Improving the Accuracy of Blocklists by Aggregation and Address Reuse Detection

Sivaram Ramanathan

University of Southern California

In collaboration with: Minlan Yu, Jelena Mirkovic, Anushah Hossain and Sadia Afroz







### IP Blocklists

- IP Blocklists contain a list of known malicious IP addresses.
- IP Blocklists are commonly used to aid more sophisticated defenses such as spam filters, IDS, etc.
- IP blocklists can be used as an emergency response under a novel or large volumetric attack.
  - Easy to implement as only IP addresses are checked and can be done at line rate.

| 1.  | 198.38.89.61    | 2.  | 175.230.213.33  | 3.  | 182.74.165.174  | 4.  | 178.137.90.85   |
|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|
| 5.  | 111.40.73.83    | 6.  | 61.132.233.195  | 7.  | 193.150.72.50   | 8.  | 221.4.205.30    |
| 9.  | 60.172.69.66    | 10. | 61.163.36.24    | 11. | 60.166.48.158   | 12. | 117.214.17.72   |
| 13. | 180.121.141.117 | 14. | 114.232.216.5   | 15. | 183.159.83.71   | 16. | 121.239.86.33   |
| 17. | 92.73.213.217   | 18. | 162.248.74.123  | 19. | 183.159.95.87   | 20. | 14.207.215.126  |
| 21. | 222.191.179.90  | 22. | 217.110.92.194  | 23. | 156.216.145.235 | 24. | 81.17.22.206    |
| 25. | 41.251.33.175   | 26. | 114.223.61.210  | 27. | 114.232.193.38  | 28. | 114.231.141.136 |
| 29. | 170.51.62.241   | 30. | 49.67.83.155    | 31. | 180.121.141.119 | 32. | 39.40.30.104    |
| 33. | 209.54.53.185   | 34. | 167.114.84.153  | 35. | 223.240.208.236 | 36. | 183.150.34.181  |
| 37. | 95.37.125.239   | 38. | 171.14.238.42   | 39. | 1.55.199.83     | 40. | 222.191.177.40  |
| 41. | 45.234.101.139  | 42. | 117.85.56.142   | 43. | 123.54.107.199  | 44. | 45.119.81.235   |
| 45. | 186.47.173.213  | 46. | 49.67.67.141    | 47. | 95.211.149.134  | 48. | 113.128.132.9   |
| 49. | 49.67.67.140    | 50. | 119.180.198.174 | 51. | 103.69.46.81    | 52. | 128.199.35.34   |
| 53. | 159.255.167.131 | 54. | 181.215.89.206  | 55. | 192.210.201.168 | 56. | 128.199.44.20   |
| 57. | 218.72.108.217  | 58. | 113.120.60.120  | 59. | 111.125.140.155 | 60. | 60.50.145.121   |
|     |                 |     |                 |     |                 |     |                 |











• Focus only on specific attack types with limited vantage points.



- Focus only on specific attack types with limited vantage points.
- Historical blocklist data can capture reoffending malicious addresses.



- Focus only on specific attack types with limited vantage points.
- Historical blocklist data can capture reoffending malicious addresses.
- Addresses are added only after a malicious event is observed.



- Focus only on specific attack types with limited vantage points.
- Historical blocklist data can capture reoffending malicious addresses.
- Addresses are added only after a malicious event is observed.
- Blocking reused addresses can lead to unjust blocking of many more users.

#### P1: Fragmented Information

O - offenders in one given attack

7



# Blocklists miss many attacks<sup>1,2</sup> and may monitor only specific a type of attack.

[1] Kührer, Marc, Christian Rossow, and Thorsten Holz. "Paint it black: Evaluating the effectiveness of malware blocklists." International Workshop on Recent Advances in Intrusion Detection. Springer, Cham, 2014.

[2] Pitsillidis, Andreas, et al. "Taster's choice: a comparative analysis of spam feeds." *Proceedings of the 2012 Internet Measurement Conference*. ACM, 2012.

#### P1: Fragmented Information

O - offenders in one given attack



Compromised machines are constantly re-used for initiating different types of attacks over time.

### P1: Fragmented Information

offenders in one given attack



Compromised machines are constantly re-used for initiating different types of attacks over time.

A Possible solution: Combining different types of blocklists can improve attack coverage.

#### P2: Snapshots in Time

O - offenders in one given attack

1 Day



Historical blocklist data (union of all offenders over time) can further be useful to improve offender detection.

