Joining Ranked Inputs in Practice*

Thab F. Ilyas

Department of Computer Sciences, Purdue University

1398 Computer Science Building
West Lafayette IN 47907-1398
USA

{ilyas,aref}@cs.purdue.edu

Abstract

Joining ranked inputs is an essential require-
ment for many database applications, such as
ranking search results from multiple search
engines and answering multi-feature queries
for multimedia retrieval systems. We intro-
duce a new practical pipelined query operator,
termed NRA-RJ, that produces a global rank
from input ranked streams based on a score
function. The output of NRA-RJ can serve as
a valid input to other NRA-RJ operators in
the query pipeline. Hence, the NRA-RJ oper-
ator can support a hierarchy of join operations
and can be easily integrated in query process-
ing engines of commercial database systems.
The NRA-RJ operator bridges Fagin’s opti-
mal aggregation algorithm into a practical im-
plementation and contains several optimiza-
tions that address performance issues. We
compare the performance of NRA-RJ against
recent rank join algorithms. Experimental re-
sults demonstrate the performance trade-offs
among these algorithms. The experimental
results are based on an empirical study ap-
plied to a medical video application on top
of a prototype database system. The study
reveals important design options and shows
that the NRA-RJ operator outperforms other
pipelined rank join operators when the join
condition is an equi-join on key attributes.

The support of the National Science Foundation un-
der Grants IIS-0093116, EIA-9972883, 11S-9974255, and EIA-
9983249 is gratefully acknowledged.

Permassion to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Walid G. Aref

Ahmed K. Elmagarmid

Hewlett Packard
1501 Page Mill Rd.
Palo Alto, CA 94304
USA

ahmed_elmagarmid@hp.com

1 Introduction

A growing number of database applications require the
processing of ranking queries based on multiple at-
tributes. In the context of multimedia retrieval, pred-
icates often involve image similarity matching with
respect to several features. Users may present an
example image, and query the database for images
“most similar” to the example based on color and tex-
ture. Although each database image object can eas-
ily be ranked for color and texture separately, results
must be presented to the user in a combined simi-
larity order. Another example from information re-
trieval is the search for documents containing search
topics from multiple sources [19]. While each source
provides retrieved documents sorted by relevance, the
collection of retrieved documents returned to the user
must be sorted in a combined relevance order. Other
examples include information retrieval based on mul-
tiple keywords, CAD similarity searches, geometrical
databases, medical imaging and molecular biology.

The query evaluation model used for a similarity
search does not generally return a collection of exact
matches, but rather a ranked collection of results with
a score attached to each result. Users are usually in-
terested in only the top-ranked results. The aggregate
score for a given result is obtained by combining the
scores of several atomic similarity rankings, where the
atomic ranking is based on a single feature or attribute
of the database object. For example, atomic rank-
ings are produced in single-feature similarity queries in
multimediaretrieval [5, 8, 11] and in document ranking
based on a single search topic in information retrieval
applications. The challenge for similarity search is the
ranking of results based on an overall aggregate score,
using several atomic rankings as input. A nailve ap-
proach is to calculate a global score for each object
in the database and sort the objects according to the
computed score. This approach is not scalable, how-
ever, and the performance of the system deteriorates
rapidly as the size of the database increases.

Many algorithms have been proposed in the litera-



ture to address aggregation ranking, including Fagin’s
algorithm [6], the TA, CA and NRA algorithms [7],
the Quick-Combine algorithm [9], the multi-step ag-
gregation algorithm [15] and the Stream-Combine al-
gorithm [10]. Some prototype systems have incor-
porated these algorithms to answer aggregated rank
queries, such as the IBM GARLIC middleware [1§],
which uses Fagin’s algorithm. A simulation of Fa-
gin’s algorithm is used in [4] as a “filter condition” for
querying multimedia repositories; the Quick-Combine
and multi-step algorithms are used in multimedia re-
trieval for answering multi-feature queries [9, 15]; and
the Stream-Combine algorithm is used in middleware
for heterogeneous environments [10]. Recently, Natsev
et al. introduced the J* algorithm, an incremental al-
gorithm to join ranked inputs based on the A* search
algorithm. In the rest of this paper we refer to these
algorithms as rank-join algorithms.

Implementing the rank-join algorithms in database
systems extends the database ability to answer a wider
range of user queries needed by many recent applica-
tions. Two alternatives exist for implementing these
algorithms in a database system: using table functions
or encapsulating the algorithm in a physical query op-
erator. With the first approach, rank-join algorithms
are implemented in the application level (i.e., outside
the SQL engine) and SQL table functions [16] are ex-
amples of this type of implementation. Since there is
no straightforward method for pushing query predi-
cates into table functions [17], the performance of this
query is severely limited and the approach does not
give enough flexibility in optimizing the issued queries.
The second approach for implementing a rank-join al-
gorithm in a database system is to define a query op-
erator that can be part of the query execution plans.
The operator will encapsulate the rank-join algorithm
in its GetNext operation; each call to GetNexzt should
report the next top element from the input ranked in-
puts. As we will show in this study, only incremental
and pipelined aggregation algorithms can be of practi-
cal use in query evaluation pipelines.

Our Contribution

e We propose a new practical pipelined query oper-
ator NRA-RJ. We made necessary modifications
to a an efficient algorithm for joining ranked in-
puts that assumes no random access is available
on input streams. The new operator will help
incorporating this type of join in ordinary query
plans and hence can be adopted by real database
engines.

e We compared between the state-of-art algorithms
in joining ranked inputs that can be realized as
query operators. The study compares the time
and the space complexity of these algorithms as
well as different optimizations that help in en-

hancing the overall performance. Different trade-
offs are discussed.

e We conducted an empirical study for these algo-
rithms on real data in the context of multimedia
retrieval. The experiments explored the scalabil-
1ty of such algorithms and different performance
metrics.

