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Abstract. Data anonymization techniques based on the k-anonymity model have
been the focus of intense research in the last few years. Although the k-anonymity
model and the related techniques provide valuable solutions to data privacy, cur-
rent solutions are limited only to static data release (i.e., the entire dataset is
assumed to be available at the time of release). While this may be acceptable in
some applications, today we see databases continuously growing everyday and
even every hour. In such dynamic environments, the current techniques may suf-
fer from poor data quality and/or vulnerability to inference. In this paper, we an-
alyze various inference channels that may exist in multiple anonymized datasets
and discuss how to avoid such inferences. We then present an approach to se-
curely anonymizing a continuously growing dataset in an efficient manner while
assuring high data quality.

1 Introduction

A model on which recent privacy-protecting techniques often rely is the k-anonymity
model [22]. In the k-anonymity model, privacy is guaranteed by ensuring that any
record in a released dataset be indistinguishable (with respect to a set of attributes,
called quasi-identifier) from at least (k − 1) other records in the dataset. Thus, in the
k-anonymity model the risk of re-identification is maintained under an acceptable prob-
ability (i.e., 1/k). Another interesting protection model addressing data privacy is the
�-diversity model [16]. The �-diversity model assumes that a private dataset contains
some sensitive attribute(s) which cannot be modified. Such a sensitive attribute is then
considered disclosed when the association between a sensitive attribute value and a par-
ticular individual can be inferred with a significant probability. In order to prevent such
inferences, the �-diversity model requires that every group of indistinguishable records
contains at least � distinct sensitive attribute values; thereby the risk of attribute disclo-
sure is kept under 1/�.

Although the k-anonymity and �-diversity models have led to a number of valuable
privacy-protecting techniques [3,10,11,13,14,21], the existing solutions are limited only
to static data release. That is, in such solutions it is assumed that the entire dataset is
available at the time of release. This assumption implies a significant shortcoming, as
data today are continuously collected (thus continuously growing) and there is a strong
demand for up-to-date data at all times. For instance, suppose that a hospital wants
to publish its patient records for medical researchers. Surely, all the published records
must be properly anonymized in order to protect patients’ privacy. At first glance, the
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AGE Gender Diagnosis

21 Male Asthma
23 Male Flu
52 Male Alzheimer
57 Female Diabetes

Fig. 1. Initial patient records

AGE Gender Diagnosis

[21 − 25] Male Asthma
[21 − 25] Male Flu
[50 − 60] Person Alzheimer
[50 − 60] Person Diabetes

Fig. 2. 2-diverse patient records

AGE Gender Diagnosis

21 Male Asthma
23 Male Flu
52 Male Alzheimer
57 Female Diabetes
27 Female Cancer
53 Male Heart Disease
59 Female Flu

Fig. 3. New patient records

AGE Gender Diagnosis

[21 − 30] Person Asthma
[21 − 30] Person Flu
[21 − 30] Person Cancer
[51 − 55] Male Alzheimer
[51 − 55] Male Heart Disease
[56 − 60] Female Flu
[56 − 60] Female Diabetes

Fig. 4. New 2-diverse patient records

task seems reasonably straightforward, as any of the existing anonymization techniques
can anonymize the records before they are published. The challenge is, however, that
as new records are frequently created (e.g., whenever new patients are admitted), the
hospital needs a way to provide up-to-date information to researchers in timely manner.

One possible approach is to anonymize and publish new records periodically. Then
researchers can either study each released dataset independently or merge multiple
datasets together for more comprehensive analysis. Although straightforward, this ap-
proach may suffer from severely low data quality. The key problem is that small sets
of records are anonymized independently; thus, records may have to be modified much
more than when they are anonymized all together. Thus, in terms of data quality, this
approach is highly undesirable.

A better approach is to anonymize and publish the entire dataset whenever the dataset
is augmented with new records. In this way, researchers are always provided with up-to-
date information. Although this can be easily accomplished using existing techniques
(i.e., by anonymizing the entire dataset every time), there are two significant drawbacks.
First, it requires redundant computation, as the entire dataset has to be anonymized
even if only a few records are newly inserted. Another, much more critical, drawback is
that even though published datasets are securely anonymous independently (i.e., each
dataset is k-anonymous or �-diverse), they could be vulnerable to inferences when ob-
served collectively. In the following section, we illustrate such inferences.

