
On Local Heuristics to Speed Up Polygon-Polygon
Intersection Tests

Wael M. Badawy
Center for Advanced Computer Studies
University of Southwestern Louisiana

Lafayette, LA 70504

wmb@cacs.usl.edu

Walid G. Aref
Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

aref@cs.purdue.edu

ABSTRACT

The polygon-polygon intersection operation is CPU-intensive.
Many data structures look into decomposing the polygons into
multiple yet simple pieces to speed up the polygon-polygon
intersection operation. This paper addresses local heuristics that
can be adopted in these data structures by using local information
about the simple polygon pieces to decide upon polygon-polygon
intersections without having to perform this costly operation. The
significance and effectiveness of each of the heuristics is studied.
The paper also shows how these heuristics can be put together to
perform a polygon join operation. Experiments are given to
demonstrate the savings both in CPU and in I/O that result from
these local heuristics.

Keywords

Spatial databases, polygon-polygon intersection, query processing

1. INTRODUCTION
We are given two polygons in vector format, and we are interested
in finding whether these two polygons intersect. There are several
good algorithms for detecting polygon-polygon intersection. What
we are interested in is to see if we can still detect the intersection
of two polygons when we have access only to parts of the polygon
and not all of it.

Polygon 1
Polygon 2

Figure 1: The intersection of the two polygons may be detected by
only intersecting the polygon segments that lie in the square box.

As an illustration, consider the two polygon segments of Figure 1
Assume further that we only have access to the portions of the two
polygons that lie inside the square box shown in the Figure. The
rest of the polygon lies outside the box and we do not have access
to the polygon segments that lie outside the box. The two shaded
areas correspond to the inside regions of the two polygons. By

storing the appropriate information with each polygon segment,
we can possibly detect that the two polygons intersect without
having to investigate the remaining portions of the two polygons.

The motivation behind this approach is that there exist many
spatial data structures that store a polygon by subdividing the
polygon into multiple yet simple pieces. It would be beneficial to
be able to detect the polygon-polygon intersection given only
partial information about one or more of the polygon pieces,
without the need for retrieving the entire polygon. This paper
presents useful heuristics that can be adopted to help detect the
intersection of two polygons, or possibly all the intersecting pairs
in two collections of polygons, using partial information about the
polygons. As demonstrated by the experiments presented in the
paper, this results in significant savings in CPU as well as I/O
costs.

The rest of the paper proceeds as follows. Section 2 discusses the
polygon representation that we assume in the paper. Section 3
presents the heuristics that we propose to avoid polygon-polygon
intersection operations as much as possible, given the polygon
representation in Section 2. Section 3 also demonstrates how this
work can be extended to develop a polygon join algorithm in a
database context. Section 4 gives experimental results that show
the effectiveness of applying these heuristics. Section 5 contains
concluding remarks and our plan for future research.

2. REPRESENTATION
There are many ways of decomposing a polygon into multiple yet
simple pieces. For example, a polygon may be represented by a
collection of triangles, rectangles, square blocks, trapezoids,
convex polygons, etc. Our focus is on vector representation of a
polygon.

In order to demonstrate our ideas, in this paper, we assume that a
polygon is embedded into a coarse uniform grid (refer to Figure
2), where the space is split into equal-size grid cells. However,
several variations of the data structure could be used. The reader
is referred to [5][10][11] for extensive coverage of other spatial
indexing techniques. The heuristics presented in this paper can be
extended to other spatial data structures [12].

When embedded in a uniform grid, the vector representation of a
polygon gets decomposed into a set polygon segments, each lies
entirely in one of the grid cells. Moreover, there are grid cells that
are entirely inside the polygon (e.g., grid cell 9 in Figure 2), and
there are grid cells that are entirely outside the polygon (e.g., grid
cells 0, 13, and 15 in Figure 2).

Each polygon, say P, has an identifier, say pid. However, instead
of storing the polygon identifier of the polygon that intersects the

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to distribute to lists, requires prior specific
permission and/or a fee.

ACM GIS ’99 11/99 Kansas City, MO USA
© 1999 ACM 1-58113-235-2/99/0011 … $5.00

97

grid cells, we store in a grid cell some summary information about
the segment (part) of the polygon that overlaps the grid cell. This
summary information help us in applying heuristics that let us
detect polygon-polygon intersections without actually performing
the polygon-polygon intersection operations.

