

parameter essential
for

computation
(D th tt k)

Ask extra data
meant for

an aggregate
procedure
executing

i diff t

Service Provider

(Depth attack)

Do not use
extra parameter

Fake use of
extra

parameter

Do not
use

extra field

Fake use of
extra field

in a different
trust level

(Aggregate-function attack)

Fake use: add
computations

that do not influence
the result at all.

Fake use: specify -
Fake use: add
computations

Fake use: specify
- needed for
business or
bureaucratic

requirements -

Example

Depth Attack

Breadth Attack

a e use spec y
needed for business or

bureaucratic requirements
- such as passport number

that do not
influence

the result at all.

q
such as

passport number

Feasibility of Attack
Simple
Efficient

Language Mechanisms
for Attack

Polymorphism: depth attack

TravelAgentService

TravelAgentService

Aggregate-function Attack

Sources of Attack
Malicious service providers

Software evolution
Automatic/Dynamic service

Asymmetric cost to client (more) and
to attacker (very less) Aliasing: fake use

Undecidability: fake use

Dimensions of a Solution
Type-safety

Static or dynamic typing
Alias analysis

Static program analysis
D i l i

CreditCardService

Automatic/Dynamic service
composition

Malicious insider

Dynamic program analysis

Semantic analysis

Detecting an Attack and Certification
Input: Function f: signature (S), implementation(I)

Signature: RetType f (T1: x1, T2: x2, … Tn: xn)

1. Alias analysis: determine aliases in I
2 Dead code elimination on I: generate I’ with no dead code

Fake
use

SN2K Attacks: Types
Depth Attack (1) at least one field in a composite

parameter

Breadth Attack (2) at least one parameter

A t f ti t l t t /fi ld d l d b 2. Dead code elimination on I: generate I with no dead code
3. Type-inferencing on I’

1. detect parameters used in depth attack and breadth attack
2. prune these parameters to generate S’ from S

4. Forward slicing from S’ over I’: params affecting result
5. Interprocedural semantic analysis on I’: program properties, invariants, aggregation-

function attack
6. Prune params/computations that do not affect result (4, 5): I’’
7. Carry out dynamic analysis, to remove fake use, if any detected: S’’’, I’’’
8. Certify S’’’ and I’’’: signed-hash(S’’’, binary of I’’’).

Never
used

Fake use

not necessary for the service offered

Aggregate-function
Attack (3)

at least one parameter/field declared by
an aggregate, but used only by a
component function

Formal Semantics:
Function f: R = {p | p = (T, x)}, field f Є T, T1 = T – {f}.
(1) R’ = R U (T1, x) – {p} [f]R’ = [f]R
(2) R’’ R { } [f]R’’ [f]R Future directions: non-monopolistic programming model.

Reference: Software-based Need-to-know attacks (SN2K attacks), Ashish Kundu, to be submitted.
(2) R’’ = R – {p}, [f]R’’ = [f]R
(3) Combination of (1) and (2) in aggregate functions/services.

518-F08.pdf 1 3/14/2008 4:38:29 PM

coj
Typewritten Text
2008 - 518-F08 - A Serious Form of Attack: SN2K - Software-based Need-to-Know (N2K) Attacks - Ashish Kundu - ASA

