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Abstract— Reputation systems provide mechanisms through
which multiple parties can quantify the trust between one
another. These systems seek to generate an accurate assessment
in the face of unprecedented community size, while providing
anonymity and resilience to malicious attacks.

We focus on attacks and defense mechanisms in reputation
systems. We present an analysis framework that allows for
general decomposition of existing reputation systems. We classify
attacks against reputation systems by identifying which system
components and design choices are the target of attacks. We sur-
vey defense mechanisms employed by existing reputation systems.
Finally, we analyze several landmark systems, characterizing
their individual strengths and weaknesses. Our work contributes
to understanding 1) which design components of reputation
systems are most vulnerable, 2) what are the most appropriate
defense mechanisms and 3) how these defense mechanisms can
be integrated into existing or future reputation systems to make
them resilient to attacks.

General Terms: (1) Design; (2) Reliability; (3) Security; (4)
Theory

Keywords: reputation, trust, incentives, peer-to-peer, attacks,
collusion, attack mitigation, defense techniques

I. INTRODUCTION

The rapid growth of communication networks such as the
Internet and ad hoc wireless mesh networks has spurred the
development of numerous collaborative applications. Repu-
tation and trust play a pivotal role in such applications by
enabling multiple parties to establish relationships that achieve
mutual benefit. In general, reputation is the opinion of the
public toward a person, a group of people, or an organization.
In the context of collaborative applications such as peer-to-
peer systems, reputation represents the opinions nodes in the
system have about their peers. Reputation allows parties to
build trust, or the degree to which one party has confidence in
another within the context of a given purpose or decision. By
harnessing the community knowledge in the form of feedback,
reputation-based trust systems help participants decide who
to trust, encourage trustworthy behavior, and deter dishonest
participation by providing a means through which reputation
and ultimately trust can be quantified and disseminated [1].
Without such mechanisms, opportunism can erode the foun-
dations of these collaborative applications and lead to peer
mistrust and eventual system failure [2].

A rich variety of environments and applications has mo-
tivated research in reputation systems. Within the context of

peer-to-peer eCommerce interactions such as eBay, Amazon,
uBid, and Yahoo, recent research has shown that reputation
systems facilitate fraud avoidance and better buyer satisfaction
[3], [4], [5], [6]. Not only do reputation systems help protect
the buyer, they have also been shown to reduce transaction-
specific risks and therefore generate price premiums for rep-
utable sellers [7]. More recently, reputation systems have been
proposed as a means to filter out inauthentic content (pollution)
for file-sharing applications [8], a method for selecting usable
network resources [9], a means to identify high-quality contri-
butions to Wikipedia [10], and a way to punish [11] or prevent
[12], [13] free-riders in content dissemination networks.

The success of a reputation system is measured by how
accurately the calculated reputations predict the quality of fu-
ture interactions. This is difficult to achieve in an environment
where any party can attempt to exploit the system to its own
benefit. Some attacks have a narrow focus and only affect the
reputation of the misbehaving identity or a few selected targets.
Other attacks have a much broader influence, affecting large
percentages of the identities within the system. Centralized
or implicitly trusted elements of the reputation system are
more prone to attack due to their identifiability and key role in
the functioning of the system. The impact of attacks against
reputation systems reaches beyond just the manipulation of
virtual numbers, but turn into dollars fraudulently lost and
ruined business reputations [14].

This paper is the first survey focusing on the characteri-
zation of reputation systems and threats facing them from a
computer science perspective. Previous research in the area
has presented an overview of the design issues of reputation
systems in peer-to-peer networks [15], surveyed the broader
issue of trust management [16], and provided an overview of
the deployed reputation systems [17]. Our work contributes to
understanding which reputation system design components are
vulnerable, what are the most appropriate defense mechanisms
and how these defense mechanisms can be integrated into
existing or future reputation systems to make them resilient
to attacks. Specifically:

1) We propose an analytical framework by which reputa-
tion systems can be decomposed, analyzed, and com-
pared using a common set of metrics. This framework
facilitates insights into the strengths and weaknesses
of different systems and comparisons within a unified
framework.

2) We classify attacks against reputation systems, analyzing
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what system components are exploited by each attack
category. We elucidate the relevance of these attacks by
providing specific examples based on real systems.

3) We characterize existing defense mechanisms for repu-
tation systems, discussing their applicability to different
system components and their effectiveness at mitigating
the identified attacks.

4) We survey influential reputation systems that have
shaped this area of research. We analyze each system
based on our analytical framework, drawing new insights
into reputation system design. We also discuss each
system’s strengths and weaknesses based on our attack
classification and defense characterization.

Roadmap: The rest of the paper is organized as follows.
We characterize the fundamental dimensions of reputation
systems in Section II. We describe attacks against reputation
systems components and defense strategies in Sections III and
IV, respectively. We analyze several well-known reputation
systems in Section V. Finally, we discuss related work in
Section VI and present concluding remarks in Section VII.

II. ANALYSIS FRAMEWORK

Due to their common purpose, reputation systems naturally
share similar structural patterns and ideas. Understanding these
similarities and developing an analysis framework serves a
twofold purpose. First, it provides greater insight into prior
research, facilitating common ground comparison between
different systems. Second, it provides insights into the fun-
damental strengths and weaknesses of certain design choices,
contributing to the future design of attack-resilient reputation
systems.

We identify the following three dimensions as being funda-
mental to any reputation system:

• Formulation. The ideal mathematical underpinnings of
the reputation metric and the sources of input to that for-
mulation. For example, a system may accept positive and
negative feedback information, weighted as +1 and −1
and define an identity’s reputation to be the summation
of all of its corresponding feedback scores.

• Calculation. The algorithm to calculate the mathematical
formulation for a given set of constraints (physical distri-
bution of participants, type of communication substrate,
etc.). For example, the algorithm to calculate the formu-
lation could specify that a random set of peers is queried
and the feedback received for each identity tallied.

• Dissemination. The mechanism that allows system par-
ticipants to obtain the reputation metrics resultant from
the calculation. Such a mechanism may involve storing
the values and disseminating them to the participants. For
example, a system might choose to use a distributed hash
table to store the calculated reputation values and a gossip
protocol to distribute new information.

Figure 1 presents the general structure of a reputation
system, including the location of each of the fundamental
dimensions. The overarching goal of a reputation system is
to produce a metric encapsulating reputation for each identity
within the system. Each system receives input from various

types of sources. Based on this input, a system produces a
reputation metric through the use of a calculation algorithm.
Once calculated, reputation metric values are then dissemi-
nated throughout the system in advance or on demand as the
metric values are requested. Finally, higher level systems or
users can then utilize these reputation metric values in their
decision making processes to penalize or reward identities in
order to achieve the goals of the user application.

A. Formulation
Formulation of a reputation system is the mathematical or

algorithmic core of the system that precisely determines how
the available information is transformed into a usable metric.
It determines the theoretical properties of the system and thus
the upper bound on its resilience to attacks. As a result, the
formulation is a critical component since any weakness in the
design of the formulation allows malicious manipulation of
the metric values. We identify and discuss three important
components of the formulation: the source of the information,
the type of information, and the reputation metric.

Source of Information: A core component of the formula-
tion of reputation is the source of the raw information used as
inputs to the algorithm. The source can either be a manual or
an automatic source.

Manual sources are obtained from human feedback, usually
in the form of user ratings of other identities based on the
results of a single transaction such as the feedback within
eBay [3], a specific time period [18], or arbitrary feedback
[19]. Since these sources are naturally qualitative, the formu-
lation component must specify some method of converting
the qualitative metric into a quantitative one. For example,
a user may feel satisfied with the ultimate outcome of a
transaction, but be dissatisfied with the timeliness of it. The
formulation specifies how the user can convert this qualitative
information into quantitative information, such as by giving
them the choice of giving a negative, neutral, or positive rating
[3]. Other proposals include the use of Bayesian procedures
[9], [20] or fuzzy decision logic [21] to transform the user
feedback into ratio scaled variables. The formulation may also
allow the user to tag the quantitative metric with qualitative
information under the intention of aggregating this information
with the reputation metric for later human consumption [3].