#### P2: Snapshots in Time

O - offenders in one given attack



Historical blocklist data (union of all offenders over time) can further be useful to improve offender detection.

O - offenders in one given attack

Iegitimate clients of a given network during the same attack



**Blocklists accuracy varies spatially** 

- Blocklists are maintained by individuals or organizations that use proprietary algorithms to include or exclude an address.
- Blocklists could list some legitimate addresses.

offenders in one given attack

 legitimate clients of a given network during the same attack



Combining blocklists can potentially amplify the number of misclassifications.

O - offenders in one given attack

 legitimate clients of a given network during the same attack



Combining blocklists can further potentially amplify the number of misclassifications.

O - offenders in one given attack

 legitimate clients of a given network during the same attack



Combining blocklists can further potentially amplify the number of misclassifications.

#### P3: Blocklists are Reactive

offenders in one given attack



Addresses are usually listed after an attack takes place, cannot be used for prevention.

Possible solution: we could list groups of addresses in the same subnet (IP prefixes), hoping to capture future attackers - expansion<sup>1.</sup>

[1] Zhang, Jing, et al. "On the Mismanagement and Maliciousness of Networks." NDSS. 2014.

O - offenders in one given attack

 legitimate clients of a given network during the same attack

# P3: Careful Expansion



Expansion can further amplify misclassifications!

O - offenders in one given attack

 legitimate clients of a given network during the same attack

### P3: Careful Expansion



Expansion can further amplify misclassifications!





https://community.cloudflare.com/t/cloudflare-blocking-my-ip/65453/57













# Goal: Accurately identify NATed reused address to prevent unjust blocking.











Goal: Accurately identify dynamic reused address to prevent unjust blocking.





BLAG: Aggregation + Estimate Misclassification + Selective Expansion<sup>1</sup>

[1] BLAG: Improving the Accuracy of Blocklists; Sivaram Ramanathan, Jelena Mikovic and Minlan Yu; NDSS 2020.



Quantifying the impact of Blocklisting<sup>2</sup>

[1] BLAG: Improving the Accuracy of Blocklists; Sivaram Ramanathan, Jelena Mikovic and Minlan Yu; NDSS 2020.

[2] Quantifying the Impact of Blocklisting in the Age of Address Reuse: Sivaram Ramanathan, Anushah Hossain, Jelena Mirkovic, Minlan Yu and Sadia Afroz; IMC 2020

### Outline

- Introduction
- Quantifying problems faced by blocklists
- BLAG
  - Datasets
  - Evaluation
- Identifying reused addresses
  - Detecting NATed addresses
  - Detecting dynamic addresses
  - Evaluation
- Summary

#### How BLAG Works



#### How BLAG Works



#### How BLAG Works



## Aggregation of Blocklists

- Historical blocklist data can be useful.
- However, including addresses reported way back in the past can increase the misclassifications.
- PRESTA<sup>1</sup> showed that recently listed addresses have a higher tendency to be malicious than older ones.
- BLAG uses the same metric as that of PRESTA to assign a relevance score, based on when the address was listed in a blocklist
  - Recently listed addresses have a higher score.

• For address *a* listed in blocklist *b*,

$$r_{a,b} = 2^{\frac{t_{out} - t}{l}}$$

• For address *a* listed in blocklist *b*,

$$r_{a,b} = 2^{\frac{t_{out} - t}{l}}$$

Where,

• *t* is the current time

• For address *a* listed in blocklist *b*,

$$r_{a,b} = 2^{\frac{t_{out} - t}{l}}$$

Where,

- *t* is the current time
- $t_{out}$  is the last time when an address a was listed in blocklist b

• For address *a* listed in blocklist *b*,

$$r_{a,b} = 2\frac{\frac{t_{out} - t}{l}}{l}$$

Where,

- *t* is the current time
- $t_{out}$  is the last time when an address a was listed in blocklist b
- I is constant, which ensures that the score decays over time

• For address a listed in blocklist b,

A high relevance score means that an IP has been recently listed and has a higher tendency of being malicious.