Figure 2: A polygon embedded in a grid.

Given a polygon P, we define a direction for each edge, say e, in
P, so that each point, say p, inside P is to the right side of e. This
is equivalent to assuming that each polygon has its edges pointing
in the clockwise direction (refer to Figure 3). In this case, we say
that e has a positive direction with respect to p.

Figure 3: The polygon edge directions (clockwise direction)

We distinguish among three types of relationships that may occur
between a grid cell and a polygon segment:

1. A polygon segment has one or more edges passing through a
grid cell. In this case, the polygon segment is termed an edge
segment (EP).

2. A polygon segment fully covers (contains) a grid cell. In this
case, the polygon segment is termed a covering segment (CP).

3. A polygon segment has no relationship with a grid cell.

Table 1 illustrates the relationships among the grid cells and the
polygons that appear in Figure 2.

Grid cells having EP polygon
segments

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12,
14.

Grid cells having CP polygon
segments

9.

Grid cells having no polygons
passing through them

0, 13, 15.

Table 1: Summary of the relation between polygon and grid cell
of Figure 2

For an edge segment the border of the grid cell is used to close the
corresponding polygon segment, and form a region (see Figure 4).
In the Figure, the parts XW, WZ, and ZY of the grid cell border
close the polygon segment XY.

The active control point of a polygon segment within a grid cell is
defined as the starting point in which the polygon edge begins to

intersect the grid cell border. For example, in Figure 4, point Y is
the active control point.

Active Control
Point

Active Boundary

Direction of Navigation

Y

N

W E

S

X W

Z

Figure 4: The grid cell layout

The direction d of a polygon segment is defined as a vector (X,
Y). We use the direction of the Y component of the polygon
segment at the active control point as the segment direction. For
example, in Figure 4, the direction of polygon segment XY is the
south-north direction. Furthermore, a polygon segment is positive
(i.e. d=1) if the direction of the polygon segment is the same as
the Y direction of the active control point.

We refer to the eastern border of a grid cell as its active border
[10]. The active border holds some information after the currently
visited grid cell and this information gets carried over to the next
grid in the eastern direction.

More specifically, we store the following information in a grid
cell for every EP polygon segment that intersects the cell:
SEG(pid, a, b, d), where pid is an identifier of the polygon that
owns this segment, a and b are two characteristics that describe
the behavior of the EP segment, and d is the segment direction.
The values of a, b, and d are assigned for each EP segment as
defined below.

The attribute a can have one of the following values:

a = 1 if the polygon segment is formed by a chain of one or more
polygon edges, where none of the edges intersects the active
border (the eastern border) of the grid cell.

a = 2 if the polygon segment is formed by a chain of one or more
polygon edges, where at least one of those edges intersect the
active border of the grid cell.

The attribute b can have one of the following values:

b = 1 if the polygon segment is formed by a chain of one or more
polygon edges, where the edges intersect two opposite grid cell
boundaries.

b = 2 if the polygon segment is formed by a chain of one or more
polygon edges, where the edges intersect two neighbor grid cell
boundaries. There are four possible polygon segment types
depending on which two neighboring sides are intersected by the
polygon segment.

b = 3 if the polygon segment is formed by a chain of one or more
polygon edges, where the edges intersect one grid cell border.
There are four possible cases; one for each border of the grid cell.

98

b = 4 if the polygon segment is formed by a chain of one or more
polygon edges, where the edges intersect three or more grid cell
boundaries.

b = 5 when none of the above cases apply.

As mentioned above, each polygon is split into two types of
polygon segments: EP and CP polygon segments. Inside the cells
of the uniform grid, the EP polygon segments are stored explicitly
(in the form of the tuple SEG(pid, a, b, d)) and not the CP
polygon segments. This saves in the size of the index as the
detection of the existence of a CP polygon segment in a cell can
be done dynamically. An auxiliary dynamic data structure is used
for this purpose and is termed the propagation list.

Two cases arise during the inspection of the polygon edges with
respect to a certain grid cell:

1 Some edges of polygon P pass through the grid cell g. Then, the
polygon identifier of p is explicitly stored in an EP segment in
grid cell g.