Automatic sources are obtained automatically either via
direct or indirect observation. Direct, automatic sources of
information result from data directly observed by an identity,
such as the success or failure of an interaction, the direct
observations of cheating, or the measurement of resource
utilization by neighbors in a peer-to-peer network. Information
that is obtained second-hand or is inferred from first-hand
information is classified as an indirect, automatic source.
Indirect, automatic input sources are relevant in many modern
reputation systems which are developed to have a notion of
the transitivity of trust. Nodes share information in order to
combat the sparsity of first-hand information [22] or to further
refine the reputation metric [23], [5]. Also, indirect sources of
information are important in systems such as SuperTrust [24],
in which the outputs of one tier are used as inputs to the next
higher tier.
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Fig. 1. Depiction of how a reputation system operates. The large ovals represent the reputation system itself, normally consisting of many different computers
acting as a distributed system. The rounded box highlights the scope of this paper.

Information Type: Another component of the formulation
is whether the source information includes positive (trust
building) events, negative (trust diminishing) events, or both.
This design choice fundamentally influences the applications
for which a given reputation system is most effective as well
as determines the classes of attacks that are relevant to the
system. For example, a system that only considers positive
events will be immune to attacks where malicious identities
try to falsely degrade others’ reputations [23]. While it may
seem beneficial to only consider one type of information in
order to limit the possible attacks on the system, this also
limits the flexibility of the system as well as the ability for
honest peers to counteract the attacks that are still relevant
[25]. Continuing the example above, honest participants would
be unable to give negative feedback regarding those identities
that are falsely promoting themselves.

Reputation Metric: The most important component of the
formulation dimension is the mathematical or algorithmic
representation of the reputation. The reputation metric can
be classified as either binary, discrete, or continuous. A
binary representation of trust converts the qualitative notion
of reputable versus untrustworthy into a numerical format and
is utilized by systems like the ones proposed by Xiong and
Liu [5] and Guha et al. [25]. Some systems, such as Scrivener
[26] and XRep [27], utilize discrete metrics which have various
predefined levels of reputability and allow for a more flexible
application of the reputation information since different actions
can correspond to different levels of reputability. Finally, a
metric can be represented in as a continuous variable, such as
is done in many of the newer systems [9], [8], [28]. Continuous
variables are often the easiest representation to compute since
most formulations result in real number results.

Certain systems, such as PeerTrust [5] and EigenTrust [29],
will choose to convert a continuous metric into a binary metric

via heuristics or statistical measures, since it is often easier
for users to base their decisions on a metrics with predefined
intervals. This is especially true if the continuous metric is not
a linear representation of reputation [29].

Many systems consider the change of reputation over time,
trying to balance the tradeoff between resiliency to oscillatory
attacks versus the acceptance of new or previously misbe-
having identities. While it may seem that greater resiliency
is more desirable than the easy acceptance of new identities,
this may hamper overall user satisfaction and system utility as
well as render systems deployed in less stable environments
from functioning effectively [30]. For example, if one input to
the formulation is whether a peer is forwarding data correctly,
even honest peers may be seen as having a low reputation and
be denied service due to transient network conditions [12].

B. Calculation

As depicted in Figure 1, the calculation dimension is the
concrete part of the reputation system that receives input
information and produces the reputation metric values. While
the formulation is an idealized method for determining a
reputation value, the calculation dimension characterizes how
the formulation is implemented within the constraints of a
particular reputation system. This dimension strives to be
accurate to the reputation metric formulation while remaining
practical to implement and resilient to malicious attack. We
identify two components relevant to the reputation calcula-
tion: the calculation structure (centralized or distributed) and
calculation approach (deterministic or probabilistic).

Note. At first glance, it may seem that the calculation
dimension is a direct result of the formulation. However, the
physical constraints of the system may make the mapping be-
tween the formulation and calculation dimensions non-trivial.
For example, the EigenTrust algorithm [29] can be represented
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as the centralized computation of the left eigenvector of a
matrix of trust values, but to calculate this in a scalable
fashion, the formulation had to be decomposed into an efficient
distributed algorithm. Another factor causing this mapping
to be non-trivial is the need to be resilient to malicious
manipulation of values during the actual calculation. Even
assuming that all source information is completely accurate, a
malicious participant can try to manipulate the values during
the calculation stage. If the system does not account for
this possibility, reputation values may be manipulated without
detection.

Calculation Structure: The reputation system can be struc-
tured to calculate the reputation metric via a centralized
authority or across multiple distributed participants. A central-
ized authority often leads to a simple solution with less po-
tential for manipulation by malicious outsiders. Many eCom-
merce businesses such as eBay have successfully deployed
centralized reputation systems which allow for the long-
term storage and internal auditing of all reputation data [3].
However, a centralized approach relies on the assumption that
the system participants must completely trust the centralized
authority which in turn must be correct and always available.
If the centralized authority is not carefully designed, it can
become a single point of failure for the entire system [31]. In
addition, such an approach suffers from the lack of scalability,
especially if the formulation is complex or the information is
obtained from a wide range of possibly high latency sources.

In the open environment of most modern peer-to-peer appli-
cations, peers do not have centralized authority or repository
for maintaining or distributing reputation. Instead, most repu-
tation systems calculate the global scores in a fully distributed
manner [29], [20], [8], [28]. Although these distributed cal-
culations are inherently more complex, they scale well [32],
avoid single points of failure in the system [31], and balance
load across multiple nodes [23]. Such designs must ensure that
participants converge upon a usable solution as well as prevent
malicious manipulation from degrading the performance of the
entire system. The complexity of data and entity authentication
in systems lacking a centralized authority and the reliance
on multiple system participants provides opportunities for
attackers to subvert the reputation calculation.

Calculation Approach: Reputation systems implement cal-
culation by using either deterministic or probabilistic ap-
proaches. The output of a deterministic calculation can be
determined solely from knowledge of the input, with very
precise meaning often attached to this output. Determinis-
tic calculations for global reputation values are often only
practical for centralized calculations, unless the scope of the
formulation is narrow, identities only incorporate feedback for
a small subset of peers, or the total size of the system is
small. Additionally, a deterministic calculation can be used in
systems where each individual node calculates its own view of
other nodes’ reputation values and there is not a single global
reputation for each node [23].

Probabilistic approaches were proposed to address some
of the limitations posed by deterministic calculations. Proba-
bilistic calculations rely on sources of randomness during the
calculation process, causing their output to be predictable only

within certain error bounds.
It is interesting to note that even when formulations are

deterministic and thus would seem to imply a deterministic
calculation, the actual calculation may have to be implemented
probabilistically. For example, the EigenTrust [29] formulation
represents reputation as the eigenvalues of a matrix (which
is a deterministic formulation), but the distributed calculation
is probabilistic in order for the algorithm to scale. Robust
probabilistic formulations rely on statistical mechanisms, such
as Markov models [29] and Bayesian models [20], which
attach error bounds to and give meaning to the probabilistic
calculation.

C. Dissemination

Once reputation has been calculated, it needs to be readily
accessible to interested parties while remaining resilient to al-
teration. Calculated values must be efficiently disseminated to
other recipients or made available upon request. These respon-
sibilities of a reputation system fall within the dissemination
dimension. Although calculation and dissemination are often
intertwined in the implementation, it is useful to separate them
for analysis purposes. We discuss the following four aspects
of the dissemination dimension: the dissemination structure,
dissemination approach, storage strategies, and dissemination
redundancy.

Dissemination Structure: Centralized dissemination mech-
anisms involve a central authority storing and disseminating
calculated values. The central authority may actually be imple-
mented via clusters of computers, but this remains classified as
centralized since the entire structure is controlled exclusively
by one entity. For example, in order for eBay to scale, it
must be implemented by high availability clusters. However,
logically eBay utilizes a centralized authority to disseminate
the calculated reputation information. In a centralized dissem-
ination the central authority has greater power to protect the
integrity of the process, but then also it becomes a single
point of weakness – if the central authority is fully or partially
compromised due to external attackers, insiders, or intentional
misconduct the damage to the reputation system is much
higher than if the process was distributed.