#### • *t* is the current time

- *t<sub>out</sub>* is the last time when address *a* was listed in blocklist *b*
- I is constant, which ensures that the score decays exponentially over time



- Commonly found in popular services like Netflix, Amazon, and YouTube to improve user retention and increase revenue.
- Recommend new items to users based on their or similar users' previous ratings of similar items.



|   |     |     |     |     |     |     | Like |
|---|-----|-----|-----|-----|-----|-----|------|
| R | 0.8 | 0.6 |     |     | 1   |     |      |
| R | 1   |     | 0.8 |     | 0.8 |     |      |
| R | 0.8 |     | 1   | 0.6 | 1   |     |      |
| R |     | 0.6 |     |     |     | 1   |      |
| R |     | 0.8 |     |     |     | 0.8 |      |
| R |     |     | 0.4 | 0.8 |     | 1   |      |

ikes green books.

| (2)             | 0.8 | 0.6 |     |     | 1   |     |
|-----------------|-----|-----|-----|-----|-----|-----|
| $(\mathcal{R})$ | 1   |     | 0.8 |     | 0.8 |     |
| $(\mathbf{R})$  | 0.8 |     | 1   | 0.6 | 1   |     |
| R               |     | 0.6 |     |     |     | 1   |
| $(\mathcal{R})$ |     | 0.8 |     |     |     | 0.8 |
| R               |     |     | 0.4 | 0.8 |     | 1   |

Likes green books.

Dislikes yellow books.

| (2)             | 0.8 | 0.6 |     | ?   | 1   |     |
|-----------------|-----|-----|-----|-----|-----|-----|
| $(\mathcal{R})$ | 1   |     | 0.8 |     | 0.8 |     |
| $(\mathbf{R})$  | 0.8 |     | 1   | 0.6 | 1   |     |
| R               |     | 0.6 |     |     |     | 1   |
| $(\mathbf{R})$  |     | 0.8 |     |     |     | 0.8 |
| R               |     |     | 0.4 | 0.8 |     | 1   |



| R | 0.8  | 0.59 | 0.6  | 0.7  | 0.99 | 1    |
|---|------|------|------|------|------|------|
| R | 0.99 | 0.97 | 0.8  | 0.92 | 0.8  | 1    |
| R | 0.8  | 0.85 | 0.99 | 0.59 | 0.99 | 1    |
| R | 0.7  | 0.6  | 0.6  | 0.66 | 0.72 | 0.99 |
| R | 0.66 | 0.79 | 0.5  | 0.6  | 0.29 | 0.8  |
| R | 0.77 | 0.85 | 0.4  | 0.79 | 0.55 | 0.99 |



| R                | 0.8  | 0.59 | 0.6  | 0.7  | 0.99 | 1    |
|------------------|------|------|------|------|------|------|
| R                | 0.99 | 0.97 | 0.8  | 0.92 | 0.8  | 1    |
| R                | 0.8  | 0.85 | 0.99 | 0.59 | 0.99 | 1    |
| R                | 0.7  | 0.6  | 0.6  | 0.66 | 0.72 | 0.99 |
| D                | 0.66 | 0.79 | 0.5  | 0.6  | 0.29 | 0.8  |
| $(\mathfrak{L})$ | 0.77 | 0.85 | 0.4  | 0.79 | 0.55 | 0.99 |





1

1

1

0.8



| 169.231.140.10 |     |     | 0.8  | <br>    |
|----------------|-----|-----|------|---------|
| 169.231.140.68 | 0.3 | 0.1 |      | <br>0.1 |
| 193.1.64.5     |     | 0.5 |      | <br>    |
| 193.1.64.8     | 0.7 | 0.5 |      | <br>0.9 |
| 216.59.0.8     |     |     | 0.04 | <br>0.1 |
| 216.59.16.171  |     | 0.7 |      | <br>0.9 |
| 243.13.0.23    |     |     |      | <br>    |
| 243.13.222.203 |     | 0.7 | 1    | <br>0.9 |

- BLAG arranges IP addresses and blocklists in a matrix, where rows are addresses and columns are blocklists.
- If an address *a* is listed in blocklist *b*, BLAG assigns the relevance score  $r_{a,b}$  to the cell.



| 169.231.140.10 |     |     | 0.8  | <br>    |  |
|----------------|-----|-----|------|---------|--|
| 169.231.140.68 | 0.3 | 0.1 |      | <br>0.1 |  |
| 193.1.64.5     |     | 0.5 |      | <br>    |  |
| 193.1.64.8     | 0.7 | 0.5 |      | <br>0.9 |  |
| 216.59.0.8     |     |     | 0.04 | <br>0.1 |  |
| 216.59.16.171  | ••  | 0.7 |      | <br>0.9 |  |
| 243.13.0.23    |     |     |      | <br>    |  |
| 243.13.222.203 |     | 0.7 | 1    | <br>0.9 |  |