2. The polygon P does not have a polygon identifier in a grid cell
g. Then P either does not intersect g or fully contains (covers) g.

We maintain a propagation list that contains the polygon
identifiers of the polygons that are expected to fully cover a grid
cell. The propagation list is passed from the grid cell g1 to the
grid cell to its east, i.e., to g2, after the insertion or deletion of
some items in the list.

The propagation list data structure is most beneficial in the case of
intersecting two collections of polygons together, e.g., as in the
case of the polygon join operation. We make use of it in Section
3.2.

In the following section, we show how the propagation list for CP
segments as well as the tuples stored for each EP segment aid in
detecting polygon-polygon intersections. This is performed by
applying a set of heuristics. When applicable, these heuristics help
replace the costly polygon-polygon intersection operation by
simple tests over the values of a, b, and d for each polygon
segment.

3. HEURISTICS
In this section, we present two groups of heuristics. The first
group of heuristics applies when we have only two polygons as
input, and we want to detect if they possibly intersect. In contrast,
the second group of heuristics applies when we have as input two
sets of polygons and we want to detect all the polygon pairs from
the two sets that intersect with each other.

Figure 5: The directed polygons Intersection

Figure 5 illustrates the two polygons D and E, where d1, d2, d3,
d4, and d5 are edges of D, and e1, e2, e3, e4, and e5 are edges of
E. The directions of the edges are shown in Figure 5. Consider the
four points p1, p2, p3 and p4 as shown in the Figure. Point p1, is
located in polygon E but not D, because d4 is in counter-
clockwise direction with respect to p1. Point p2, is located in
polygon D but not E, because e2 is in counter-clockwise direction
with respect to p2. Point p3, is located in polygon D and E.
Finally, point p4 is located outside either polygon because d4 and
e4 are in counter clockwise direction with respect to p4.

3.1 Heuristics for Detecting Whether Two
Polygons Intersect
Several approaches to polygon-polygon intersection are already
present in the literature, e.g., [2], [7], [9]. We are interested in
developing some heuristics that help avoid performing such an
operation.

Let P1 and P2 be two polygons that are embedded into grid cells
and are partitioned into polygon segments. Furthermore, Let S1i
and S2i be two polygon-segments of polygons P1 and P2,
respectively, that overlap grid cell I. The heuristics presented in
this section help in detecting whether the polygons P1 and P2
intersect using local information about the polygons
corresponding segments (S1 and S2).

Heuristic 1:

Polygons P1 and P2 intersect if there exist two polygon segments
S1i (P1, a1, b1, d1) and S2i (P2, a2, b2, d2) in a grid cell i, where
a1 = 1 and d1= d2.

(a) (b) (c)

(d) (e) (f) (g)

1P
2P 1P

2P

1P

2P

1P 2P

1P

2P
1P

2P1P

2P

Figure 6: Example applications of Heuristic 1: (a)-(c) Polygons

P1 and P2 intersect each other, (d)-(g) the polygons do not
intersect each other.

Refer to Figure 6. In Figure 6a-6c, polygon P1 has its a1 = 1. This
means that P1 does not intersect the eastern border of the grid
cell. Moreover, since the two polygon segments for P1 and P2
have the same edge directions (since d1= d2), then we know that
both polygons intersect each other. Counter examples are given in
Figures 6d-f. For example, Figure 6d--6e show polygon segments
that have opposite edge directions inside the grid cell and hence
do not intersect. Figures 6f--6g show polygon segments that both
intersect the eastern border (i.e., a1 �������d hence the heuristic is
not applicable, as we cannot always guarantee the intersection of
the two polygons.

Heuristic 2:

Two polygons P1 and P2 intersect if there exist two polygon
segments S1i (P1, a1, b1, d1) and S2i (P2, a2, b2, d2) in a grid
cell i, where a1 = 1, a2 =2, b1= 1, and b2 = 1.

99

We use Figure 7 for illustration. In the Figure, the two polygon
segments are guaranteed to always intersect because of the
conjunction of the following two conditions: (1) b1= 1 and b2 = 1
mean that each of the two segments intersect two opposite
boundaries, e.g., the east and west boundaries or the north and
south boundaries. (2) a1 = 1 and a2 =2 mean that one of the two
polygon segments intersect the eastern border (the active border)
while the other does not. The two conditions combined guarantee
that both polygon segments have to intersect some where inside
the grid cell.