Organization of the Paper The rest of the pa-
per is organized as follows. Section 2 gives alterna-
tives for implementing the rank-join algorithms in a
database system and discusses the advantages of build-
ing a physical query operator to realize a rank-join
algorithm. Section 2 also gives an overview on two
efficient rank-join algorithms namely, the NRA algo-
rithm [7] and the J* algorithm [14]. In Section 3 we
introduce a physical pipelined query operator, NRA-
RJ, for rank join based on an adaptation of the NRA
algorithm. Section 4 presents an optimization heuris-
tic to the basic NRA-RJ algorithm to enhance its per-
formance and scalability to long query pipelines. A
comparison between the J* and NRA-RJ is described
in Section 5. The two operators and several optimiza-
tions are evaluated through an empirical study in Sec-
tion 6. Section 7 contains a summary of our findings,
recommendations, and concluding remarks.

2 Rank-Join Algorithms as Query Op-
erators

Implementing a rank-join algorithm as a pipelined
query operator is very appealing for query optimiza-
tion and allows for handling nested joins and views
efficiently. Moreover, the operator will permit greater
flexibility in generating candidate execution plans as
opposed to the use of table functions. The encapsula-
tion of the rank-join algorithm into a sequence com-
posed of multiple operators makes it possible to shuffle
the evaluation plan operators in seeking the best plan.
Moreover, it is possible to apply predicates on partial
ranking results by pushing selection in different levels
in the rank-join pipeline.

For a rank-join algorithm to be implemented as a
pipelined query operator, the algorithm should sup-
port two key properties. First, the algorithm should
be incremental. An incremental rank-join algorithm
does not depend on specifying the number of required
results beforehand, rather, it provides the next result
whenever called for. The second property a rank-join
algorithm should support is the pipelining property.
For a query operator to be part of a pipeline, the out-
put of an operator should be a valid input to the next
operator in the pipeline. The pipelining property al-
lows for realizing join hierarchies and nested views,
and hence a wider range of query evaluation plans.

Table 1 summarizes the recent rank-join algorithm
and compares their basic properties. First, Algorithm



FA [6] was introduced by Fagin as an efficient solu-
tion to the problem. Algorithms TA [7] (Fagin et al.),
Multi-step [15] (Nepal et al.) and Quick-Combine [9]
(Giintzer et al.) are equivalent and are an enhance-
ment over the FA algorithm. these four algorithms
depends on the availability of random access to the
ranked inputs and hence are not pipelinable; random
access 1s not possible when the input arrives as output
from another execution of the algorithm in the query
pipeline. They can only be executed on the leaf level of
the query evaluation plan. For example, realizing the
FA algorithm in the IBM GARLIC middleware [18]
was limited to a query operator that can exist only on
the leaf level of the query evaluation plan.

Algorithms NRA [7] (Fagin et al.) and Stream-
Combine [10] (Giintzer et al.) do not require random
access to the ranked inputs. While Stream-Combine
can be realized easily as a pipelinable operator, the
NRA algorithm is not pipelinable since the output does
not have exact grades associated with the reported ob-
jects. Hence, the output of the NRA algorithm can-
not serve as a valid input to another NRA execution.
The algorithm NRA-RJ proposed in this paper mod-
ifies the NRA algorithm to allow for pipelining. The
J* algorithm [14] (Natsev et al.) also does not require
random access to the input and can easily be realized
as a pipelined query operator. One difference between
the J* algorithm and the other algorithms in the lit-
erature is the ability of J* to handle general join con-
ditions while other algorithms assume that the same
set of objects are ranked differently in each input and
hence are limited to equi-join on key attributes.

Since we focus only on this class of rank-join al-
gorithms that do not require random access to their
input streams, we will elaborate on the last three al-
gorithms in Table 1. Algorithm Stream-Combine is
very similar to the NRA algorithm except for the fact
that it requires a reported object to be seen, through
sorted access, in all input streams. The NRA algo-
rithm does not require this condition, and hence has a
faster termination condition as we will discuss shortly.
This will limit the comparison to the NRA algorithm
(modified to be realized as a query operator) and the
J* algorithm.

To the best of our knowledge, these are the only
efforts to introduce the rank-join algorithm as a
pipelined query operator. We will refer to the oper-
ator that encapsulates the NRA algorithm in [7] as
the NRA-RJ operator and to the operator that encap-
sulates the J* algorithm as the J* operator. For the
paper to be self-contained, we briefly present the NRA
and the J* algorithms. The reader is referred to [7, 14]
for more details.

The NRA Algorithm The NRA algorithm views
the database as m input lists where each list consists of
objects associated with grades and objects are sorted
in descending order on these grades. Let ¢ be a weight-

Algorithm No Random | Pipe- Join
Access linable | Condition

FA No No key
TA No No key
Multi-step No No key
~ TA

Quick-Combine No No key
~ TA

Stream-Combine Yes Yes key
NRA Yes No key
J* Yes Yes General

Table 1: Rank-Join Algorithms

ing function to compute the overall grade of an ob-
ject by applying ¢ to all the individual grades of this
object. The NRA algorithm [7] (no-random-access)
visits objects from the m input lists in parallel. At
depth d (i.e., when the first d objects have been visited

across all m streams), the bottom values ggd), ggd), -
gs,(f) are maintained as the grades last seen from each

input list. For an object R with ! discovered fields
z1, .., 21, | < m, we compute the worst grade as
W((R) = t(x1,x3,3,...,2;,0,...,0) and the best
grade as B(9(R) = t(zy, x5, 23, ..., TLL g, L)
Objects encountered thus far are sorted in descending
order according to their worst grade, where ties are
broken using an object’s best grade. If the top k ob-

jects are required, and we let M,Sd) be the k' largest
worst grade, then the algorithm halts when no object
outside the top k objects encountered thus far has a

best grade greater than Mlgd).