In a distributed dissemination, each participant is respon-
sible for some portion of the calculated reputation values.
The distribution of responsibility may be symmetrical (e.g.
distributed hash tables (DHTs) [33], [34], [35], [36]) or asym-
metrical (e.g. power-law peer-to-peer networks [24], [37]).
Distributed dissemination is inherently more vulnerable to
manipulation, and often employs data redundancy, crypto-
graphic mechanisms, or other measures to preserve metric
integrity. Distributed mechanisms are also more difficult to
implement and test properly, and may thus be more vulnerable
to exploitation [38].

Dissemination Approach: The communication pattern of
dissemination mechanisms can be characterized as either de-
terministic or probabilistic. Examples of deterministic com-
munication mechanisms include distribution hierarchies such
as those in SuperTrust [24] and DHTs such as those em-
ployed by EigenTrust [29], PowerTrust [19] and PeerTrust
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[5]. Probabilistic communication techniques include epidemic-
based dissemination techniques such as probabilistic broadcast
[39], flooding [23], [31] and gossiping [8].

Storage Durability: Transient storage is defined to be any
non-durable, random access memory, whereas permanent stor-
age is any storage in which data is preserved even during
periods without power. Depending on the volatility of the
system components and the computational complexity of the
calculation, it may be beneficial to store calculated reputation
values in permanent storage for retrieval later. Systems such
as PowerTrust [19] and TrustMe [18] include long-term tem-
poral information in their formulations and require permanent
storage in order to be resilient to failures. PowerTrust relies
on the ability to migrate data in a DHT to preserve historical
data while TrustMe provides anonymous storage and migration
protocols. On the other end of the spectrum, systems such as
ARA [12] calculate reputation values based on a small subset
of recent transactions, in which case long-term global storage
is unnecessary.

Whether or not a system uses permanent storage is more of
an implementation issue than a core component of a reputation
system. Permanent storage may be required by the calculation
mechanisms to detect slow changes in behavior over long
periods of time. Also, permanent storage must be guarded
against both malicious manipulation, physical data corruption,
and data loss [18].

Dissemination Redundancy: The degree of redundancy
built into the dissemination mechanisms is a tradeoff be-
tween resiliency to manipulation and storage/communication
efficiency. Redundancy can be employed in many of the
components of the dissemination dimension, such as having
redundant messaging in communications patterns or duplicate
backups of stored values. For example, the TrustMe system
assumes each copy of the reputation values are stored in sev-
eral places. Also, most of the modern reputation systems use
messaging protocols with redundant messages to help ensure
message delivery and provide some resiliency to malicious
nodes. Less efficient methods of implementing redundancy
(e.g. complete duplication of data) are often favored over more
theoretically desirable methods, such as Reed-Solomon codes
[40], because these methods are more resilient to Byzantine
failures and are often easier to implement and prove. Finally,
systems differ in how they resolve redundancy to produce a
final reputation metric. Possibilities include but are not limited
to leaving the redundancy unresolved and presenting the user
with the raw information, majority voting [29], and using
weighted averages [28].

III. ATTACKS ON REPUTATION SYSTEMS

In this section, we discuss attacks against reputation sys-
tems. We first state our assumptions about attackers and then
discuss five separate classes of attack scenarios. We highlight
both the attacks mechanisms and the system components that
are exploited during each of the attacks.

A. Attacker Model
Several characteristics determine the capability of the at-

tacker. They include: the location of the attacker in relation to

the system (insider vs outsider), if the attacker acts alone or
as part of a coalition of attackers, and whether the attacker is
active or passive.

The open nature of reputation systems and their accompany-
ing peer-to-peer applications leads us to assume all attackers
are insiders. Insiders are those entities who have legitimate
access to the system and can participate according to the
system specifications (i.e. authenticated entities within the
system), while an outsider is any unauthorized or illegitimate
entity in the system who may or may not be identifiable. While
reputation systems often employ some form of authentication
to prevent unauthorized access, an attacker can obtain multiple
identities, also known as the Sybil attack [41]. In addition,
since reputation systems push trust to the fringes of the Internet
where end-nodes are more likely to be compromised [42], they
are more vulnerable to insider attacks.

We assume that attackers are motivated either by selfish
or malicious intent. Selfish (or rational) attackers manipulate
reputation values for their own benefit, while malicious attack-
ers attempt to degrade the reputations of others or impact the
availability of the reputation system itself.

In general, attackers can either work alone or in coalitions.
Although both scenarios are possible and relevant with respect
to reputation systems, we are primarily concerned with at-
tacks caused by coalitions of possibly coordinating attackers.
Coordinated attacks are more difficult to detect and defend
against because attackers can exhibit multi-faceted behavior
that allows them to partially hide within their malicious
coalition.

We consider all attacks to be active since any form of attack
on the reputation system requires interaction with the system,
such as injecting false information, modifying entrusted infor-
mation, refusing to forward information, deviating from the
algorithmic processes, or actively attempting to subvert the
availability of the system.

B. Attack Classification

We classify attacks against reputation systems based on the
goals of the reputation systems targeted by attacks. The goal
of a reputation system is to ensure that the reputation metrics
correctly reflect the actions taken by participants in the system
and cannot be maliciously manipulated. This is not achieved
if participants can falsely improve their own reputation or
degrade the reputations of others. As a result of the attacks,
misbehaving participants can obtain unwarranted service or
honest participants can be prevented from obtaining service.
Besides targeting the accuracy of the reputation system, ma-
licious participants can target the availability of the system
itself.

We identify several classes of attacks:
• Self-Promoting - Attackers manipulate their own reputa-

tion by falsely increasing it.
• Self-Serving or Whitewashing - Attackers escape the

consequence of abusing the system by using some system
vulnerability to repair their reputation. Once they restore
their reputation, the attackers can continue the malicious
behavior.



CSD TR #07-013: A SURVEY OF ATTACK AND DEFENSE TECHNIQUES FOR REPUTATION SYSTEMS 7

• Slandering - Attackers manipulate the reputation of other
nodes by reporting false data to lower their reputation.

• Orchestrated - Attackers orchestrate their efforts and
employ several of the above strategies.

• Denial of Service - Attackers may cause denial of service
by either lowering the reputation of victim nodes so they
cannot use the system or by preventing the calculation
and dissemination of reputation values.

Below, we discuss in detail the attack mechanisms, identifying
the reputation system components that are exploited during the
attack.

1) Self-promoting: In self-promoting attacks, attackers seek
to falsely augment their own reputation. Such attacks are
only possible in systems that consider positive feedback in
the formulation. Fundamentally, this is an attack against the
formulation, but attackers may also exploit weaknesses in the
calculation or dissemination dimensions to falsely increase
reputation metric values.

Self-promotion attacks can be performed by attacker alone
or organized in groups of collaborating identities. One very
basic form of the attack occurs when an attacker fabricates fake
positive feedback about itself or modifies its own reputation
during the dissemination. Systems that lack data authentication
and integrity are vulnerable to such attacks as they are not able
to discern between fabricated and legitimate feedbacks.

However, even if source data is authenticated, self-
promotion attacks are possible if disparate identities or a single
physical identity acquiring multiple identities through a Sybil
attack [41] collude to promote each other. Systems that do
not require participants to provide proof of interactions which
result in positive reputations are particularly vulnerable to this
attack. To perform the attack, colluding identities mutually
participate in events that generate real feedback, resulting
in high volumes of positive feedback for the colluding par-
ticipants. Because the colluders are synthesizing events that
produce verifiable feedback at a collective rate faster than the
average, they are able to improve their reputations faster than
honest participants or counter the effects of possible negative
feedback. Such patterns of attack have been observed in the
Maze file sharing system [43]. Attackers that are also interact-
ing with other identities in honest ways are known as moles
[32]. Colluding attackers can also contribute further to the
self-promotion of each other by manipulating the computation
dimension when aggregating reputation values.

