

2008 - 02F-49D - A game theoretic framework for adversarial learning - xbw@stat.purdue.edu - IDRI

the center for education and research in information assurance and security

A Game Theoretic Framework for Adversarial Learning Murat Kantarcioglu, Bowei Xi, and Chris Clifton

Introduction

Many adversarial learning problems in practice

Our Formulation

Two class problem

Solving For Equilibrium

It is even hard to calculate $g_e(T)$ for given T

- Intrusion Detection
- Fraud Detection
- Spam Detection _____
- Data Mining for Homeland Security
- Adversary adapts to avoid being detected.
 - Millions different ways to write Viagra!
- New solutions are needed to address this problem

Understanding Adversarial Learning

- It is not concept drift
- It is noAdversary changes the distribution to avoid being detected
- t online learning
- There is game between the data miner and the adversary

Solution Ideas

Constantly adapt your classifier to changing

- Good class, Bad class
- Mixture model $x = (x_1, x_2, x_3, \dots, x_n)$
 - $p_1 + p_2 = 1$ $f(x) = p_1 f_1(x) + p_2 f_2(x)$
- Adversary applies a transformation T to modify bad class $f_2(x) \rightarrow f_2^T(x)$
- After observing transformation, data miner chooses an updated classifier h
- We define the payoff function for the data miner $f(x) = p_1 f_1(x) + p_2 f_2^T(x)$

 $c(T,h) = \int_{T^{h}} c_{11} p_1 f_1(x) + c_{12} p_2 f_2^T(x) dx + \int_{T^{h}} c_{21} p_1 f_1(x) + c_{22} p_2 f_2^T(x) dx$ $u_2(T,h) = -c(T,h)$

C_{ii} is the cost for classifying x to class i to given that it is in class j

- Hard to maximize the $g_{e}(T)$
- **Stochastic Optimization Ideas:**
 - Monte-Carlo Integration
 - Simulated Annealing
- After an equilibrium is reached, each party does not have incentive change their actions.

Simulations for Mixture Models

- T is the set of all linear transformations
- Each class is assumed to be the Gaussian distribution.
- **Cost** of transformation for the adversary is

 $g^{T}(x) = g - a \left[T^{-1}(x) - x \right]_{1}$ ā 0.6 2.0 gal ₿ 0.4

adversary behavior

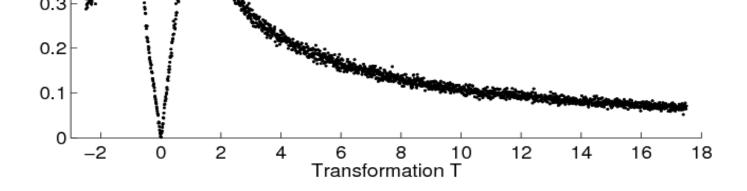
- Look at the Dalvi et.al. KDD 04 paper for such a solution for Naïve Bayes Classifier
- Questions??
 - How to model this game?
 - Does this game ever end?
 - Is there an equilibrium point in the game?

Adversarial Stackelberg Game

- Usually classifier is modified after observing adversaries action.
 - Spam filter rules.
 - Searches at metro stations at NY city.
- **Stackelberg Games**
 - Adversary chooses an action a₁
 - After observing a_1 , data miner chooses action a_2
 - Game ends with payoffs to each player

- Data miner tries to minimize c(T,h)
- Transformation has a cost for the adversary
 - Reduced effectiveness for spam e-mails
- be the gain of an element after Let g'(x)transformation
- Adversary gains for the "bad" instances that are classified as "good" $u_{1}(T, h) = \int_{T} g^{T}(x) f_{2}^{T}(x) dx$
- Given the transformation T, we can find the best response classifier (R(T)) h that minimizes the c(T,h) $\int \pi_{1}, (c_{12} - c_{22}) p_{2} f_{2}^{T}(x) \leq (c_{21} - c_{11}) p_{1} f_{1}(x)$ $h_{T}(x) = \langle$ π_{2} , otherwise
- For Adversarial Stackelberg game, subgame perfect equilibrium is:

 $T^* = \arg \max_{T \in S} (u_1(T, R(T)))$ $(T^{*}, R(T^{*}))$



Attribute Selection for Adversarial Learning

- How to choose attributes for Adversarial Learning?
 - Choose the most predictive attribute _____
 - Choose the attribute that is hardest to change

Att.	f1()	f2()	Penalty	Equlibrium Bayes Error
X1	N(1,1)	N(3,1)	a=1	0.16
X2	N(1,1)	N(3.5,1)	a=0.45	0.13
X3	N(1,1)	N(4,1)	a=0	0.23

Choose the attribute with best equilibrium performance!!

PURDUE UNIVERSITY