Figure 7: Examples of the applicability of Heuristic 2.

Heuristic 3:

If S1(P1, a1, b1, d1) is a polygon segment where a1= 1, b1=1, and
d1=1, then most probably P1 has a CP segment type in the next
grid cell (the eastern neighbor of the current cell).

The explanation of this Heuristic is as follows. Having a1= 1,
b1=1, and d1=1 (refer to Figure 8) mean that the end points of the
polygon segment inside the grid cell intersect the northern and
southern borders of the grid cell. Therefore, two cases may
happen. (1) The polygon covers the next grid cell (the one to the
right of the current grid cell), as in Figure 8a, and hence forms a
segment of type CP. (2) The polygon has another edge that
intersects the next grid cell and hence does not entirely cover the
next grid cell, as in Figure 8b.

(a) (b)
Figure 8: (a) The polygon entirely covers the next grid cell to the
right, (b) the polygon does not cover the next grid cell as when of

its other edges passes through the grid cell.

The significance of this heuristic is that it helps detect when a
polygon covers an entire grid cell. In this case, that polygon
would intersect all the other polygons that overlap with the grid
cell. More specifically, when the precondition of the heuristic is
met, i.e., when a1= 1, b1=1, and d1=1 for a segment, say s1, that
belongs to a polygon, say P1, we insert the polygon identifier of
P1 into the propagation list. When visiting the next grid cell, say
c, we check if there exists in c any polygon segment that refers to
P1. If such a polygon segment does not exist, then we know that
P1 entirely covers the grid cell c. In this case, we can deduce that
P1 intersects all the polygons that overlap with c (refer to
Heuristic 4). If there exists any polygon segment in c that is part
of P1, then we remove P1 from the propagation list. The reason is
that we cannot deduce in this case that P1 covers c. The
usefulness of this heuristic is more significant when we deal with
two collections of polygons and not just two polygons.

3.2 Heuristics for Detecting All Pairs of
Polygon Intersections in Two Sets of Polygons
The heuristics in this section apply when we are intersecting two
sets of polygons and are interested to find all the polygon pairs

that intersect with each other. In the database literature, this
operation is often termed a polygon join operation.

More formally, let S1 and S2 be two sets of polygons. The result
of joining S1 and S2 is a list of all polygon pairs (Pi , Gj), where
Pi and Gj are two distinct polygons, that belong to S1 and S2,
respectively, such that, for all i, j, Pi intersects Gj.

There are many existing vector-based polygon join algorithms,
e.g., see [1],[3],[6] and [8]. In this paper we are interested in
developing heuristics that may work in conjunction with these
algorithms. The target of the heuristics is to further speed up the
polygon join operation.

All the heuristics, presented in Section 3.1, for the two-polygon
case, also apply in the case of detecting intersections in sets of
polygons. Additional heuristics apply only for the latter case.
These are listed below.

Heuristic 4:

If S1 (P1, a1, b1, d1) is a polygon segment in grid cell i, then P1
intersects all the polygons that have CP segments in the
propagation list at the time of visiting grid cell i.

As stated in Section 31, this heuristic works along with Heuristic
3 to detect whether a polygon covers an entire grid cell. In this
case, we can report the intersection of the polygon with all the
polygons that overlap with the grid cell.

Heuristic 5:

Assume that there exist j polygon segments Sji(pj, aj, bj, dj), in
grid cell gi. Sji(pj, aj, bj, dj) is grouped into multiple groups Gk(p,
a, b, d) based on the values of a, b, and d. Any optimization rule
from the ones listed above that applies to a polygon segment S in
G applies as well to all the other segments of G.

Figure 9 shows polygon segments S1, S2, and S3. These segments
can be divided into two groups: G1 that contains the polygon
segments S1 and S2, and G2 that contains S3. In Figure 9, S1 is
selected to represent G1, and S2 represents G2. Notice that there
are no constrains in selecting any segment to be the representative
segment as long as it has the same attribute values as of the other
segments in the same group. Notice further that deciding whether
two segment groups intersect or not depends only on the attributes
values of the group representative and not on the segments’
shapes.