Mitigating self-promoting attacks requires reputation sys-
tems to provide accountability, proof of successful transac-
tions, and the ability to limit or prevent an attacker from ob-
taining multiple identities. The computation dimension should
also include mechanisms to prevent colluding adversaries to
subvert the computation and storage of the reputation values.
Complementarily, the impact of the attacks can be decreased
by detecting and reacting to groups of colluders that interact
almost exclusively with each other. However, finding these
colluders, which can be formulated as finding a clique of a
certain size within a graph, is known to be NP-complete and
only heuristics solutions have been proposed so far [44].

2) Self-serving: Self-serving attacks, also known as white-
washing [45], occur when attackers abuse the system for short-

term gains by letting their reputation degrade and then re-
entering the system with a new identity and a fresh repu-
tation. The attack is facilitated by the availability of cheap
pseudonyms and the fact that reciprocity is much harder to
maintain with easily changed identifiers [46].

This attack fundamentally targets the reputation system’s
formulation. Formulations that are based exclusively on nega-
tive feedback are especially vulnerable to this type of behavior
since newcomers have equal reputation metric values as partic-
ipants which showed long term good behavior. The system is
also vulnerable if the reputation formulation relies exclusively
on long-term history without discriminating between old and
recent actions. In systems with formulations that include
positive feedback, attackers may have to behave honestly for
an initial period of time to build up a positive reputation
before starting the self-serving attack. Attackers that follow
this pattern are also known as traitors [15].

Self-serving attacks may be combined with other types
of attacks to make them more effective. For example, in
systems with both positive and negative feedback, concurrently
executing a self-promoting attack will lengthen the duration of
effectiveness of a self-serving attack. Likewise, self-serving
identities may slander those identities that give negative feed-
back about the attacker so that their negative feedback will
appear less reputable since many systems weight the opinions
of an identity by its current level of trustworthiness.

Preventing self-serving attacks requires reputation systems
to use a formulation that does not result in the same reputation
for both newcomers and participants that have showed good
behavior for a long time, taking into account short history
and limiting the users from switching identities or obtaining
multiple identities.

3) Slandering: In slandering attacks, one or more identities
falsely produce negative feedback about other identities. As
with self-promoting attacks, systems that do not authenti-
cate the origin of the feedback are extremely vulnerable to
slanderous information. In general, these attacks target the
formulation dimension of a reputation system.

The attack can be conducted both by a single attacker and
a coalition of attackers. As typically the effect of a single
slandering node is small, especially if the system limits the rate
at which valid negative feedback can be produced, slandering
attacks primarily involve collusion between several identities.
Depending on the application of the system, slandering attacks
may be more or less severe than self-promotion attacks. For
example, in high-value monetary systems, the presence of even
small amounts of negative feedback may severely harm an
identity’s reputation and ability to conduct business [7].

The lack of authentication and high sensitivity of the
formulation to negative feedback are the main factors that
facilitate slandering attacks. Reputation systems must consider
the inherent trade-offs in the sensitivity of the formulation
to negative feedback. If the sensitivity is lower, then the
formulation is robust against malicious collectives falsely
slandering a single entity, but it allows entities to exhibit bad
behavior for a longer time, for the same decrease in reputation.
On the other hand, if sensitivity is higher, the bad behavior of
a single identity can be punished quickly, but honest identities
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are more susceptible to attacks from malicious collectives.
If malicious collectives are well-behaved except to slander a
single identity it may be difficult to distinguish that slander
from the scenario where the single identity actually deserved
the bad feedback that was received.

Defense techniques to prevent false feedback include em-
ploying stricter feedback authentication mechanisms, validat-
ing input to make sure that feedback is actually tied to some
transaction, and incorporating methods to limit the number of
identities malicious nodes can assume.

Systems may also limit the impact of slandering attacks by
using formulations that compute reputations based exclusively
on direct information. However, this is not possible in reputa-
tion systems with sparse interaction, where trust inference is
needed [22]. In such systems, the trust inference mechanisms
must be robust to malicious attacks.

4) Orchestrated: Unlike the previously described attacks
that employ primarily one strategy, in orchestrated attacks,
colluders follow a multifaced, coordinated attack. These at-
tacks utilize multiple strategies, where attackers employ dif-
ferent attack vectors, change their behavior over time, and
divide up identities to target. While orchestrated attacks fun-
damentally target a system’s formulation, these attacks also
may target the calculation and dissemination dimensions. If the
colluding attackers become a significant part of the calculation
or dissemination of reputation within an area of the system,
they can potentially alter reputation metric values to their
benefit.

One example of an orchestrated attack, known as an oscil-
lation attack [47], is where colluders divide themselves into
teams and each team plays a different role at different times.
At one point in time, some teams will exhibit honest behavior
while the other teams exhibit dishonest behavior. The honest
teams serve to build their own reputations as well as decrease
the speed of decline of the reputation of the dishonest teams.
The dishonest teams attempt to gain the benefits of dishonest
behavior for as long as possible, until their reputation is too
low to obtain benefit from the system. At this point, the roles
of the teams switch, so that the dishonest teams can rebuild
their reputation and the previously honest teams can begin
exhibiting dishonest behavior. Even more complex scenarios
are possible where there are more than two roles. For example
one team of nodes may self-promote, another may slander
benign nodes, and the final team misbehaves in the context of
the peer-to-peer system.

Orchestrated attacks are most effective when there are
several colluders for each role. Larger numbers allow each
colluder to be linked less tightly to other colluders, which
makes detection much more difficult. Colluders performing
orchestrated attacks balance between maximizing selfish or
malicious behavior and avoiding detection. Robust formula-
tions increase the number of colluders that must participate in
order to achieve the desired effect.

Identifying orchestrated attacks is difficult since instead of
trying to identify cliques in a graph representing identities and
their relationships, systems need to identify partially connected
clusters where each colluder may not appear to be connected
to every other colluder due to the differing behaviors of the

different roles in the orchestrated strategy. Within a window
of time, it is possible that two colluders have no direct inter-
action observable by the system and thus appear completely
separated, while they are actually colluding indirectly. For
example, the two colluders may produce negative feedback
against identities that gave negative feedback against another,
different colluder. Due to the nature of reputation systems,
perfect defense against orchestrated attacks appears to be an
open problem.

5) Denial of Service: Finally, attackers may seek to sub-
vert the mechanisms underlying the reputation system itself,
causing a denial of service. Such attacks are conducted by ma-
licious nonrational attackers, making them difficult to defend
against. Systems using centralized approaches and lacking any
type of redundancy are typically vulnerable to denial of service
attacks. Attackers can attempt to cause the central entity
to become overloaded (e.g. by overloading its network or
computational resources). These attacks target the calculation
and dissemination dimensions of a system and are performed
by groups of colluding attackers.

Preventing a reputation system from operating properly with
a denial of service attack may be as attractive to attackers as
corrupting the reputation values, especially if the application
employing the reputation system is automated and needs to
make decisions in a timely fashion. For example, consider
a peer-to-peer data dissemination application where data is
routed along the most trustworthy paths. If the reputation
system is inoperable, the system relying on reputation may
need to continue to route data notwithstanding, allowing ma-
licious identities to participate for periods of time without their
negative reputations being known (or without being punished
for their negative behavior).

Distributed calculation and dissemination algorithms are
often less vulnerable to attacks if enough redundancy is em-
ployed such that misbehavior or loss of a few participants will
not affect the operation of the system as a whole. However,
some distributed storage components such as DHTs may have
their own vulnerabilities [38] and they can be in turn exploited
by an attacker to create denial of service against the reputation
system.