1.1 Examples of Inferences

A hospital initially has a dataset in Fig. 1 and publishes its 2-diverse version shown
in Fig. 2. As previously discussed, in an �-diverse dataset the probability of attribute
disclosure is kept under 1/�. For example, even if an attacker knows that the record of
Tom, who is a 21-year-old male, is in the published dataset, he cannot be sure about
Tom’s disease with greater than 1/2 probability (although he learns that Tom has either



50 J.-W. Byun et al.

asthma or flu). At a later time, three more patient records (shown in Italic) are inserted
into the dataset, resulting the dataset in Fig. 3. The hospital then publishes a new 2-
diverse version in Fig. 4. Observe that Tom’s privacy is still protected in the newly
published dataset. However, not every patient is protected from the attacker.

Example 1. Suppose the attacker knows that Alice, who is in her late twenties, has
recently been admitted to the hospital. Thus, he knows that Alice is not in the old dataset
in Fig. 2, but in the new dataset in Fig. 4. From the new dataset, he learns only that Alice
has one of {Asthma, Flu, Cancer}. However, by consulting the previous dataset, he can
easily infer that Alice has neither asthma nor flu. He concludes that Alice has cancer.

Example 2. The attacker knows that Bob is 52 years old and has long been treated in the
hospital. Thus, he is sure that Bob’s record is in both datasets. First, by studying the old
dataset, he learns that Bob suffers from either alzheimer or diabetes. Now the attacker
checks the new dataset and learns that Bob has either alzheimer or heart disease. He
thus concludes that Bob suffers from alzheimer. Note that three other records in the
new dataset are also vulnerable to similar inferences.

1.2 Contributions and Paper Outline

As shown in the previous section, anonymizing datasets statically (i.e., without con-
sidering previously released datasets) may lead to various inferences. In this paper, we
present an approach to securely anonymizing a continuously growing dataset in an ef-
ficient manner while assuring high data quality. The key idea underlying our approach
is that one can efficiently anonymize a current dataset by directly inserting new records
to the previously anonymized dataset. This implies, of course, that both new records
and anonymized records may have to be modified, as the resulting dataset must satisfy
the imposed privacy requirements (e.g., k-anonymity or �-diversity). Moreover, such
modifications must be cautiously made as they may lead to poor data quality and/or en-
able undesirable inferences. We thus describe several inference attacks where attacker
tries to undermine the imposed privacy protection by comparing a multiple number of
anonymized datasets. We analyze various inference channels that attacker may exploit
and discuss how to avoid such inferences. In order to address the issue of data quality,
we introduce a data quality metric, called Information Loss (IL) metric, which mea-
sures the amount of data distortion caused by generalization. Based on our analysis on
inference channels and IL metric, we develop an algorithm that securely and efficiently
inserts new records into an anonymized dataset while assuring high data quality.

The remainder of this paper is organized as follows. We review the basic concepts
of the k-anonymity and �-diversity models in Section 2. In Section 3, we describe sev-
eral inference attacks and discuss possible inference channels and how to prevent such
inferences. Then we describe our algorithm that securely and efficiently anonymizes
datasets in Section 4 and evaluate our techniques in Section 5. We review some related
work in Section 6 and conclude our discussion in Section 7.

2 k-Anonymity and �-Diversity

The k-anonymity model assumes that person-specific data are stored in a table (or a
relation) of columns (or attributes) and rows (or records). The process of anonymizing
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such a table starts with removing all the explicit identifiers, such as name and SSN, from
it. However, even though a table is free of explicit identifiers, some of the remaining
attributes in combination could be specific enough to identify individuals. For example,
as shown by Sweeney [22], 87% of individuals in the United States can be uniquely
identified by a set of attributes such as {ZIP, gender, date of birth}. This implies that
each attribute alone may not be specific enough to identify individuals, but a particular
group of attributes could be. Thus, disclosing such attributes, called quasi-identifier,
may enable potential adversaries to link records with the corresponding individuals.

Definition 1. (Quasi-identifier) A quasi-identifier of table T , denoted as QT , is a set
of attributes in T that can be potentially used to link a record in T to a real-world iden-
tity with a significant probability. �

The main objective of the k-anonymity problem is thus to transform a table so that
no one can make high-probability associations between records in the table and the
corresponding entity instances by using quasi-identifier.

