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IP Blocklists

• IP Blocklists contain a list of known 
malicious IP addresses.
• IP Blocklists are commonly used to 

aid more sophisticated defenses 
such as spam filters, IDS, etc.

• IP blocklists can be used as an 
emergency response under a novel 
or large volumetric attack.
• Easy to implement as only IP 

addresses are checked and can be 
done at line rate.
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Problems with IP Blocklists
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• Focus only on specific attack types with limited vantage points.
• Historical blocklist data can capture reoffending malicious addresses.
• Addresses are added only after a malicious event is observed.
• Blocking reused addresses can lead to unjust blocking of many more users.
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• Focus only on specific attack types with limited vantage points.
• Historical blocklist data can capture reoffending malicious addresses.
• Addresses are added only after a malicious event is observed.
• Blocking reused addresses can lead to unjust blocking of many more users.
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P1: Fragmented Information
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Combined  
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- offenders in one given attack

Blocklists miss many attacks1,2 and may monitor only specific a 
type of attack.
[1] Kührer, Marc, Christian Rossow, and Thorsten Holz. "Paint it black: Evaluating the effectiveness of malware blocklists." International Workshop on Recent 
Advances in Intrusion Detection. Springer, Cham, 2014.
[2] Pitsillidis, Andreas, et al. "Taster's choice: a comparative analysis of spam feeds." Proceedings of the 2012 Internet Measurement Conference. ACM, 2012.
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DDoS 
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Malware 
Blacklist 

Combined  
Blacklist 

Compromised machines are constantly re-used for initiating 
different types of attacks over time. 
A Possible solution: Combining different types of blocklists can 
improve attack coverage.
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1 Day 1 Month 3 Months 6 Months

- offenders in one given attack

Historical blocklist data (union of all offenders over time) can 
further be useful to improve offender detection. 
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P2: Careful Aggregation
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Blocklists accuracy varies spatially
• Blocklists are maintained by individuals or organizations that use 

proprietary algorithms to include or exclude an address.
• Blocklists could list some legitimate addresses.
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Combining blocklists can further potentially amplify the number of 
misclassifications.
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Goal: Aggregate historical blocklists and reduce 
misclassifications.



P3: Blocklists are Reactive
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Spam
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DDoS 
Blacklist 

Malware 
Blacklist 

Combined  
Blacklist 

- offenders in one given attack

Addresses are usually listed after an attack takes place, cannot be used 
for prevention.
Possible solution: we could list groups of addresses in the same subnet 
(IP prefixes), hoping to capture future attackers - expansion1.

[1] Zhang, Jing, et al. "On the Mismanagement and Maliciousness of Networks." NDSS. 2014.
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Expansion can further amplify misclassifications!
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Goal: Expand some addresses into prefixes that do not cause 
more misclassifications.
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IP

Cloudflare uses 
Dshield blocklist.

22https://community.cloudflare.com/t/cloudflare-blocking-my-ip/65453/57
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NAT
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Goal: Accurately identify NATed reused address to prevent 
unjust blocking. 
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Goal: Accurately identify dynamic reused address to prevent 
unjust blocking. 



Problems with IP Blocklists
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Problems

Fragmented
information

Snapshots in
time Reactive Address reuse

BLAG: Aggregation + Estimate Misclassification + 
Selective Expansion1

[1] BLAG: Improving the Accuracy of Blocklists; Sivaram Ramanathan, Jelena Mikovic and Minlan Yu; NDSS 2020.
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Problems

Fragmented
information

Snapshots in
time Reactive Address reuse

Quantifying the impact of Blocklisting2

[1] BLAG: Improving the Accuracy of Blocklists; Sivaram Ramanathan, Jelena Mikovic and Minlan Yu; NDSS 2020.
[2] Quantifying the Impact of Blocklisting in the Age of Address Reuse: Sivaram Ramanathan, Anushah Hossain, Jelena Mirkovic, Minlan Yu and Sadia Afroz; IMC 
2020



Outline

• Introduction
• Quantifying problems faced by blocklists
• BLAG
• Datasets
• Evaluation

• Identifying reused addresses
• Detecting NATed addresses
• Detecting dynamic addresses
• Evaluation

• Summary
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Aggregation of Blocklists

• Historical blocklist data can be useful.
• However, including addresses reported way back in the past can 

increase the misclassifications.
• PRESTA1 showed that recently listed addresses have a higher 

tendency to be malicious than older ones.
• BLAG uses the same metric as that of PRESTA to assign a relevance 

score, based on when the address was listed in a blocklist
• Recently listed addresses have a higher score.