IV. DEFENSE STRATEGIES

In this section, we survey the defense mechanisms employed
by existing reputation systems. Although none of the existing
systems provide defenses against all the attacks presented in
Section III, many of them use techniques to address attacks
conducted by selfish rational attackers and a limited number of
attacks conducted by coalitions of malicious attackers. These
techniques can be grouped around several major design char-
acteristics that facilitate the attacks. We discuss mechanisms
to defend against attackers acquiring multiple identities in
Section IV-A. We discuss techniques to ensure that direct
observations reflect reality in Section IV-B and techniques to
defend against generation and propagation of false rumors in
Section IV-C. The major reason behind self-serving attacks
is the fact that systems do not distinguish newcomers from
participants that have demonstrated good behavior over time.
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We discuss techniques to address this issue in Section IV-D.
Finally, we review techniques used by reputation systems to
address more general denial of service attacks in Section IV-E.

A. Preventing Multiple Identities (Sybil Attacks)

The problem of obtaining multiple identities received signif-
icant attention in recent years as it impacts not only reputation
systems but peer-to-peer systems in general. Any strategy
based on reciprocity (either direct or indirect) in an online
computational environment must deal with the problem of
cheap or anonymous pseudonyms [46], which often allow
malicious identities to escape the consequences of their behav-
ior. Proposed solutions fall into centralized and decentralized
approaches.

In a centralized approach, a central authority issues and
verifies credentials unique to each entity. To increase the
cost of obtaining multiple identities, the central authority may
require monetary or computational payment for each identity.
Although this may limit the number of identities an attacker
can obtain, there are scenarios in which it may not be possible
or practical to have a centralized authority. Additionally, the
central authority represents a single point of failure for the
system and can itself be subjected to attacks.

Decentralized approaches do not rely on a central entity
to issue certificates for identities. Some solutions proposed
include binding an “unique” identifier such as IP addresses to
public keys [41] or using network coordinates to detect nodes
with multiple identities [48]. However, IP addresses can be
spoofed and network coordinates can be manipulated by at-
tackers [49]. More recently, social networks were proposed to
detect attackers posing under multiple identities. The approach
in [50] creates a graph in which nodes represent identities
and edges represent trust-relations. The protocol ensures that
the number of edges connecting the honest regions and the
attacker regions is very small. Thus, the impact of attackers
with multiple identities is decreased and the attackers may
eventually be isolated.

B. Mitigating Generation of False Rumors

First hand or direct feedback is created as a result of
direct interaction. To prevent the generation of false rumors
by fabrication or modification, several systems propose to
integrate accountability by means of digital signatures and
irrefutable proofs. Irrefutable proofs, often implemented using
cryptographic mechanisms, is a defense strategy intended to
mitigate the fabrication of feedback by requiring all feedback
to be associated with proof of a valid transaction (the in-
teraction of two identities) within the system. For example,
TrustGuard [47] uses a digitally signed identifier from the
other party as a proof of a transaction and describes a protocol
to ensure that these transaction proofs are exchanged in
an efficient, atomic manner. The approach provides defense
against selfish attackers, but it is inefficient against coalitions
of malicious attackers. Additional mechanisms are needed to
detect that colluding adversaries rate each other high to build
good reputation in the system.

For small coalitions, false data can be filtered out by using
a dishonest feedback filter, using similarity measure to rate
the credibility of reported feedback. If the feedback data is
similar to first-hand experience and other received feedback,
it will be used in the reputation calculation. This approach is
used by TrustGuard [47].

C. Mitigating Spreading of False Rumors

Reputation formulation is usually based on direct and indi-
rect information. Basing reputation calculation only on direct
information may limit the impact of malicious coalitions on
reputation values and it was proposed in systems like Scrivener
[26]. The drawback is that in many systems it cannot be
guaranteed that every pair of participants will interact and
that the interaction is symmetric [22]. Thus, there is a need to
share the direct information and aggregate the locally observed
information.

Several mechanisms that were especially designed to cope
with the problem of spreading and aggregating false rep-
utations were proposed. One approach is to rely on pre-
trusted identities to reduce the effectiveness of fabricated
or altered information. Some systems, such as EigenTrust,
depend on pre-trusted identities to ensure that the probabilistic
trust algorithm will converge. Pre-trusted identities do pose
additional risk, because if they are compromised, significant
damage can be inflicted before the compromised node is
identified. To reduce this risk, systems can employ integrity
checking mechanisms (manual audits), checks and balances
on the pre-trusted identities (predicates on expected behavior
of these identities), and allowing pre-trusted identities not to
be trusted absolutely (as in EigenTrust).

Another approach is to employ statistical methods to build
robust formulations that can be reasoned about in a pre-
cise fashion. For example, in [20] a Bayesian framework is
employed, where the probability of a node misbehaving is
modeled according to a Beta distribution with the parameters
of the distribution being updated as feedback is received. Be-
cause the formulation is based on statistics, a precise meaning
can be attached to the output. In this case, it allows the
users to specify an intuitive tolerance for bad behavior, with
tolerance being precisely defined as the maximum percentage
of instances that a node has misbehaved before it is excluded
from interaction.

Concepts derived from feedback control-theory were used in
P2PRep [9] to adjust the weighting of historical information in
the calculation of the local reputation value. This adaptability
gives the system greater resiliency to oscillatory behavior
because the weighting of the historical information is tied to
how well the reputation is predicting the future. TrustGuard
[47] defines a heuristic to mitigate dishonest feedback based
on the insight that untrustworthy nodes are more likely to lie
and conversely trustworthy nodes are more likely to be honest.

D. Preventing Short-term Abuse of the System

Several systems recognized the problem of attackers abusing
the system for short-term gains by letting their reputation



10 HOFFMAN ET AL.

degrade quickly and then re-entering the system with a new
identity.

To differentiate newcomers from nodes already existing
in the system which demonstrated good behavior, several
systems propose that newcomers must gain trust and that their
reputation increases gradually [23], [12]. The approach ensures
that newcomers will not start with a high reputation and forces
them to behave correctly for a given amount of time . Another
approach forces new nodes to initially ”pay their dues” and
provide more service than they receive in order to build a
positive reputation [26]. One of the challenges many systems
face is balancing the ease of admittance of new nodes versus
the resilience to attacks [30].

Other systems such as P2PRep [9] and TrustGuard [47] also
observed that treating old positive behavior equally to new
negative behavior may result in attackers abusing the system
by using previous altruism to hide current malicious behavior.
They propose to use more aggressive short-term history and
to give more weight to recent negative behavior. The approach
facilitates quick detection when a node becomes a traitor. The
drawback is that in systems that do not offer any protection
against generating and spreading false rumors, this technique
allows malicious node to prevent honest nodes from using the
system.

E. Mitigating Denial of Service Attacks

Mechanisms to prevent denial of service against the dissem-
ination depend on the structure used for storage and transport.
For example, some systems such as TrustMe [18] use random-
ization techniques to mitigate the power of malicious collec-
tives. If participants are randomly selected for calculation and
dissemination, then its less likely that a malicious collective
can control a significant portion of the redundant elements
in a process. The system may choose to randomly divide
responsibility for either entire identities (with some identities
becoming permanently responsible for other identities), or the
identities could be randomly assigned for each instance of the
calculation.

When systems like DHTs are used, more security mech-
anisms [51] and data replication mechanisms [52] must be
employed to ensure that requests are successfully performed.

Techniques to cope with denial of service attacks on dis-
semination are similar with the ones used by many routing
protocols and include: use of acknowledgements, multi-path
dissemination, gossip mechanisms and forward error correc-
tion codes.

V. EXAMPLES OF REPUTATION SYSTEMS

In this section, we use our framework to analyze in chrono-
logical order several existing reputation systems. We provide
insights into the vulnerabilities of each system and discuss the
effectiveness of defense mechanisms they employ. Due to lack
of space we discuss six representative systems in detail and
summarize the other systems in Figures 3 and 4.

A. CORE

The CORE [53] system was motivated by the need to
prevent malicious and selfish behavior of nodes in mobile ad
hoc networks (MANETs).