G1 (S1, S2)G2 (S3)

S2 S1

S3

Figure 9: Grouping of polygon segments

4. EXPERIMENTAL SETUP AND
RESULTS
In order to study the effectiveness of the proposed heuristics, we
perform the following experiments. We get two sets of polygons.
Each set is composed of a collection of polygons that cover a
certain region in space. We assume that each set of polygons is
embedded in a uniform grid. We store in each grid cell only the
segment (part) of the polygon that overlaps the grid cell, as

100

described in Section 2. We try to detect all the intersecting
polygon pairs. We repeat this experiment twice: once without
using the heuristics and once when using the heuristics.

When not using the heuristics, we apply the polygon merge
algorithm, listed below. The core of this algorithm is the polygon-
polygon intersection test.

Algorithm Polygon-Merge

1) Traverse the two uniform grids, say G and H, simultaneously
and retrieve the grid cells that are spatially registered with each
other (i.e., the ones from both grids that occupy the same space).

2) For each pair of spatially registered grid cells, say gi and hj,
such that gi and hj belong to G and H, respectively:

3) For all polygon identifiers pidg in gi and pidh in hi

4) Retrieve the polygons P(pidg) and P(pidh) whose identifiers
are pidg and pidh.

5) Perform a polygon-polygon intersection test between P(pidg)
and P(pidh).

6) If they intersect, then report P(pidg), P(pidh) as an intersecting
output pair

7) End.

In order to test the heuristics, we modify Algorithm Polygon-
Merge so that it tries to apply any of the heuristics before
performing the polygon-polygon intersection test.

Both real and synthetic data sets are used in the experiments. The
real data sets used in the experiments consist of maps of road
networks of counties and cities in the USA obtained from the US
Bureau of Census Tiger/Line database of roads and other
geographic features in the USA [4]. A line consisting of
consecutive straight-line segments represents each road. Seven
real data sets are used. Their names and characteristics are given
in Table 2. Polygonal objects are constructed from these line
segments. The process for constructing the polygonal objects is
skipped here for brevity. In order to increase the population of the
database, the data sets are replicated in some fashion, so that we
were able to increase the size of the database to around 1,000,000
polygonal segments. In addition, various synthetic data sets are
generated using the normal distribution and the pivot space
distribution (i.e., the polygonal objects are clustered around
certain pivot point in the space).

State Data collection No. polygons
Prince George, MD
Baltimore, MD
Washington, DC
Franklin, VA
Bedford, VA
Williamsburg, VA
Falls Church, VA

PRINCE
BALTIMORE
DC
FRANKLIN
BEDFORD
WILLIAMS
F.CHURCH

28884
19896
11165

837
790
681
500

Table 2: The real data sets used for the experiments.

Figure 10 gives the total number of polygon-polygon intersection
tests performed by algorithm Polygon-Merge algorithm (denoted
by Poly-Poly in the Figure), the number of polygon-polygon tests
that are avoided as we apply the heuristics. Notice that as the
number of polygons in the database increases, the portion of the
polygon pairs that are detected using the heuristics. This portion is
around 45% of the total tested pairs. From this we can observe the
usefulness and significance of using these heuristics.

Notice that the usage of heuristics does not exclude the necessity,
in some cases, to perform a polygon-polygon intersection test. For
example in Figure 11, the heuristics do not help on avoiding the
execution of a polygon-polygon intersection test.

Heuristics

Poly-Poly

0

5000

10000

15000

20000

25000

30000

100 300 500 700 900

Poly-Poly

Heuristics

x 1000 polygons

no
 o

f
te

st
ed

 p
ai

rs

x 1000 pairs

Figure 10: The average number of tested polygon pairs (real data

sets)

Figure 11: Two example cases where the heuristics do not help in

avoiding a polygon-polygon intersection operation.

0
10
20
30
40
50
60
70
80
90

100

100 300 500 700 900
x 1000 polygons%

 P
er

fo
rm

an
ce

 E
nh

an
ce

m
en

t
in

 R
es

po
ns

e
ti

m
e

C
om

pa
re

d
to

 t
he

 p
ol

yg
on

 m
er

ge
 j

oi
n

al
go

ri
th

m

Figure 12: The percentage enhancement in response time when
using the heuristics over the polygon merge join algorithm with

polygon-polygon intersection operation (real data sets).