38
[1] West, Andrew G., et al. "Spam mitigation using spatio-temporal reputations from blocklist history." Proceedings of the 26th Annual Computer Security 
Applications Conference. ACM, 2010.



Aggregation of Blocklists: Relevance Scores

• For address a listed in blocklist b,

𝑟",$ = 2
'()*+'

,

39



Aggregation of Blocklists: Relevance Scores

• For address a listed in blocklist b,

𝑟",$ = 2
'()*+'

,

Where,
• t is the current time

40



Aggregation of Blocklists: Relevance Scores

• For address a listed in blocklist b,

𝑟",$ = 2
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Where,
• t is the current time
• tout is the last time when an address a was listed in blocklist b
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Aggregation of Blocklists: Relevance Scores

• For address a listed in blocklist b,

𝑟",$ = 2
'()*+'

,

Where,
• t is the current time
• tout is the last time when an address a was listed in blocklist b
• l is constant, which ensures that the score decays over time
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• For address a listed in blocklist b,

𝑟",$ = 2
,

'+'()*

Where,
• t is the current time
• tout is the last time when address a was listed in blocklist b
• l is constant, which ensures that the score decays exponentially over 

time

Aggregation of Blocklists: Relevance Scores

43

A high relevance score means that an IP has been recently listed and has a 
higher tendency of being malicious.



Estimate Misclassifications–
Recommendation System
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• Commonly found in popular services like Netflix, Amazon, and 
YouTube to improve user retention and increase revenue. 
• Recommend new items to users based on their or similar users’ 

previous ratings of similar items.
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• BLAG arranges IP addresses and blocklists in a matrix, where rows are 
addresses and columns are blocklists.
• If an address a is listed in blocklist b, BLAG assigns the relevance score 

ra,b to the cell.
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BLAG uses legitimate traffic traces of a network to introduce a new 
blocklist called the Misclassification Blocklist (MB), which consists only 
of misclassifications.
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For every known misclassification from the training data, BLAG allocates 
a score of 1.
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Goal: Find the relevance scores for remaining addresses in MB. 
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Goal: Find the relevance scores for remaining addresses in MB. 
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IP1

IP2

Goal: Find the relevance scores for remaining addresses in MB. 
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Goal: Find the relevance scores for remaining addresses in MB. 

IP1

IP2



Estimate Misclassifications

60

169.231.140.68

193.1.64.8

216.59.16.171

Bloc
klis

t 1

Bloc
klis

t 2

Bloc
klis

t m

Bloc
klis

t 3
 ..

169.231.140.68

193.1.64.5

193.1.64.8

216.59.0.8
243.13.0.23

MB

169.231.140.10

243.13.222.203

193.1.64.5

216.59.0.8

169.231.140.68

193.1.64.8

216.59.16.171

Bloc
klis

t 1

Bloc
klis

t 2

Bloc
klis

t m
-1

Bloc
klis

t 3

 ..

243.13.0.23

MB

169.231.140.10

243.13.222.203

193.1.64.5

216.59.0.8

Recommendation
system Prune 

0.28 0.11 .. ..

.. 0.46 .. ..

0.72 0.23 .. ..

.. .. 0.32 ..

.. 0.58 .. ..

0.15

..

0.25

0.95

0.87

.. .. .. .. ..

.. 0.79 0.87 .. 0.81

0.22

0.4

0.12

0.91

0.6

0.92

0.99

.. .. 0.78 .. .. 0.75

0.3 0.1 .. ..

.. 0.5 .. ..

0.7 0.5 .. ..

.. .. 0.04 ..

.. 0.7 .. ..

0.1

..

0.1

0.9

0.9

.. .. .. .. ..

.. 0.7 1 .. 0.9

?

?

?

1

?

1

1

.. .. 0.8 .. .. ?

Master blocklist
candidates

Using a defined threshold customized for every network (0.7 in this 
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Why Recommendation System?

• Given the incomplete view of the address space, there are many 
addresses that cannot be determined to be a misclassification (or 
not).
• Several latent factors influence an address to be a misclassification.
• Proprietary algorithms historical data or overall reputation of the 

blocklist
• The recommendation system helps us identify other addresses:
• Which “behave” similar to our known misclassifications.
• They are listed on same or similar blocklists as our known 

misclassifications, with similar scores.
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Check 2: If a prefix has any likely misclassification, it is excluded from 
expansion.
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Monitored Blocklists
Blocklist
dataset

Malware Reputation Spam Attack

57 blocklists

Emerging
threats

Malware bytes

Malware domain
list

Cisco talos

Binary defense
systems

32 blocklists

Alienvault Spamhaus

Nixspam

Cleantalk

39 blocklists

Snort labs

DShield

Maxmind

29 blocklists

• 157 blocklists monitored from Jan 2016 to Dec 2017 roughly categorized 
into four attack variants.
• Collected over 176 million IP addresses during this period.
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Ground Truth for Evaluating Blocklists

• Three types of ground truth, 
each with its corresponding 
legitimate and attack dataset.
• The legitimate portion is to 

validate the false detections of 
blocklists. 
• The attack portion is to validate 

the accurate detections of 
blocklists.