Formulation: The final reputation metric combines directly
observable behavior with shared, indirect observations for
each known system operation (such as packet forwarding or
routing). For each direct interaction between system nodes,
each operation is rated over the range from [−1, 1], with higher
ratings meaning the operation met the expected result. The
interactions are recorded and over time they are combined
using a weighted average, giving higher preference to older
data. The reason more relevance is given to past observations is
that a sporadic misbehavior in recent observations should have
a minimal influence on the evaluation of the final reputation
value. The weights are normalized such that the average is
also defined over the range [−1, 1]. Indirect observations are
collected from reply messages sent by distant peers in response
to some actual communication related to the purpose of the
underlying system. Direct and indirect observations relating to
each system operation are linearly combined, and then these
sub-totals for each operation are combined using a weighted
average. The weights for each function are chosen based
on simulation results that indicate which functions are more
important to the proper operation of the network.

Calculation: Calculation proceeds deterministically in a
straightforward fashion, as all information is either generated
at the calculating identity (direct observations) or is contained
in a reply that the identity has received over the course of
normal system operations. The efficiency of calculating the
direct reputation sub-totals requires a weighted average of
all previously known historical values, giving an efficiency
of O(t), where t is the number of values retained. The total
reputation is obtain by including also indirect observations,
giving a final efficiency of O(c ∗ t) = O(t), where c is a
constant.

Dissemination: Indirect observations are not actively dis-
seminated between identities in order to conserve power and
decrease the number of messages sent by nodes in the network.
Rather, indirect observations are embedded within replies
already defined within the system protocol. For example, each
node on a routing path may append indirect observations about
the positive behavior of its neighbor nodes.

Defense Mechanisms: Of the defense mechanisms outlined
in this paper, CORE uses heuristics motivated by simula-
tion results to prevent attacks against the reputation metric.
Since the paper is primarily concerned with motivating selfish
nodes to participate in the wireless protocols, the defense
techniques only partially address malicious behavior. In the
CORE system, there are no techniques to preserve the integrity
of the data prorogated through the network. While indirect
observations are limited to positive observations to prevent
self-serving and slandering attacks, this does not prevent self-
promoting attacks. The ability of a node to self-promote in
turn degrades the service received by benign node since they
will have lower reputation scores than the malicious nodes and
be viewed as less cooperative.
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Fig. 3. How existing systems can be characterized in relation to the dimensions of reputation systems

B. EigenTrust

The EigenTrust [29] reputation system was motivated by the
need to filter out inauthentic content in peer-to-peer file sharing
networks. EigenTrust calculates a global reputation value for
each peer in the system based on the local opinions of all of the
other peers. The local opinions of nodes are aggregated into
a matrix format and the global reputation values are obtained
by calculating the left principal eigenvector of that matrix.

Formulation: The input to the EigenTrust formulation con-
sists of the information derived from the direct experience
a peer has with other peers in the network and indirect

information about the perception of neighboring peers about
each other. To acquire the direct information, users provide
manual feedback about each peer-to-peer transaction. A user
rates each transaction using the binary scale of positive or
negative and the summation of these ratings is used as input
into the formulation. The indirect information is automatically
exchanged between peers and is what gives the system the
ability to develop transitive trust. The system considers both
positive and negative information and is biased towards posi-
tive information.

The formulation does not take into consideration the effects
of how reputations change over time. While it is true that the
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Fig. 4. The weaknesses of existing systems to known attack strategies and the defense mechanisms that these systems employ

local trust values are a summation of all votes ever cast for a
particular identity, the formulation itself makes no attempt to
distinguish between votes cast today vs. votes cast a year ago.

The final reputation metric is formulated as follows: Each
identity, i, calculates a reputation metric for another identity, k
by asking the other identities, j, for their opinions of identity
k and weighting those opinions by i’s opinion of j: tik =∑

j cijcjk. This can be formulated as matrix multiplication:
define C to be the matrix [cij ], define ~ti to be ∀ktik, and define
~ci to be ∀kcik. Then ~ti = (CT )~ci. To broaden the view further,
an identity may ask for his neighbor’s neighbor’s opinion:
((CT )(CT )), which is then weighted by the identity’s opinion
of his neighbors (~ci). Increasing n in ~ti = (CT )n

~ci continues
to broaden the view, and given certain assumptions, ti, will
converge to the same vector (the left principal eigenvector of
C) for all ~ci. As all nodes will converge to the same values,
these values represent the global trust vector.

The reputation metric is formulated deterministically and
produces values on a continuous spectrum between 0.0 and
1.0.

Calculation: While the formulation lends itself naturally to
a centralized calculation based upon matrix operations, this
is not desirable in the peer-to-peer file sharing environment.
Instead, each peer calculates the global trust values by using a
probabilistic algorithm which guarantees that each participant
will converge to the same value within some error bounds.
For the original distributed algorithm, the cost to calculate
the global trust value for one identity is O(n) in the worst
case since (a) the number of iterations needed to converge
can be viewed as constant and (b) it will need to potentially
communicate with all other identities. Through optimization

this bound can be reduced to O(log n) without compromising
accuracy [29].

Dissemination: EigenTrust uses a deterministic distributed
dissemination framework relying on DHTs for reputation value
storage and lookup. A host, the score manager, is respon-
sible for calculating, storing, and communicating reputation
values for all identities whose hashed identity falls within
the score manager’s ownership range in the DHT. The use of
multiple hash functions allows multiple score managers to be
assigned to each host. The use of multiple score managers and
replication within the DHT provide redundancy at all stages
of the storage and dissemination process. The efficiency of
dissemination corresponds to the efficiency of the underlying
DHT in performing lookups, which is typically O(log n).

Attacks and Defense Mechanisms: The EigenTrust formu-
lation has foundations in statistics, as the global trust vector
can be formulated as the stationary distribution of a Markov
chain. The formulation is designed so nodes give greater
weight to information obtained from their neighbors or nodes
they have interacted with in the past to mitigate malicious
manipulations. Pre-trusted identities are used to bias ratings
towards known good nodes and ensure that the probabilistic
calculation will converge quickly. Redundancy is employed
during the calculation and dissemination stages to prevent
benign data loss and malicious data tampering. Each of the
score managers for an identity is randomly selected, making it
less likely that a single malicious collective will be responsible
for the reputation value for any one identity.

C. Scrivener
Scrivener [26] is based on principles from economics which

state that naturally “rational” clients must be given an incentive
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in order to cooperate and not cheat the system. The goal of
Scrivener is to enforce fairness among all participants in a
peer-to-peer file sharing system. The reputation of each host
is not a globally calculated value, but rather is specific to
individual pairwise sharing relationships within the overlay
network. The formulation and calculation dimensions describe
how pairwise relationships determine credit balances. The dis-
semination dimension describes how a transitive relationship
can be formed between non-neighboring identities.

1) Formulation: Scrivener maintains a history of interac-
tions between neighboring peers, tracking when they provide
resources (credits) and when they consume resources (debits).
The system collects directly observable information automat-
ically for each interaction of immediate neighbors in the
overlay network. Credit balance is defined to be the difference
in the amount of data consumed less the resources provided.
In order to establish long-term cooperation, nodes must keep
this credit balance in stable storage. Using the credit limit in
conjunction with confidence metric that represents how often
a request is successfully fulfilled by a given node, a credit
limit for each node is established.

In order to allow nodes to join the network, each new
neighbor chosen by a node is initially given a small, posi-
tive credit limit. To prevent nodes from constantly selecting
new neighbors and abusing the initial credit limit, any node
requesting (not chosen) to be a neighbor of a node is assigned
an initial credit limit of zero. When a host A has used up its
credit limit with a host B, B will not further fulfill requests
from A. Host B can still request data from A so that A can
repay the debt. If A does not fulfill B’s requests properly
then B’s confidence in A decreases. If the confidence reaches
zero, B will ignore A and choose a different identity in the
overlay network to replace A as its neighbor. Since the credit
is assumed to be maintained in stable storage, B remembers
the debt that was associated with A indefinitely.