Using the NRA algorithm directly in the implemen-
tation of a pipelined query operator is complicated by
two problems. First, the algorithm depends on a pre-
defined value for k, the number of top results to be
retrieved. What we need is an incremental version of
the algorithm which produces the nezt top object when
needed by the caller. The second problem is that the
output from the algorithm does not have exact grades
associated with the output objects. Instead, each ob-
ject has a range from worst grade to best grade. This
prevents pipelining the operator in the query plans,
since the exact ranks (grades) will be available only
from the source input streams.

The J* Algorithm The J* algorithm is introduced
in [14] by providing the method GetNezt that reports
the next top join combination in each call. The algo-
rithm is based on the A* class of search algorithms. As
in the A* search algorithm, the cost of the path leading
to the final answer is divided into two parts: the first
part is the actual cost encountered thus far, and the
second part is an estimate of the cost before reaching
the final answer. The J* algorithm works as follows.
For each input stream, a variable is defined whose set



J*: GetNext()
Given: a queue buffer @
1. LOOP
IF @ is Empty
RETURN Null
head = @ .top.
IF head is a complete state
RETURN head
head? = a copy head.
X = an unassigned variables in head?2.
IF no tuples available for this stream
tuple = stream.GetNext.
11.  Assign tuple to X and compute score.
12. IF the assignment is valid
13. Push head? in Q.
14. Let X in head points to the next tuple in the
corresponding stream.
15.  Push head into the @
16. END LOOP

S © 00 -1 U WD

Table 2: The J* GetNext operation.

of possible values are the tuples from the correspond-
ing stream. The goal is to find a valid assignment for
all the variables that maximizes the total score, which
corresponds to finding the top valid join combination.
The term state is defined as a set of variable assign-
ments, and a complete state is a state that instanti-
ates all the variables. Otherwise, the state is called a
partial state. To find the next top join combination,
the algorithm maintains a priority queue of partial and
complete join results ordered on upper bound estimates
of the final combination scores. At each step, the state
on top of the queue is processed in an attempt to as-
sign one of the unassigned variables by pulling the next
tuple from the corresponding input stream. The algo-
rithm terminates when a complete state (a valid join
combination) appears on top of the priority queue. Ta-
ble 2 gives a layout of the J* algorithm. The recursive
call to GetNext in line 10, and the fact that the algo-
rithm returns the answer along with the exact com-
bined score, allows the algorithm to work well with
join hierarchies.

3 The NRA-RJ Operator

The physical query operator, NRA-RJ (No-Random-
Access Rank Join), is a pipelined operator that imple-
ments a modified version of the NRA algorithm in [7].

We propose an incremental, pipelined version of
the NRA algorithm that can be used to implement
the GetNext operation of the NRA-RJ operator. We
present the modified algorithm in terms of the NRA-
RJ operations Open, GetNezt, and Close. The internal
state information needed by the operator consists of
a priority queue which holds the objects encountered
thus far. The objects are sorted on worst grade in

descending order, and ties are broken using the best
grade (and then arbitrarily for ties on the best grades).
In order to allow for pipelining, inputs to the algorithm
may be source streams or output streams from other
algorithm executions. Therefore, each object in the in-
put streams is associated with a range of grades from
worst grade w to best grade b (where w = b for ex-
act grades). At depth d (d is the number of objects
retrieved from each input stream), the proposed algo-

rithm maintains the bottom values Q(ld) and di). The
worst grade of an object R is computed as t(w;, ws),
where ¢ is the weighting function and w; is either the
worst grade of the object according to input ¢z, or 0
if the object has not yet been encountered in input
stream 7. Similarly, the best grade of an object R is
computed as (b1, by), where b; is the best grade of the

object according to input stream i, or Ql(»d) if the object
has not yet been encountered in input stream 1.

In the Open operation, the operator initializes the
internal state information and opens the left and right
child iterators. The Close operation destroys the state
information and closes the input iterators.

The algorithm for the GetNext operation is given in
Table 3. GetNexzt is the core of the rank join operator.

For clarity, we list the differences between the Get-
Nezt algorithm and the original Non-Random-Access
algorithm in [7]:

e In general, the GetNext algorithm works for any
query evaluation plan including allowing multiple
inputs and composite inners (bushy tree), where
the grades of the input streams are expressed as
ranges. For simplicity, we will consider only the
case when the algorithm is a binary operation, i.e.,
the number of input streams is limited to two. We
will also consider only query evaluation plans that
are left deep trees, where the right input list is a
source input stream, which provides the operator
with the ranked objects and their ezact grades.
On the other hand, the left input stream may not
be a source list, since it can be the output of an-
other NRA-RJ operator. In this case, the grade
1s expressed as a range from worst to best grade.
Hence, the GetNexzt algorithm must be able to
handle a grade range instead of an exact grade
from the left iterator. Note that this restriction
1s merely for practical reasons; the algorithm still
holds for more than two inputs.

e The parameter k (the number of requested out-
put objects) is not known in advance, rather it
increases for each call to GetNexzt. The modi-
fied algorithm first checks if it can report another
object from the priority queue without violating
the stopping condition. Otherwise it has to move
deeper into the input streams to retrieve more ob-
jects.



NRA-RJ: GetNext()
Given: a weighting function ¢.
a queue buffer )
1. Threshold = 0.
2. IF @ is not Empty.
tuple = @.Top.
W= tuple. WorstGrade.
B,.: =Maximum Best Grade in Q-tuple.
IF W > Maz(Bpez, Threshold)
RETURN tuple.
LOOP.
9. leftTuple = Left.GetNext(depth).
10. rightTuple = Right.GetNext(depth).
11. leftBottom = leftTuple.BestGrade.
12. rightBottom = rightTuple.BestGrade.
13. Threshold = t(leftBottom,rightBottom).
14. Check if tuple were seen before.
15. IF tuples exist in Q
16. Update Worst grade with exact grade.
17. Reinsert tuple.
18. For each Object in the queue:
19.  Update the BestGrade.
20. tuple = @.Top.
21. W= tuple. WorstGrade.
22. B,z =Maximum Best Grade in @-tuple.
23. IF W > Maz(Bmaz, Threshold)
24. BREAK LOOP.
25. ENDLOOP
26. Remove tuple from top of @
27. RETURN tuple.