Definition 2. (k-anonymity requirement) Table T is said to be k-anonymous with
respect to quasi-identifier QT if and only if for every record r in T there exist at least
(k − 1) other records in T that are indistinguishable from r with respect to QT . �

By enforcing the k-anonymity requirement, it is guaranteed that even though an adver-
sary knows that a k-anonymous table T contains the record of a particular individual
and also knows the quasi-identifier value of the individual, he cannot determine which
record in T corresponds to the individual with a probability greater than 1/k. The k-
anonymity requirement is typically enforced through generalization, where real values
are replaced with “less specific but semantically consistent values” [22]. Given a do-
main, there are various ways to generalize the values in the domain. Commonly, nu-
meric values are generalized into intervals (e.g., [12−19]), and categorical values into a
set of distinct values (e.g., {USA, Canada}) or a single value that represents such a set
(e.g., North-America). A group of records that are indistinguishable from each other is
often referred to as an equivalence class.

Although often ignored in most k-anonymity techniques, a private dataset typically
contains some sensitive attribute(s) that are not quasi-identifier attributes. For instance,
in the patient records in Fig. 3, Diagnosis is considered a sensitive attribute. For such
datasets, the key consideration of anonymization is the protection of individuals’ sen-
sitive attributes. Observe, however, that the k-anonymity model does not provide suf-
ficient security in this particular setting, as it is possible to infer certain individuals’
attributes without precisely re-identifying their records. For instance, consider a k-
anonymized table where all records in an equivalence class have the same sensitive
attribute value. Although none of these records can be matched with the corresponding
individuals, their sensitive attribute value can be inferred with a probability of 1. Re-
cently, Machanavajjhala et al. [16] pointed out such inference issues in the k-anonymity
model and proposed the notion of �-diversity.

Definition 3. (�-diversity requirement) Table T is said to be �-diverse if records in
each equivalence class have at least � distinct sensitive attribute values. �
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As the �-diversity requirement ensures that every equivalence class contains at least
� distinct sensitive attribute values, the risk of attribute disclosure is kept under 1/�.
Note that the �-diversity requirement also ensures �-anonymity, as the size of every
equivalence class must be greater than equal to �.

3 Incremental Data Release and Inferences

In this section, we first describe our assumptions on datasets and their releases. We then
discuss possible inference channels that may exist among multiple data releases and
present requirements for preventing such inferences.

3.1 Incremental Data Release

We assume that a private table T , which contains a set of quasi-identifier attributes QT

and a sensitive attribute ST , stores person-specific records, and that only its �-diverse1

version ̂T is released to public. As more data are collected, new records are inserted
into T , and ̂T is updated and released periodically to reflect the changes of T . Thus,
users, including potential attackers, are allowed to read a sequence of �-diverse tables,
̂T0, ̂T1, . . ., where | ̂Ti| < | ̂Tj| for i < j. As previously discussed, this type of data
release is necessary to ensure high data quality in anonymized datasets.

As every released table is �-diverse, by observing each table independently, one can-
not gain more information than what is allowed. That is, the risk of attribute disclosure
in each table is at most 1/�. However, as shown in Section 1, it is possible that one
can increase the probability of attribute disclosure by observing changes made to the
released tables. For instance, if one can be sure that two (anonymized) records in two
different versions indeed correspond to the same individual, then he may be able to
use this knowledge to infer more information than what is allowed by the �-diversity
protection.

Definition 4. (Inference channel) Let ̂Ti and ̂Tj be two �-diverse versions of a private
table T . We say that there exists an inference channel between ̂Ti and ̂Tj , denoted as
̂Ti � ̂Tj , if observing ̂Ti and ̂Tj together increases the probability of attribute disclosure
in either ̂Ti or ̂Tj to a probability greater than 1/�. �

Thus, for a data provider, it is critical to ensure that there is no inference channel
among the released tables. In other words, the data provider must make sure that a
new anonymized table to be released does not create any inference channel with respect
to the previously released tables.

Definition 5. (Inference-free data release) Let ̂T0, . . . , ̂Tn be a sequence of previ-
ously released tables, each of which is �-diverse. A new �-diverse table ̂Tn+1 is said to
be inference-free if and only if � ̂Ti, i = 1, . . . , n, s.t. ̂Ti � ̂Tn+1. �

1 Although we focus on �-diverse data in this paper, one can easily extend our discussion to
k-anonymous data.
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It is worth noting that the above definitions do not capture possible inference channels
completely. For instance, it is possible that some inference channels exist across more
than two versions of a private table (e.g., ̂Ti, ̂Tj � ̂Tk). Although such inferences are
also plausible, in this paper we focus on simple “pairwise” inference channels.

3.2 Inference Attacks

We first describe a potential attacker and illustrate how the attacker may discover infer-
ence channels among multiple anonymized tables. We then describe various inference
channels and discuss how to prevent them.