Although the credit balance is a summary of all past
behavior of a neighboring node, no record is kept of how this
has changed over time. The formulation itself is deterministic
and produces discrete values.

Calculation: The calculation of the credits and confidence
metric are fully distributed to the point that there is no single,
global value produced for each identity in the system. Each
calculation is processed entirely local to the pair of identities
involved and can be performed in constant running time with
respect to the number of identities in the system.

Dissemination: As credit balances are only established
between neighboring identities in the overlay network, a
transitive trading system is needed to facilitate data transfers
between any two arbitrary identities within the overlay net-
work.

If host A wants to receive content from some host, Z,
it first must find a credit path, where each identity in the
credit path has the ability to positive credit with which to
“pay” the successor identity. This path is normally determined
using the overlay network routing protocol, such as through
the use of a DHT. Once the path has been determined, A
then simultaneously sends a payment to and decreases its
confidence in the first identity in the credit path (named B

herein). The drop in confidence is in anticipation of B’s
possible failure to route the request to the next identity in
the credit path and to motivate B to participate in the request.
If B does not participate, A’s confidence in B will eventually
reach zero and A will refuse to communicate with B. Then,
B uses the credit received from A to continue the process
until the destination is reached. Once Z receives the credit,
Z will process the request. Once the request is complete, Z
sends an indicator message backwards along the credit path,
which causes nodes to adjust confidence levels back to their
original values and then increase them to reflect the success
of the content transfer.

Redundancy is integrated into the system via the notion of
content caching. The efficiency of this process is determined
by the efficiency of (a) finding the credit path (b) the length
of the resulting credit path.

Defense Mechanisms: Similar to CORE, Scrivener is pri-
marily concerned with motivating rational, selfish nodes to
participate in the system and thus the defense techniques
only partially address malicious behavior. The primary defense
mechanism within Scrivener is the use of statistical formulas to
encourage participants to participate correctly in the protocol.
If nodes act selfishly or maliciously, they will eventually
acquire a negative credit balance and with the assumed long-
lived identifers, eventually be excluded from the network.
Redundancy is also utilized and allows identities to check the
validity of certain claims by an identity. For example, if a
sender, Z, claims that some content does not exist or that it
has completed the transaction, nodes along the credit path (that
later propagate the finished message) can choose to ask other
identities providing the same content to verify the truth of the
claim.

D. TrustGuard
While electronic reputation systems have been proposed as

an efficient and effective way to minimize the effect of selfish
and malicious nodes on peer-to-peer systems, little work has
focus on the vulnerabilities of the reputation system itself.
The TrustGuard framework [47] has been proposed as a way
to safeguard reputation systems. The system uses a strategic
oscillation guard based on a Proportional-Integral-Derivative
(PID) controller used in control systems to combat malicious
oscillatory behavior. Fake feedbacks are prevented with the
help of a fake transaction detection component which binds
feedback to unforgeable transaction proofs. Finally, dishonest
feedbacks are filtered out by using a similarity measure to rate
the credibility of reported feedback. The framework focuses on
designing a robust formulation while maintaining flexibility in
the system implementation, allowing the mitigation techniques
to be integrated into a variety of reputation systems.

Formulation: Once the node has collected data and the data
has passed through the fake transaction detection component
and the dishonest feedback filter, it is fed into the strategic
oscillation guard in order to create a final trust value. The
strategic oscillation guard takes as input the raw reputation
values computed from some other reputation system and
formulates the output trust value as the sum of three weighted
components:
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• The first component represents a node’s current perfor-
mance and is the raw trust value as computed by the
underlying reputation system.

• The second component is the past history of a nodes
actions formulated as the integral of the function repre-
senting all prior reputation values divided by the current
point in time.

• The third and final component reflects sudden changes in
a node’s performance and is formulated by the derivative
of the above mentioned function.

The flexibility and resiliency to attack are achieved in how the
weights for each component are chosen. For example, if the
second component is weighted heavily, the past performance
of the node is more important than the current performance.

Calculation: In order to efficiently store and calculate the
historical components specified by the strategic oscillation
guard’s formulation, the concept of fading memories is intro-
duced. Instead of storing all previous reputation values, Trust-
Guard represents these values using only log2 t values, with
exponentially more detail stored about the recent events. This
technique allows the strategic oscillation guard calculations to
be deterministically performed with an efficiency of O(log t)
instead of O(t).

Dissemination: The dissemination of information is depen-
dent on the underlying overlay network and thus the dissemi-
nation techniques are outside the scope of the TrustGuard.

Defense Mechanisms: In TrustGuard, it is assumed that
the base overlay network is resilient to attack and provides a
means for authenticating messages. Under these assumptions,
TrustGuard uses control theory as the basis for its strate-
gic oscillation guard. Using different empirically determined
weighting for the guard, the system can mitigate many of the
malicious attacks.

The fake transaction detection mechanism uses irrefutable
proofs to prevent input resulting from fake transactions from
being admitted into the reputation system. Assuming each
entity in the network has an associated public/private key pair,
a transaction proof is exchange for each transaction, allowing
claims of malicious activity to be checked by a trusted third
party.

The goal of the dishonest feedback filter is to use statistical
measures to make the raw reputation values computed by
the underlying reputation system resilient against identities
that report false feedback. The first approach mentioned is to
weight the source values used to compute the reputation value
for a node by the current reputation values of the identities
producing the source information. However, this has the draw-
back of being vulnerable to nodes which follow the protocol
and have good reputations but lie about others reputation.
Instead, the authors propose to weight reputation values by
using a personality similarity measure, which is defined to be
the normalized root mean square of the differences between
the feedback each node gave to identities in the common
identity set. The common identity set is defined to be those
identities that both identities have interacted with in the past.
This has the effect that the weight given to others’ feedback
about oneself will depend on the similarity of how both rated
other identities in the past, with the idea that honest identities

will approximately give the same feedback for other identities.
The Credence [8] system is also built around this idea.

E. P2PRep

The P2PRep [9] reputation system is designed to mitigate
the effects of selfish and malicious peers in an anonymous,
completely decentralized system. The system uses fuzzy tech-
niques to collect and aggregate user opinions into distinct
values of trust and reputation. In P2PRep, trust is a defined
as a function based on an entity’s reputation and several
environmental factors such as the time since the reputation
has last been modified. Reputation is viewed at two levels
in the system: locally representing the direct interactions
between peers and network-wide representing the aggregation
of multiple opinions about a peer. When a peer wants to use
a network resource (download a file), it (1) queries for the
resource locations and receives back a list of possible resource
providers, (2) polls the network about the reputation of the
possible resource providers, (3) evaluates the poll responses,
and (4) synthesizes a reputation value from the local and
network responses using fuzzy techniques. Based on this
synthesized value, a peer will decide whether or not to trust
the provider and use the resource.

Formulation: In P2PRep, since identities are assumed to be
anonymous and no peer will retain an identity with a negative
reputation, only positive values are used in the formulation.
Each direct interaction between system nodes is recorded and
given a Boolean value, with 1 indicating the outcome was
satisfactory and 0 otherwise. In order to calculate a local
reputation value, the individual Boolean values are aggregated
using a fuzzy operation which takes into account the age
and importance of the data, resulting in a value over the
range from [0, 1]. In order to augment the local reputation
value, a peer will collect reputation values from the network.
Using an Ordered Weighted Average, the indirect observations
obtained from the network query are combined with the local
observations to produce a final reputation value in the unit
interval of [0, 1].

1) Calculation: The calculation of both the local and net-
work reputations are fully distributed to the point that there
is no single, global value produced for each identity in the
system. For each possible interaction, data is gathered from
the network and processed locally by the node requesting
the resource and each calculation can be performed in linear
running time with respect to the number of identities that reply
to a poll request for reputation values.