0 ~J O O i~ W

Table 3: The NRA-RJ GetNext operation.

The algorithm in Table 3 begins by checking the
buffer (priority queue) to see if an object can be re-
ported. An object can be reported if its worst grade is
still greater than the best grades of all other objects.
The maximum best grade for objects encountered thus
far is obtained from the buffer. For objects not yet
encountered, a threshold value can be used as an up-
per bound of the maximum possible best grade. The
threshold is obtained by applying the weighting func-
tion to the best grades of the last encountered left and
right objects. The maximum best grade in the buffer
1s maintained so that a scan of the whole buffer is not
necessary for each call. To deal with grade ranges, the
algorithm uses the best grades from the input streams
to update the bottom values and to update the best
grade of objects in the buffer.

We introduce a heuristic to the NRA-RJ algorithm
in Table 3 to reduce the unnecessary ranking overhead
at the early stages of the pipeline. We refer to the
problem of performing excessive ranking at the early
stages of the query pipeline as the local ranking prob-
lem. We elaborate on the local ranking problem and
the heuristic to solve it in the next section.

4 Optimizing the NRA-RJ Operator

The NRA-RJ as given in Table 3 suffers from a com-
putational overhead as the number of pipeline stages
increases. To understand this problem we elaborate on
how NRA-RJ works in a pipeline of 3 inputs assum-
ing three input streams, L, L; and Lz. When the
top NRA-RJ operator, OPy, is called for the next top
ranked object, several GetNezt calls for the left and
right children are invoked. According to the NRA-RJ
algorithm described in Table 3, at each step, OP; gets
the next tuple from its left and right children. Hence,
OP; will be required to deliver as many top ranked ob-
jects of Ly and L3 as the number of objects retrieved by
L;. These excessive calls to the ranking algorithm in
OP; result in retrieving more objects from Ly and L3
than necessary and accordingly, result in larger queue
sizes and more database accesses.

One solution is to unbalance the depth step in the
operator children. We change the NRA-RJ GetNext al-
gorithm to reduce the local ranking overhead by chang-
ing the way it retrieve tuples from its children; for
each p tuples accessed from the right child one tuple
1s accessed from the left child. The idea is to have
less expensive GetNext calls to the left child, which is
also an NRA-RJ operator. Using different depths in
the input streams does not violate the correctness of
the algorithm [7], but will have a major effect on the
performance. This optimization significantly enhances
the performance of the NRA-RJ operator as will be
demonstrated in Section 6.3. Through the rest of the
paper we will call p the balancing factor. Choosing the
right p is a design decision and depends on the data
and the order of the input streams, but a good choice
of p boosts the performance of NRA-RJ.

NRA
RJ
p=1
05 105
NRA
RJ 198
p-L
448 448

Figure 1: The effect of applying the heuristic to solve
the local ranking problem in NRA-RJ.

For example, for a typical query with three ranked
inputs, we compare between the total number of ac-
cessed tuples by the NRA-RJ operator before and af-
ter applying the heuristic. Also, as a reference, we
compare the NRA-RJ operator with a direct imple-
mentation of the NRA Algorithm, the MW-RJ Oper-
ator. The MW-RJ operator is a multi-way rank-join
operator. Figure 1 shows the number of retrieved tu-
ples for each case. In the plan in Figure 1 (a), p is



set to 1 for both NRA-RJ operators. According to a
real data example execution of this query pipeline, the
top NRA-RJ operator retrieves 105 tuples from both
children, hence the top 105 tuples are requested from
the NRA-RJ child operator, which has to retrieve 448
tuples from each of its children, for a total of 1001
tuples. In the plan in Figure 1 (b), p is set to 3 for
the top NRA-RJ operator. While retrieving the same
answers, the total number of tuples retrieved is 739
tuples, which is much less than that of the NRA-RJ
before applying the heuristic since the top NRA-RJ
operator requested only 35 tuples from its left child.
The plan in Figure 1 (c) shows the number of tuples
retrieved by the MW-RJ operator, which requires 198
tuples from each of its three children for a total of 594
tuples.

5 NRA-RJ vs. J*

Both the J* and the NRA-RJ operators implement
a joining algorithm that joins multiple ranked inputs.
The two operators are binary and pipelined and can
be integrated easily in query evaluation plans. On the
other hand, the two operators were designed for differ-
ent problem settings. The NRA-RJ operator requires
the existence of a key as the join attribute. More pre-
cisely, the NRA-RJ operator joins two streams of the
same objects ordered differently. In contrast, the J*
operator can actually join different objects under ar-
bitrary joining conditions, and hence can be used in a
wider range of applications. Since it is more general,
the J* operator suffers from larger space requirements
in the worst case, as we will show in the next sections.
Both algorithms have proven to be instance-optimal
with respect to database access cost, where instance
optimality is a stronger optimality condition defined
by Fagin et al. [7].

In this section we highlight important design differ-
ences between the NRA-RJ operator and the J* oper-
ator. Two important design aspects of an operator are
the stopping criteria and the space requirements. The
stopping condition has a direct effect on the number
of database accesses made by the operator. The goal
1s to stop as soon as we have enough information to
report the next top-ranked object. The space require-
ment 1s an important design parameter in a database
engine, since the maximum space required by an op-
erator is translated into the quantity of resources that
must be allocated. We conduct a worst case analysis
for both the NRA-RJ and the J* operators. For com-
pleteness, we also provide a best case analysis on the
buffer size of both operators. The following compar-
1sons are made for the problem of joining multiple sets
of the same objects ordered differently in each ranked
input. For arbitrary join conditions the J* operator
becomes the only choice.