Figure 12 shows the percentage enhancement in response time
when using the heuristics over the polygon-merge join algorithm
with the polygon-polygon intersection operation. The graph
shows around 50% improvement in response time. This
enhancement in response time is due to two factors: (1) reduction
in the CPU cost and (2) reduction in the I/O cost. The reduction
in CPU cost is due to the reduction in the number of polygon-
polygon intersection tests that are performed. On the other hand,
the reduction in I/O cost is because with every application of a
heuristic, this means that we were able to detect an a polygon-
polygon intersection using the local information inside the grid

101

cell. This saves in I/O time since we do not have to retrieve the
polygon data from disk in order to test for intersection.

Figure 13 gives the percentage improvement in the response time
of the join algorithm while varying the grid cell size. The size of
the grid cell influences the grid cell capacity, which indicates the
density of the polygons per gird cell. The figure shows that the
increase in the polygon density in the grid cells reduces the
response time. On the other hand, the algorithm that uses the
heuristics benefits from the high density of the polygonal objects
in the gird cell (i.e., the increase in the number of polygon pairs),
since the saving in the cost of the intersection test enhances the
response time.

0

5

10

15

20

25

128 256 512 1024 2048 4096

Heuristics

Without
Heuristics

%
 P

er
fo

rm
an

ce
 E

nh
an

ce
m

en
t i

n
R

es
po

ns
e

T
im

e

Max. grid
cells per

row

Figure 13: The effect of the grid cell size on the performance of
the join algorithms

5. CONCLUDING REMARKS
We have demonstrated the usefulness of the heuristics in reducing
the number of polygon-polygon intersection tests (by around
45%) as well as in reducing the overall response time of the
polygon-merge join algorithm (by around 50%). The reduction in
the response time is due to the reduction in both the CPU and I/O
costs, as explained in Section 5.

Our future work includes investigating the possibility of
extending some of the existing spatial join algorithms with the
heuristics proposed in this paper in an attempt to enhance the
performance of these algorithms.

6. REFERENCES
[1] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy,

Torsten Suel, Jeffrey Scott Vitter, Scalable Sweeping-
Based Spatial Join, VLDB 98.

[2] Walid G. Aref and Hanan Samet. The Spatial Filter
Revisited. Proceedings of the 6th Intl. Symposium on
Spatial Databases Handling, UK, 1994, pp.190-208.

[3] T. Brinkhoff, H.P. Kriegel, and B. Seeger. Efficient
processing of spatial joins using R-trees. Proceedings
of the ACM-SIGMOD International Conference on
Management of Data, Washington, D.C., pages 237-
246, May 1993.

[4] Bureau of the Census: 1990 Technical Documentation.
Tiger/Line Census files. Technical report, US Bureau
of Census, Washington, DC, 1989.

[5] Volker Gaede and Oliver Gunther, Multidimensional
Access Methods, ACM Computing Surveys, June
1998.

[6] Erik G. Hoel, Hanan Samet, Benchmarking Spatial
Join Operations with Spatial Output. 606-618, VLDB
1995.

[7] J. O’Rourke, C.-B Chien, T.Olson and D.Naddor, A
new linear algorithm for intersecting convex polygons.
Computer Graphics and Image Processing Proc. 19,
1982, 384-391.

[8] Jignesh Patel and David DeWitt: Partition-Based
Spatial-Merge Join, Proceedings of the ACM-
SIGMOD International Conference on Management of
Data, 1996.

[9] Preparata, Franco P. and Shamos, Micheal Ian,
Computational Geometry: An Introduction, Springer-
Verlag 1985.

[10] H. Samet, Applications of Spatial Data Structures,
Reading, MA: Addison Wesley, 1990.

[11] H. Samet. Spatial Data Structures. In Won Kim, editor,
Modern Database Systems, Addison-Wesley, Reading,
Massachusetts, 1992, Ch. 18, pp. 361-385.

[12] Wael Badawy, A New Spatial Join Algorithm For
Large Polygonal Databases, Master’s Thesis,
Alexandria University, Egypt, 1997.

102