BLAG uses legitimate traffic traces of a network to introduce a new blocklist called the Misclassification Blocklist (MB), which consists only of misclassifications.



| 169.231.140.10 |     |     | 0.8  | <br>    |   |
|----------------|-----|-----|------|---------|---|
| 169.231.140.68 | 0.3 | 0.1 |      | <br>0.1 |   |
| 193.1.64.5     |     | 0.5 |      | <br>    |   |
| 193.1.64.8     | 0.7 | 0.5 |      | <br>0.9 |   |
| 216.59.0.8     |     |     | 0.04 | <br>0.1 |   |
| 216.59.16.171  | ••  | 0.7 |      | <br>0.9 | 1 |
| 243.13.0.23    |     |     |      | <br>    | 1 |
| 243.13.222.203 |     | 0.7 | 1    | <br>0.9 | 1 |

For every known misclassification from the training data, BLAG allocates a score of 1.



| 169.231.140.10 |     |     | 0.8  | <br>    | ? |
|----------------|-----|-----|------|---------|---|
| 169.231.140.68 | 0.3 | 0.1 |      | <br>0.1 | ? |
| 193.1.64.5     |     | 0.5 |      | <br>    | ? |
| 193.1.64.8     | 0.7 | 0.5 |      | <br>0.9 | ? |
| 216.59.0.8     |     |     | 0.04 | <br>0.1 | ? |
| 216.59.16.171  |     | 0.7 |      | <br>0.9 | 1 |
| 243.13.0.23    |     |     |      | <br>    | 1 |
| 243.13.222.203 |     | 0.7 | 1    | <br>0.9 | 1 |









Using a defined threshold customized for every network (0.7 in this case), BLAG prune out addresses that are potentially misclassified.

# Why Recommendation System?

- Given the incomplete view of the address space, there are many addresses that cannot be determined to be a misclassification (or not).
- Several latent factors influence an address to be a misclassification.
  - Proprietary algorithms historical data or overall reputation of the blocklist
- The recommendation system helps us identify other addresses:
  - Which "behave" similar to our known misclassifications.
  - They are listed on same or similar blocklists as our known misclassifications, with similar scores.



Check 1: If a prefix has any known misclassification, it is excluded from expansion.



Check 2: If a prefix has any likely misclassification, it is excluded from expansion.



Check 2: If a prefix has any likely misclassification, it is excluded from expansion.



BLAG expands addresses to their /24 prefix only when both conditions are satisfied.

# Outline

- Introduction
- Quantifying problems faced by blocklists
- BLAG
  - Datasets
  - Evaluation
- Identifying reused addresses
  - Detecting NATed addresses
  - Detecting dynamic addresses
  - Evaluation
- Summary

# Monitored Blocklists



- 157 blocklists monitored from Jan 2016 to Dec 2017 roughly categorized into four attack variants.
- Collected over 176 million IP addresses during this period.

## Ground Truth for Evaluating Blocklists

- Three types of ground truth, each with its corresponding legitimate and attack dataset.
- The legitimate portion is to validate the false detections of blocklists.
- The attack portion is to validate the accurate detections of blocklists.











#### Email Dataset



#### Email Dataset



#### Email Dataset



# Outline

- Introduction
- Quantifying problems faced by blocklists
- BLAG
  - Datasets
  - Evaluation
- Usage and perception of blocklists
- Identifying reused addresses
  - Detecting NATed addresses
  - Detecting dynamic addresses
  - Evaluation
- Summary

# Evaluation

- Accuracy of BLAG: Compare the performance of BLAG with competing approaches
  - Best: The best-performing blocklist on a given ground truth dataset (hindsight) at the given time (of the ground truth dataset).
  - Historical: All addresses listed in all blocklists up until ground truth dataset.
  - PRESTA+L: Blocklisting approach taken by PRESTA algorithm that uses spatial properties of blocklisted addresses to generate a new blocklist.
- Metrics:
  - Specificity the percentage of legitimate addresses that were not false positives.
  - Recall the percentage of offenders that were detected.



Best blocklists have high specificity (>99%) but poor recall(< 4%) indicating that even the best blocklist is not enough to capture all attackers.



Historical blocklists improve recall to 18% but with a drop in specificity by 12%, indicating that naïve combination of all blocklists has potential to capture attackers, but lowers specificity.



BLAG with expansion further improves recall, with only a slight drop in specificity and has better specificity than historical blocklists.