5.1 Stopping Condition

The idea behind the rank-join algorithms is to stop as
early as possible, without the need to actually sort
all the streams or visit more objects than needed.
The algorithm implemented by the NRA-RJ operator
achieves just that by introducing the Worst Grade and
the Best Grade of an object. The idea is to stop when
we are guaranteed that this object cannot have less
overall score than any other object in the database,
even if not all streams have been seen so far. In con-
trast, the J* operator requires that an object must be
seen 1n every input stream before reporting it. This
constraint can be seen from the algorithm in Table 2;
only complete states on top of the queue can be re-
ported. To illustrate the early stopping criteria of the
NRA-RJ we give the following example. Given two
ranked inputs Ly = (R; : 10,Ry : 5, Rz : 4, R4 : 3)
and Ly = (Ry : 5,R3 : 4,R4 : 3, Ry : 1), where each
object is attached to a different score in each list (the
scores of R; are 10in Ly and 1in Ljy). Let W; and B;
denote the worst grade and the best grade of object
R;, respectively. We use a simple monotone function
t(a,b) = a + b to calculate the overall score, and af-
ter two steps by the NRA-RJ operator, the best grade
and the worst grade of objects seen so far are as fol-
lows: Wiy = 10,B; = 14; W, = 10,B, = 10; and
W3 = 4,B; = 9. According to the stopping criteria
of the NRA-RJ operator, both R; and R; can be re-
ported as the first top objects. Note that object R;
has not been encountered yet in the input L, but it is
guaranteed to have a worst grade that is larger than
the best grade of any other object. For the same ex-
ample using the J* operator, R; cannot be reported
as an output before accessing all objects in the input
list Lg.

5.2 Space Complexity

Rank-join algorithms with no random access suffer
from the problem of unbounded buffer requirements
for tracking the best grade of the objects encountered
so far. Thus, the operator may require bookkeeping
tasks for a huge queue containing these objects before
1t can report the next object. When comparing the
space requirements of the two operators, a worst case
analysis 1s used to estimate the maximum size of the
buffer that should be reserved in order to correctly
report the output objects. Due to the ability of the
J* operator to handle general join conditions, it has
to consider more join combinations in the maintained
priority queue. Hence, the space required by the J*
operator is larger than that required by the NRA-RJ,
as shown in the following subsections and in the per-
formance evaluation in Section 6.



5.2.1 Worst Case Analysis

In the worst case, a rank-join algorithm cannot report
any object unless all objects from the input ranked lists
have been seen. Let L; and L5 be the two source rank
lists for objects {R1, Ra, ..., Rn}. For simplicity, let
the grade of an object in a list be n+1—rank, let L; =
(R1, Ry, Rs, ..., Ry) and let Ly = (Rn, Ro_1, Ry,
..., B1). The grades of object R; in lists L; and L
are n and 1, respectively. Let the weighting function
t(a,b) = a+ b, i.e., a simple monotone function.

The NRA-RJ Operator: Assume we have moved to
depth d in the two lists, and that the objects encoun-
tered so far from lists L; and Ls are (R1, Rz, ..., Rq)
and (Rn, Bn—_1, ..., Bn_d41), respectively. Our goal
is to report the top-most object. The maximum worst
grade value encountered so far is the worst grade of
object R, computed as Wy = ¢(n,0) = n. Hence, R
is on top of the queue and we can report it only if the
maximum best grade for all other objects is less than
W;. The maximum best grade for objects encountered
so far (other than R;) is that of object Ry, computed
as By =t(n—1,n—d+1) = 2n — d. According to
the stopping criteria of NRA, we can stop only when
2n — d < n, and that occurs at depth d = n, 1.e., we
must move entirely through both lists with a buffer
size of n objects.

The J* Operator: As discussed earlier in this sec-
tion, the J* operator solves a more general problem
than the NRA-RJ, where it can handle arbitrary join
conditions. To be able to compare both operators, we
will consider only the case when the join condition is
on a key attribute (for example, self-join). In order
to see the space complexity of the operator in deal-
ing with the input lists L; and Ly, refer to Figure 2.
In the J* algorithm with two input lists, a state can
be either complete, incomplete with one unassigned
variable (we will refer to this state as half-complete),
or incomplete with two unassigned variables (we will
refer to this state as incomplete). When processing a
half-complete state, two states are produced. The first
state 1s a complete state, which is inserted only if it 1s
a valid join combination (when the two variables rep-
resent the same object in the case of self-join). The
second state is another half-complete state and it is
inserted in the queue. In Figure 2, triangles represent
half-complete states, while circles represent incomplete
states. Processing an incomplete state produces two
states, a half-complete state and another incomplete
state, and both of them are kept in the queue. In the
example, when L; and L, are the two inputs, it is easy
to see from Figure 2(a) that all valid half-complete
states must be present in the queue before reporting
any objects (all objects have the same global score).
When processing these half-complete states, each state
will produce a valid complete state that will be kept

in the queue in addition to another half-complete state
that is also inserted in the queue, yielding a buffer size
of 2n — 1 states. Given that each state holds two tu-
ples, the total buffer size i1s 4n — 2 tuples, which is
larger than that of the NRA-RJ operator.

-
0N OO0 WN
[

P N Wb

12 34567 8 12 3 4 2k

1 1

a b
@ O Incomplete State ®)

/\ Half-Complete State

Figure 2: Space complexity of the J* operator.