2) Dissemination: All information requests are broadcast
throughout the network and all information replies are unicast
back to the requestor using the underlying peer-to-peer sys-
tem’s communication framework. Several improvements can
be made to improve the efficiency of the dissemination struc-
ture including intelligent forwarding techniques to forward poll
packets only to the necessary peers and vote caching.

3) Defense Mechanisms: The main defense technique
P2PRep utilizes to mitigate the effect of malicious nodes is
a vote verification process. The requestor randomly audits
some of the votes by sending a vote confirmation message
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to the IP address associated with the vote. This ensures the
interaction actually happened and the vote corresponding to
that IP address is correct, making vote falsification more
difficult for an attacker. Also, the formulation of the network
wide reputation is designed to give more weights to local
observations and uses an adaptive weighing scheme in order
to be responsive to network change, making it more difficult
for malicious nodes to gain an advantage by reporting false
votes.

Another key design consideration in the P2PRep is main-
taining user anonymity. The system guards the anonymity of
users and the integrity of packets through the use of public
key cryptography. All replies are signed using the requestors
public key, protecting the identity of the responder and the
integrity of the data. Only the requestor is able to decrypt the
packet and check the validity of the information.

F. Credence

Credence [8] was motivated by the need for peers to defend
against file pollution in peer-to-peer file sharing networks
and has been deployed as an add-on to the LimeWire client
for the Gnutella network. The system relies on the intuitive
notion that honest identities will produce similar votes as they
rate the authenticity of a file, implying that identities with
similar voting patterns can be trusted more than identities with
dissimilar voting patterns.

Formulation: The input to the formulation are the users’
manually entered positive or negative votes indicating the
authenticity of a downloaded file. Specifically, each user is
asked to indicate for each attribute of the search result whether
the attribute was one of many possible true values, was the
only possible true value, or was not a true value (possibly
specifying what the true value actually should be). A historical
record of an identity’s recent votes are stored in a local vote
database. Additionally, each identity will proactively query the
peer-to-peer network to gather additional votes for neighboring
nodes.

The final reputation metric for a search result is formulated
by taking a weighted average of other identities’ statements
(each statement represents +1 if the statement completely
supports the search result’s attributes or -1 otherwise). The
weight assigned to each identity depends on the statistical
correlation between the vote history of the identity performing
the calculation and the vote history for each of its peers.
Heuristics are applied to the correlation coefficient so that
statistically insignificant correlations and correlations without
sufficient history are discarded and that new identities without
a large voting history can still estimate a weight.

1) Calculation: The calculation of reputation metric values
for a given search query result proceeds as follows: First, an
identity will send vote gathering queries into the network,
requesting that neighboring identities respond with their vote
for the file of interest as well as with the most important
votes that the neighboring identities know about. Using the
local vote information and the received votes weighted with
their measured correlation, the weighted average is computed.
Calculation of the correlation weights between peers can

be performed incrementally by updating the weight for a
particular peer when additional voting history for that peer
is received. The use of the persistent storage allows for the
digital signatures of the statements of peers to only have to
be verified once (under the assumption that the underlying
persistent store can be trusted), further increasing efficiency
of the Credence system.

2) Dissemination: Credence utilizes several mechanisms to
disseminate votes across the system, broadening the influ-
ence of the votes and allowing voting information to remain
available even when the original voter is offline. First, vote
information from neighboring identities is stored persistently
after each query. The information received from each neigh-
boring peer also contains information about other peers in the
network. In this way, the vote from one particular identity can
disseminate widely across the network as proactive queries are
made regarding the file. Additionally, gossip-based techniques
are employed in the background so that voting information for
unpopular objects has a broader reach throughout the system.

In addition to propagating actual voting information regard-
ing specific files, the system uses a flow-based algorithm,
similar to the idea behind PageRank [54] and EigenTrust [29],
to calculate an estimate of the correlation between any two
indirectly connected identities within the graph. This allows
larger networks of trust to be built such that strong correlation
can be established between identities even if they do not vote
on the same files. Each client builds a local model of a portion
of the overall trust network and using a gossip-based protocol,
a node propagates trust along paths from itself to distant peers
through known pairwise relationships.

3) Defense Mechanisms: The underlying intuition within
Credence that honest users have similar voting patterns limits
the impact of any attack pattern. Malicious nodes are forced
to vote honestly the majority of time so that they can develop
strong correlation values with other honest users. If the at-
tackers vote dishonestly, it directly diminishes their correlation
coefficients with other honest users and lessens their impact on
the reputation system. Attacks by coalitions of attackers, while
still effective, are impacted in a similar fashion since they
require the entire group to establish credible voting patterns
and inherently more costly for the attackers.

A key security consideration in the Credence system is the
use of mechanisms to prevent spoofed votes or votes generated
by fake identities. The system guards against such attacks by
issuing digital certificates in an anonymous but semi-controlled
fashion. The authors propose to mitigate Sybil attacks by
requiring expensive computation on the part of the client
before the server grants a new digital certificate. Every voting
statement is digitally signed by the originator and anyone can
cryptographically verify the authenticity of any given voting
statement.

Honest nodes in Credence occasionally use the inverse of
votes by nodes with weak correlations based on the fact that
these votes were most likely submitted by malicious users and
opposite of their true, correct values.
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VI. RELATED WORK

A method to categorize peer-to-peer reputation systems is
presented in [15]. Their work serves as an introduction to
reputation systems and design issues relating to their use
in peer-to-peer applications. Unlike their work, we take the
approach to decompose systems within any context along
three dimensions, additionally considering the calculation and
dissemination dimensions. These additional dimensions pro-
vide further insight into how implementation issues affect the
effectiveness of the system. Additionally, herein we contribute
a classification of attack strategies and survey of known
defense techniques and their strengths and weaknesses.

In [16] the authors survey trust management in the context
of peer-to-peer applications. The scope of their survey is
broader and includes trust management systems that are not
based on reputation. The authors analyze eight reputation-
based trust management systems with respect to five types
of threats and eleven different characteristics. In contrast, in
this survey we focus solely on reputation systems, allowing
us to precisely define an analysis framework and attack
classification specific to reputation systems, and allow us to
more comprehensively survey the reputation system literature.

The authors in [17] focus on surveying the calculation
mechanisms and give greater emphasis to discussing deployed
systems rather than directly surveying the research literature.
Their survey is presented in the context of a broader discussion
of the meaning of trust and reputation. Our work presents a
broader analysis framework for reputation systems and also
focuses more on the analysis of attacks against reputation
systems.

Reputation systems have also been considered from a
broader perspective, most prominently in [55]. Therein Del-
larocas considers the role of reputation systems, their relation
to more traditional methods of reputation assessment, their
social and economic impact, and how they can be understood
in the context of game theory and economics. The work
gives insights into why reputation systems do or do not work
from a human perspective and presents how insights from
management science, sociology, psychology, economics, and
game theory must be considered beyond computer science
when designing new reputation systems. Our work is comple-
mentary: whereas Dellarocas provides insight into the broader
factors affecting the operational environments of reputation
systems more from a management perspective, we consider
the perspective of a system builder and therein provide in-
sight into the composition of the reputation system itself and
also a characterization of corresponding threats and defense
mechanisms.

VII. CONCLUSIONS

This paper is the first survey focusing on the design di-
mensions of reputation systems and the corresponding attacks
and defenses. We have developed an analysis framework that
can be used as common criteria for evaluating and comparing
reputation systems. We have defined an attacker model and
classified known and other potential attacks on reputation
systems within this model. Defense mechanisms and their

corresponding strengths and weaknesses were discussed. We
have demonstrated the value of the analysis framework and
attack and defense characterizations by surveying several
key reputation systems, drawing insights based on the new
framework. This analysis framework is also valuable for future
research in that it provides understanding into the implications
of design choices.

Reputation systems play an ever-increasingly important part
in online communities. Understanding reputation systems and
how they can compare to each other is an important step
towards formulating better systems in the future. This paper
has sought to provide more rigorous methods to compare
existing systems and to bring understanding of these systems
to a broader audience, including those who build systems that
rely on reputation systems.
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