Legit emails
from IRB study

(6K)

Spam mails from
Mailinator

(39K)

Legit requests to
university server

(45K)

Mirai malware
infected hosts

(390K)

Legit requests
sent to B-root

(14K)

Attackers to 
B-root 
(5.5M)

Ground truth

Email DDoSUniv DDoSDNS
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Email Dataset
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Training Validation
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Evaluation

• Accuracy of BLAG: Compare the performance of BLAG with competing 
approaches
• Best: The best-performing blocklist on a given ground truth dataset (hindsight) 

at the given time (of the ground truth dataset).
• Historical: All addresses listed in all blocklists up until ground truth dataset.
• PRESTA+L: Blocklisting approach taken by PRESTA algorithm that uses spatial 

properties of blocklisted addresses to generate a new blocklist.
• Metrics: 
• Specificity - the percentage of legitimate addresses that were not false 

positives.
• Recall - the percentage of offenders that were detected.
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BLAG is Accurate

Best blocklists have high specificity (>99%)  but poor recall(< 4%) 
indicating that even the best blocklist is not enough to capture all 
attackers. 78
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Historical blocklists improve recall to 18% but with a drop in specificity 
by 12%, indicating that naïve combination of all blocklists has potential 
to capture attackers, but lowers specificity.
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BLAG with expansion further improves recall, with only a slight drop in 
specificity and has better specificity than historical blocklists. 



BLAG is Accurate

PRESTA+L has been tuned to have same recall as BLAG, but the 
specificity is lower than BLAG (82% vs 95%)

81

Email

0

20

40

60

80

100

Best Historical PRESTA+L BLAG

(%
)

Specifcity

0

20

40

60

80

100

Best Historical PRESTA+L BLAG

(%
)

Recall



Other evaluations

• Evaluated BLAG on two other datasets: DDoSUniv and DDoSDNS.
• Other expansion techniques -- expand using BGP prefixes or by 

autonomous systems.
• Impact of 
• Number of blocklists
• Size of misclassification blocklists

• Contribution of recommendation system in aggregation and 
expansion phase.
• Parameter tuning techniques.
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Detecting Reused NATed addresses

• We use the BitTorrent Network to identify users that are allocated the 
same IP address. 
• The BitTorrent protocol allows two messages that helps us identify 

NATted users accurately. 
• get_nodes: Returns a list of active neighbors to a node.
• bt_ping: Periodically pings active neighbors. 

• The protocol mandates all BitTorrent users to reply to these 
messages.  
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Detecting NATed addresses

Crawler

Port: 2215,
12281

Port: 155,
1821

Port: 6681

IP 1

IP 2

IP 3

85

Using get_node
messages.
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Using get_node
messages.



Detecting NATed addresses

Crawler

Port: 2215,
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Port: 155,
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Port: 6681

IP 1

IP 2

IP 3

2x
bt_ping

2x
bt_ping

87

Check active 
users.



Detecting NATed addresses

Crawler

Port: 2215,
12281

Port: 155,
1821

Port: 6681

IP 1

IP 2

IP 3

1x
reply

2x
reply

88

Stale Port. 

Two active users 
with two 
different port 
numbers using 
the same IP 
address.



Detecting NATed addresses

Crawler

Port: 2215,
12281

Port: 155,
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Discovered NATed addresses

Crawler

Port: 2215,
12281

Port: 155,
1821

Port: 6681

IP 1

IP 2

IP 3

• 48.7M IP addresses that use 
BitTorrent. 
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Discovered NATed addresses

Crawler

Port: 2215,
12281

Port: 155,
1821

Port: 6681

IP 1

IP 2

IP 3

2x
bt_ping

2x
bt_ping

• 48.7M IP addresses that use 
BitTorrent. 
• 1.6B bt_ping messages sent. 
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Discovered NATed addresses

Crawler

Port: 2215,
12281

Port: 155,
1821

Port: 6681

IP 1

IP 2

IP 3

1x
reply

2x
reply

• 48.7M IP addresses that use 
BitTorrent. 
• 1.6B bt_ping messages sent.
• 779M responses (48.6%).  