5.2.2 Best Case Analysis

For the best case analysis, we compare the two oper-
ators when the two ranked inputs are identical. The
NRA-RJ does not need to keep any reported tuples
therefore, the buffer size is always zero. For the J*
algorithm, the maximum buffer size is twice the size
of the required results. To see that, we refer to the
previous example with L; = Ly = (R1, Ra, ..., R4).
Figure 2(b) shows the type of the states that can be
stored in the buffer at the time the object Ry can be re-
ported. Because the J* algorithm has to keep all pos-
sible combinations in the buffer, the buffer will have
at least 2k states before reporting the k‘* object.

6 Empirical Results

In Section 5 we highlighted several design differences
between the NRA-RJ and J* operators, and their im-
pact on performance. In this section we describe sev-
eral evaluation experiments in comparing the two bi-
nary pipelined operators, NRA-RJ and J*, using real
world data.

The experiments are based on our research platform
for a complete video database management system
running on a Sun Enterprise 450 with 4 UltraSparc-II
processors running SunOS 5.6 operating system. The
research platform is based on PREDATOR [20], the
object relational database system from Cornell Uni-
versity. Shore [1] is the underlying storage manager,
where the digital video is stored as a large object and is
defined as an abstract data type (ADT). Video visual
features are stored as high-dimensional vectors that
must be indexed using a high-dimensional indexing
scheme. To accommodate the high-dimensional index-
ing, we extended the indexing capabilities of Shore by



adding the GiST general indexing framework [12]. We
used the GiST implementation of the SR-tree [13] as
the indexing technique. The nearest-neighbor search
operator i1s implemented as an incremental NN search
query on the SR-tree.

The following experiments are conducted on the
database table Features, which contains 100,000
records of features extracted from video frames. The
feature fields include color histogram in YUV format
(a vector of 32 dimensions), texture tamura (a vector
of 16 dimensions) and texture edges (a vector of 9 di-
mensions). We use the query evaluation plan, given
in Figure 3, to evaluate the proposed operators. The
plan has m NN operators on m different visual fea-
tures. m—1 rank-join binary operators are used, where
the results of one operator are pipelined to the next
operator in the pipeline.

SCAN_STOP (k)

Rank-Join (1)

VRN
. NN (Feature 1)

FeatureTable
Rank_Join (m-1)

N

NN (Feature m—-1) NN (Feature m)

FeatureTable FeatureTable

Figure 3: The query plan used in the experiments.

We use the following query to evaluate the perfor-
mance of the three rank-join operators:

Q: Retrieve the k most similar video shots to a given
image based on m visual features.

where m varies from 2 to 6 features and k varies from
5 to 100. Note that the number of requested results,
k 1s not an input to the rank-join operator. We limit
the number of reported answers to k& by applying the
Stop-After query operator introduced by Carey and
Kossmann [2, 3]; this is implemented in the prototype.
The physical query operator Scan-Stop is a straight-
forward implementation of Stop-After and appears on
top of the query plan given in Figure 3.

To evaluate the operators, the following perfor-
mance measures are chosen:

1. The query running time to retrieve the top match-
ing k output results.

2. The size of the buffer maintained by the operator.

3. The number of database accesses (in disk pages).

While the number of database accesses should give
a good indication of the time complexity of the op-
erator, the experiments show a significant CPU time
complexity difference between the two operators that
affect the total running time, especially for small num-
bers of inputs as shown by the following experiments.
Another interesting set of experiments shows how or-
dering of the input streams in the pipeline affects the
performance. This will have a significant impact on
query optimization and the generation of query execu-
tion plans for queries involving joining multiple ranked
inputs. In our experiments we study the effect of in-
put streams ordering on both the NRA-RJ and the J*
operators.

To compare the two pipelined operators, we imple-
ment the non-pipelined version of the NRA algorithm
as a multi-way rank-join operator named MW-RJ. Al-
though most query optimizers are restricted to binary
operators, the performance of the MW-RJ gives useful
insight when comparing the two pipelined operators,
and gives a reference line for the best possible perfor-
mance to get the required results.

6.1 Real World Data Comparison

Figure 4 gives performance comparisons among the
NRA-RJ (with a balancing factor p = 2), J* and MW-
RJ operators for m = 3, where m is the number of
input sources that give a pipeline of length m — 1.

Figure 4(a) shows that NRA-RJ outperforms J* in
total running time, and the pipeline does not affect the
speed of the NRA-RJ operator when compared with
MW-RJ. For the maximum queue size given in Fig-
ure 4(b), the three operators have a comparable max-
imum queue size for small numbers of requested out-
put objects, k. As k increases the J* operator starts
to have large queue sizes due to the fact that it has
to consider all possible join combinations. Figure 4(c)
shows a comparable performance of the three oper-
ators with respect to the number of database objects
retrieved. Given that the number of accessed database
objects of the MW-RJ operator is the minimum num-
ber of objects that must be visited before reporting
an answer (due to the proved optimality of the NRA
algorithm), Figure 4(c) shows that both the NRA-RJ
and the J* operators are close to the MW-RJ in the
number of database accesses.

6.2 The Effect of Pipelining

In this experiment, we evaluate how scalable the two
pipelined operators are with respect to the length of
the query pipeline m. By fixing k& = 20, the opera-
tors NRA-RJ and J* are compared with respect to the
three chosen performance metrics given in Section 6.
Figure 5 compares the performance of the operators

NRA-RJ, MW-RJ, and J* as m increases from 2 to



6. Figure 5(a) shows that NRA-RJ is an order of
magnitude faster than J* with respect to the over-
all running time. The running time of J* increases
drastically with the increase in m making it not scal-
able for long query pipelines. The total running time
of NRA-RJ is as good as that of MW-RJ even for long
query pipelines. Figures 5(b) and (c) show that both
the NRA-RJ and the J* operators perform similarly
with respect to maximum queue size and number of
database accesses. The figures also show the effect of
the pipelining on both operators as their performance
starts to divert from that of MW-RJ as m increases.