PRESTA+L has been tuned to have same recall as BLAG, but the specificity is lower than BLAG (82% vs 95%)

### Other evaluations

- Evaluated BLAG on two other datasets: DDoS<sub>Univ</sub> and DDoS<sub>DNS</sub>.
- Other expansion techniques -- expand using BGP prefixes or by autonomous systems.
- Impact of
  - Number of blocklists
  - Size of misclassification blocklists
- Contribution of recommendation system in aggregation and expansion phase.
- Parameter tuning techniques.

# Outline

- Introduction
- Quantifying problems faced by blocklists
- BLAG
  - Datasets
  - Evaluation
- Identifying reused addresses
  - Detecting NATed addresses
  - Detecting dynamic addresses
  - Evaluation
- Summary

# Detecting Reused NATed addresses

- We use the BitTorrent Network to identify users that are allocated the same IP address.
- The BitTorrent protocol allows two messages that helps us identify NATted users accurately.
  - *get\_nodes*: Returns a list of active neighbors to a node.
  - *bt\_ping*: Periodically pings active neighbors.
- The protocol mandates all BitTorrent users to reply to these messages.

Using *get\_node* messages.



Using *get\_node* messages.









• 48.7M IP addresses that use BitTorrent.





- 48.7M IP addresses that use BitTorrent.
- 1.6B bt\_ping messages sent.



- 48.7M IP addresses that use BitTorrent.
- 1.6B bt\_ping messages sent.
- 779M responses (48.6%).



- 48.7M IP addresses that use BitTorrent.
- 1.6B bt\_ping messages sent.
- 779M responses (48.6%).
- 2M IP addresses that are NATed.

# Outline

- Introduction
- Quantifying problems faced by blocklists
- BLAG
  - Datasets
  - Evaluation
- Usage and perception of blocklists
- Identifying reused addresses
  - Detecting NATed addresses
  - Detecting dynamic addresses
  - Evaluation
- Summary









Measurement logs to determine dynamically allocated addresses.



To prevent users that have changed ISPs.

> Probes with addresses changes in the same AS.

Remaining: 13.6K RIPE probes







# Quantifying Impact with Blocklists

- We use the BLAG dataset that actively maintains blocklisted addresses from public blocklists.
- 151 blocklists that monitor variety of attacks including Spam, DDoS, malware hosting or reputation of IP addresses.
- Monitoring period of 83 days over two measurement periods:
  - Aug 2019 Sep 2019
  - Mar 2020 May 2020
- Observed 2.2M blocklisted IP addresses.

### Number of Reused Addresses in Blocklists





# Outline

- Introduction
- Quantifying problems faced by blocklists
- BLAG
  - Datasets
  - Evaluation
- Usage and perception of blocklists
- Identifying reused addresses
  - Detecting NATed addresses
  - Detecting dynamic addresses
  - Evaluation
- Summary





**NATed Addresses Dynamic Addresses** - RIPE - Cai et al. Top 10 blocklists Top 10 blocklists 10k 10k contribute to 65% contribute to 72% of all NATed reused of all dynamically addresses. allocated reused 1000 1000 addresses. (#)60| ( # ) 601 100 100 10 10 1 1 20 30 50 70 80 10 20 30 40 50 60 70 10 40 60 90 (#) of blocklists (#) of blocklists



# How long are reused addreses in Blocklists?



- Reused addresses are removed faster than other addresses (3— 9 days).
- Among reused addresses, dynamically allocated addresses are removed quicker.
- Within two days, 77% of dynamic addresses are removed compared to only 42% of all blocklisted addresses.

#### How many users are affected?



- Some IP addresses impact many more users, affecting as many as 78 users.
- Many IP addresses have only two active users (68.5%)
- 98% of IP addresses have less than 10 active users.

# Summary

- Blocklists have poor attack detection.
- Combining blocklists from different sources improves attack detection, but also increases misclassifications.
- BLAG (blocklist aggregator)
  - Assigns relevance scores to addresses belonging to blocklists
  - Predicts addresses that are likely to be misclassifications using a recommendation system
  - Expands selective addresses into prefixes for better attack detection
- Reused addresses in blocklists can unjustly block more users.
- We propose two new techniques of identifying reused addresses in blocklists.

#### Thank You! Questions?

All datasets are available at:

https://steel.isi.edu/Projects/BLAG/

https://steel.isi.edu/members/sivaram/blocklisting impact