92



Discovered NATed addresses

Crawler

Port: 2215,
12281

Port: 155,
1821

Port: 6681

IP 1

IP 2

IP 3

• 48.7M IP addresses that use 
BitTorrent. 
• 1.6B bt_ping messages sent.
• 779M responses (48.6%).  
• 2M IP addresses that are NATed. 

93



Outline

• Introduction
• Quantifying problems faced by blocklists
• BLAG

• Datasets
• Evaluation

• Usage and perception of blocklists
• Identifying reused addresses

• Detecting NATed addresses
• Detecting dynamic addresses
• Evaluation

• Summary

94



Detecting Dynamic Addresses

RIPE Probe
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Detecting Dynamic Addresses

RIPE Probe

IP4 t1
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IP4 t3

RIPE
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Detecting Dynamic Addresses

RIPE Probe

IP4 t1
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ID

ID

ID
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Measurement logs to 
determine 
dynamically allocated 
addresses.

ID



Detecting Dynamic Addresses

RIPE Probe
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IP4 and IP6 are 
potentially 
dynamically allocated. 
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Detecting Dynamic Addresses

Probes with
addresses

changes in the
same AS.

100

To prevent users 
that have changed 
ISPs. 

13.6K RIPE probesRemaining:
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Frequent address
change.
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To prevent users 
that have changed 
ISPs. 

13.6K RIPE probesRemaining:

To consider probes 
that are potentially 
dynamically 
allocated.

2.6K RIPE probes



Detecting Dynamic Addresses

Probes with
addresses

changes in the
same AS.

Frequent address
change.
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To prevent users 
that have changed 
ISPs. 

13.6K RIPE probesRemaining:

To consider probes 
that are potentially 
dynamically 
allocated.
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Detecting Dynamic Addresses

Probes with
addresses

changes in the
same AS.

Frequent address
change.

Change addresses
daily.
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To prevent users 
that have changed 
ISPs. 

13.6K RIPE probesRemaining:

To consider probes 
that are potentially 
dynamically 
allocated.
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Quantifying Impact with Blocklists

• We use the BLAG dataset that actively maintains blocklisted
addresses from public blocklists. 
• 151 blocklists that monitor variety of attacks including Spam, DDoS, 

malware hosting or reputation of IP addresses. 
• Monitoring period of 83 days over two measurement periods:
• Aug 2019 – Sep 2019
• Mar 2020 – May 2020

• Observed 2.2M blocklisted IP addresses. 
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Number of Reused Addresses in Blocklists

105

Probes with
address changes

in same AS
(34.4K)

Probes with
frequent address

changes
(33.1K)

Probes that
change address

daily
(22.7K)

BitTorrent
IPs

(48.7M)

NATed IPs
(2M)

NATed +
blocklisted

IPs
(29.7K)

NATed addresses

Dynamic addresses
 Blocklisted

addresses in
RIPE prefixes

(53.7K)
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How many Blocklists list reused addresses?
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How many Blocklists list reused addresses?
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NATed Addresses Dynamic Addresses

61 blocklists have 
no NATed reused 
addresses.

72 blocklists have 
no dynamic reused 
addresses.



How many Blocklists list reused addresses?
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NATed Addresses Dynamic Addresses

Top 10 blocklists 
contribute to 72% 
of all dynamically 
allocated reused 
addresses.

Top 10 blocklists 
contribute to 65% 
of all NATed reused 
addresses.
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Our technique is 
comparable to 
existing 
reproducible 
technique.



How long are reused addreses in Blocklists?

111

• Reused addresses are removed 
faster than other addresses (3—
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How many users are affected?

112

• Some IP addresses impact many 
more users, affecting as many as 
78 users. 
• Many IP addresses have only 

two active users (68.5%)
• 98% of IP addresses have less 

than 10 active users.
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Summary

• Blocklists have poor attack detection.
• Combining blocklists from different sources improves attack detection, 

but also increases misclassifications.
• BLAG (blocklist aggregator)

• Assigns relevance scores to addresses belonging to blocklists
• Predicts addresses that are likely to be misclassifications using a 

recommendation system 
• Expands selective addresses into prefixes for better attack detection

• Reused addresses in blocklists can unjustly block more users.
• We propose two new techniques of identifying reused addresses in 

blocklists.
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Thank You! Questions?

All datasets are available at:

https://steel.isi.edu/Projects/BLAG/
https://steel.isi.edu/members/sivaram/blocklisting_impact
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