6.3 The Effect of the Balancing Factor

The optimization proposed in Section 4 has a signifi-
cant impact on the NRA-RJ performance and its scal-
ability to long queue pipelines. In Figures 6 (a) and (b)
we compare the maximum queue size and the number
of accessed pages of the NRA-RJ operator for different
values of p. The case in which p = 1 represents the
unoptimized version of the NRA-RJ. The experiment
shows that, for small values of k, the performance en-
hances as p increases. For larger values of k, increasing
p results in accessing more tuples from the right child
than necessary and hence small values of p gives a bet-
ter performance.

We measured the effect of choosing p on the scala-
bility of the NRA-RJ operator. Figures 5(a) and (b)
give the maximum queue size and the number of ac-
cessed data pages for different values of m (the length
of the pipeline). k is fixed to 20 output results. Also,
we compare the performance of NRA-RJ for different
values of p. When p is variable, p can have a different
value in each pipeline stage. For example, p = 1 in
the first stage and p = 2 in the second stage, etc. The
motivation behind having different values for p in dif-
ferent pipeline stages is that the cost of accessing the
left child increases as we go up in the query pipeline.
A good heuristic is to set p to depend on the pipeline
stage. The figures show that this heuristic gives the
best performance for k£ = 20. Setting p to 2 enhanced
the performance significantly when compared against
the unoptimized version when p = 1.

Choosing the right p is a design decision and de-
pends on the data and the order of the input streams,
but a good choice of p boosts the performance of NRA-
RJ.

6.4 The Effect of Input Ordering

In this experiment we study the effect of input stream
ordering in the pipeline on the performance for both
operators. Figure 8 gives the performance metrics of
the NRA-RJ operator for 6 possible orderings of the
input streams in a query pipeline with m = 4. Figure 9
gives the same metrics for the J* operator. The results
show the sensitivity of the NRA-RJ operator to the
ordering of input. This sensitivity can be explained by

the excessive local ranking in the query pipeline, and
hence, choosing which pairs to rank together plays a
major role in getting the final results. The operator
J* 1s less sensitive to input orderings due to the guided
fewer invocations of local ranking in the query pipeline.
In the experiments in the previous sections, we use the
ordering O; for both operators. Ordering O; shows the
best performance in the case of NRA-RJ and the best
execution time in the case of J*.

7 Conclusion

In this paper, we carried out an extensive performance
study to evaluate two recent algorithms for obtaining
a global rank from multiple ranked inputs. The two
rank-join algorithms we investigated are the J* algo-
rithm and an adaptation of the No-Random-Access al-
gorithm. We focused on the use of these algorithms as
binary pipelined query operators, which makes them
practical for most database engines. Several experi-
ments were conducted to illustrate the different per-
formance issues and trade-offs. The experiments were
in the context of multimedia retrieval and were per-
formed against a continuous media retrieval prototype.

Our study shows the importance of implementing
rank-join algorithms as query operators, and helps in
choosing the right rank-join operator for a given prob-
lem setting. In the case where an arbitrary join con-
dition is needed, the J* operator is the only choice,
since the NRA-RJ operator is defined only for join-
ing multiple rankings of the same set of objects. The
performance of the NRA-RJ operator is greatly en-
hanced through unbalancing the depth step of its in-
puts to reduce the overhead of local ranking in the
earlier pipeline stages. As demonstrated, this opti-
mized NRA-RJ operator is superior over the J* op-
erator even for large number of ranked inputs. The
optimized NRA-RJ operator is an order of magnitude
faster than the J* operator, has less space require-
ments, and has a comparable number of disk accesses.
The performance study also shows that the NRA-RJ
operator is more sensitive to the ordering of the ranked
input streams than the J* operator, which shows less
sensitivity. This has an impact on the optimization of
rank-join queries.

Our overall conclusion is that for joining multiple
rankings of the same set of objects, the NRA-RJ op-
erator gives the best performance, while for arbitrary
join conditions, the J* operator is the best feasible
choice.



N
o

No of Accessed Pages

ﬁ 60 70 80 90

400

w
=]
=)

=
15)
=)

No of Accessed Pages

&—= NRA-RJ
B—~8 MW-RJ
c—oJ*

3at

(a)

Figure 6: The effect of the balancing factor p for

I
40.0

m = 3.

.
60.0

30 T T T T T T T T T 3000 T T T T T T T T T
NRASRD &0 NRA-RJ
5—8 MW-RJ a E—E‘NlW—RJ
@ o—oJ D 6—>o1J
20 % 2000
>
g o
~ E
@
E10 £ 1000
= %
=
0 0
(a) (b)
Figure 4: Comparing NRA-RJ, MW-RJ and J* for m = 3.
300 12000 T
NRA-RJ o—= NRA-RJ
5—8 MW-RJ @ 10000 | B aMWR) ]
— o—oJ D 6——>o1J
é 200 [ B % 8000
>
% g 6000
@
g 100 B E 4000
~ %
= 2000
0 ———— % 0
3 4 5 6
m
(a) (b)
Figure 5: Scalability of the NRA-RJ operator.
2000.0 50.0
(O]
N 8 400
O 15000 %)
% o
e % 300 +
O 10000 | @
g 2 200 |
£ “
& 5000 |- O
© 100}
= Z
00 ‘ ‘ ‘ ‘ 00 ‘
0.0 20.0 40.0 60.0 80.0 100.0 0.0 20.0

(b)

.
80.0 100.0




Time (seconds)

Time (seconds)

