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Feasibility of Attack
Simple
Efficient
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Polymorphism: depth attack
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Sources of Attack
Malicious service providers

Software evolution
Automatic/Dynamic service

Asymmetric cost to client (more) and
to attacker (very less) Aliasing: fake use

Undecidability: fake use

Dimensions of a Solution
Type-safety

Static or dynamic typing
Alias analysis

Static program analysis
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Semantic analysis

Detecting an Attack and Certification
Input: Function f: signature (S), implementation(I)

Signature: RetType f (T1: x1, T2: x2, … Tn: xn)

1. Alias analysis: determine aliases in I
2 Dead code elimination on I: generate I’ with no dead code

Fake 
use

SN2K Attacks: Types
Depth Attack (1) at least one field in a composite 

parameter

Breadth Attack (2) at least one parameter

A t f ti t l t t /fi ld d l d b 2. Dead code elimination on I: generate I  with no dead code
3. Type-inferencing on I’ 

1. detect parameters used in depth attack and breadth attack
2. prune these parameters to generate S’ from S

4. Forward slicing from S’ over I’: params affecting result
5. Interprocedural semantic analysis on I’: program properties, invariants, aggregation-

function attack
6. Prune params/computations that do not affect result (4, 5): I’’
7. Carry out dynamic analysis, to remove fake use, if any detected: S’’’, I’’’
8. Certify S’’’ and I’’’: signed-hash(S’’’, binary of I’’’).
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Aggregate-function
Attack (3)

at least one parameter/field declared by 
an aggregate, but used only by a 
component function

Formal Semantics: 
Function f: R = {p | p = (T, x)}, field f Є T, T1 = T – {f}.  
(1) R’ = R U  (T1, x)  – {p}  [f]R’ = [f]R
(2) R’’ R { } [f]R’’ [f]R Future directions: non-monopolistic programming model.                   

Reference: Software-based Need-to-know attacks (SN2K attacks),  Ashish Kundu, to be submitted.
(2) R’’ = R – {p}, [f]R’’ = [f]R
(3) Combination of (1) and (2) in aggregate functions/services.
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