50000.0 1500.0
G—op=1 G—op=1
) G—H8p=2 G—H8p=2
N 400000 | |[&—2P=3 ] 83 &—op=3
0p —ap= g o
O V—V p=5 o V—V p=5
8 »—x p variable 1000.0 F |x—x p variable 7
8 30000.0 -%
S 3]
S 20000.0 <
e w 5000t
% 5
@)
10000.0
= z
0.0 0.0
2.0
(a) (b)
Figure 7: The effect of the balancing factor on the the scalability of NRA-RJ.
25 T T T T T T T T T T T T T T T T T T 400 T T T T T T T T T
F—* 01 12000 - % %01 1 %—* 01
G—oO02 c—O02 Cc—O02
20l 5—a03 | GN’ 5—803 ] 350 1 5—H03 1
6—2004 @ 10000 - §
A—AO5 o
<+—<106 8
B 1 > 8000
(o4
c Q
10r S 6000 | & 2
E Y
= 5
5¢ S @000 2
0 2000
0 0
(a) (b) (c)
Figure 8: The effect of input stream ordering on NRA-RJ.
600 T T T T 12000 T T T T T T T T T
140 -
Q@ 10000 B
@ 5 120
400 QL goo0 |
o) '% 100
>
O 6000 E ol
5 g
200 £ 4000 w5 6o f
& o
= 2000 [, Z a0l
0 20

Figure 9: The effect of input stream ordering on J*.



References

[1]

[2]

[10]

Storage manager architecture. Shore documen-
tation, Computer Sciences Department, UW-
Madzison, June 1999.

Michael J. Carey and Donald Kossmann. On say-
ing “Enough already!” in SQL. In SIGMOD’97,
Tucson, Arizona, volume 26(2), pages 219-230,
May 13-15 1997.

Michael J. Carey and Donald Kossmann. Reduc-
ing the braking distance of an SQL query engine.
In VLDB’98, New York, NY, 24-27 August, 1998,
pages 158-169, 1998.

Surajit Chaudhuri and Luis Gravano. Optimiz-
ing queries over multimedia repositories. In SIG-
MOD’96, Montreal, Quebec, Canada, June 4-6,
1996, pages 91-102, 1996.

J.Y. Chen, C. Taskiran, A. Albiol, E.J. Delp,
and C.A. Bouman. Vibe: A compressed video
database structured for active browsing and
search. In In Proc. SPIE: Multimedia Storage and
Archiving Systems IV 3846, pages 148-164, 1999.

Ronald Fagin. Combining fuzzy information from
multiple systems. Journal of Computer and Sys-

tem Sciences (JCSS), 58(1):83-99, Feb 1999.

Ronald Fagin, Amnon Lotem, and Moni Naor.
Optimal aggregation algorithms for middlewar.
In PODS’2001 Santa Barbara, California, May
2001.

M. Flickner, H. Sawhney, W. Niblack, J. Ash-
ley, Q. Huang, B. Dom, M. Gorkani, J. Hafner,
D. Lee, D. Petkovicand D. Steele, and P. Yanker.
Query by image and video content: The gbic sys-
tem. In IEEE Computer, volume 38, pages 23-31,
1995.

Ulrich Guntzer, Wolf-Tilo Balke, and Werner
Kiefiling. Optimizing multi-feature queries for im-
age databases. In VLDB 2000,, September 10-14,
Cairo, Egypt, pages 419-428, 2000.

Ulrich Guntzer, Wolf-Tilo Balke, and Werner
Kielling. Towards efficient multi-feature queries
in heterogeneous environments. In In: Proceed-
ings of the IEEE International Conference on
Information Technology: Coding and Computing

(ITCC 2001), Las Vegas, USA, 2001, 2001.

A. Hamrapur, A. Gupta, B. Horowitz, C.F. Shu,
C. Fuller, J. Bach, M. Gorkani, and R. Jain. Vi-
rage video engine. In SPIE Proc. Storage and
Retrieval for Image and Video Databases, pages
188-197, 1997.

[12]

[16]

[17]

Joseph M. Hellerstein, Jeffrey F. Naughton, and
Avi Pfeffer. Generalized search trees for database

system. VLDB’95, 1995.

Norio Katayama and Shin’ichi Satoh. The SR-
tree: An index structure for high-dimensional
nearest neighbor queries. SIGMOD Record (ACM

Special Interest Group on Management of Data),
26(2), 1997.

Apostol Natsev, Yuan-Chi Chang, John R. Smith,
Chung-Sheng Li, and Jeffrey Scott Vitter. Sup-
porting incremental join queries on ranked inputs.

In VLDV’01, Rome, Italy, 2001.

Surya Nepal and M. V. Ramakrishna. Query pro-
cessing issues in image (multimedia) databases. In
ICDE’99, Sydney, Austrialia, pages 22-29. IEEE
Computer Society, 1999.

Berthold Reinwald and Hamid Pirahesh. SQL
open heterogeneous data access. In SIGMOD’98,
June 2-4, 1998, Seattle, Washington, USA, pages
506-507, 1998.

Berthold Reinwald, Hamid Pirahesh, Ganapathy
Krishnamoorthy, George Lapis, Brian T. Tran,
and Swati Vora. Heterogeneous query processing
through sql table functions. In ICDE’99, 23-26
March 1999, Sydney, Austrialia, pages 366-373,
1999.

Mary Tork Roth, Manish Arya, Laura M. Haas,
Michael J. Carey, William F. Cody, Ronald Fa-
gin, Peter M. Schwarz, Joachim Thomas II, and
Edward L. Wimmers. The garlic project. In SIG-
MOD’96, Montreal, Quebec, Canada, June 4-6,
1996, page 557, 1996.

G. Salton. Automatic Text Processing: The
Transformational, Analysis, and Retrieval of In-
formation by Computer. Addison-Wesley, Read-
ing, Massachusetts, U.S.A., 1988.

Praveen Seshadri and Mark Paskin. Predator: An
or-dbms with enhanced data types. In SIGMOD
1997, May 13-15, 1997, Tucson, Arizona, USA,
1997.