Attacker’s knowledge. Before discussing possible inference channels, we first describe
a potential attacker. We assume that the attacker has been keeping track of all the re-
leased tables; he thus possesses a set of released tables {̂T0, . . . , ̂Tn}, where ̂Ti is a
table released at time i. We also assume that the attacker has the knowledge of who
is and who is not contained in each table. This may seem to be too farfetched at first
glance, but such knowledge is not always hard to acquire. For instance, consider med-
ical records released by a hospital. Although the attacker may not be aware of all the
patients, he may know when target individuals (in whom he is interested) are admitted
to the hospital. Based on this knowledge, the attacker can easily deduce which tables in-
clude such individuals and which tables do not. Another, perhaps the worst, possibility
is that the attacker may collude with an insider who has access to detailed information
about the patients; e.g., the attacker could obtains a list of patients from a registration
staff. Thus, it is reasonable to assume that the attacker’s knowledge includes the list of
individuals contained in each table as well as their quasi-identifier values. However, as
all the released tables are �-diverse, the attacker cannot infer the individuals’ sensitive
attribute values with a significant probability. That is, the probability that an individ-
ual with a certain quasi-identifier has a particular sensitive attribute is bound to 1/�;
P (ST = s|QT = q) ≤ 1/�. Therefore, the goal of the attacker is to increase this
probability of attribute disclosure (i.e., above 1/�) by comparing the released tables all
together.

Comparing anonymized tables. Let us suppose that the attacker wants to know the
sensitive attribute of a particular individual, say Tom, whose quasi-identifier value is q.
There are two types of comparisons that may help the attacker: 1) comparison of table
̂Ti that does not contain Tom and table ̂Tj that does, and 2) comparison of ̂Ti and ̂Tj ,
that both contain Tom. In both cases, i < j. Let us call these types δ(¬ ̂Ti, ̂Tj) and
δ(̂Ti, ̂Tj), respectively. Note that in either case the attacker only needs to look at the
records that may relate to Tom. For instance, if Tom is a 57 years old, then records
such as 〈[10 − 20], F emale, F lu〉 would not help the attacker much. In order to find
records that may help, the attacker first finds from ̂Ti an equivalence class ei, where
q ⊆ ei[QT ]. In the case of δ(¬ ̂Ti, ̂Tj), the attacker knows that Tom’s record is not in
ei; thus, none of the records in ei corresponds to Tom. Although such information may
not seem useful, it could help the attacker as he may be able to eliminate such records
when he looks for Tom’s record from ̂Tj . In the case of δ(̂Ti, ̂Tj), however, the attacker
knows that one of the records in ei must be Tom’s. Although he cannot identify Tom’s
record or infer his sensitive attribute at this point (as ei must contain at least � number of
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Ti 

Tj 

ei1 ei2 ei3 

ej2 ej3 ej4 

(i) (ii) (iii) 

Age 

Age 

ej1 

Fig. 5. Compatible equivalence classes

records that are all indistinguishable to each other and also at least � number of distinct
sensitive attribute values), this could be useful information when he examines ̂Tj .

After obtaining ei, the attacker needs to identify in ̂Tj the records that possibly cor-
respond to the records in ei, that is, equivalence class(es) that are compatible to ei.

Definition 6. (Compatibility) Let Q = {q1, . . . , qm} be a set of quasi-identifier at-
tributes. Let e[qi] be the qi-value of an equivalence class e, where qi ∈ Q. We say that
two equivalence classes ea and eb are compatible with respect to Q if and only if any
of the following conditions holds.

1. ∀qi ∈ Q, ea[qi] = eb[qi]: the quasi-identifer values of ea and eb are identical to
each other; we denote it as ea

∼= eb.
2. ea � eb and ∀qi ∈ Q, ea[qi] ⊆ eb[qi]: the quasi-identifer value of eb is a more

generalized form of the quasi-identifier of ea; we denote it as ea ≺ eb.
3. ea � eb, ea ⊀ eb, and ∀qi ∈ Q, ea[qi] ∩ eb[qi] �= ∅: the quasi-identifier values of

ea and eb overlap with each other; we denote it as ea � eb. �

Example 3. Consider Fig. 5, where the records of two tables Ti and Tj are spatially
represented along the dimension of the quasi-identifier, Age. For simplicity, we do not
show their sensitive attribute values. Table Ti contains six records (shown as ‘�’), and
its 2-diverse version, ̂Ti, consists of three equivalence classes, ei1, ei2, and ei3. On the
other hand, table Tj contains four additional records (shown as ‘♦’), and its 2-diverse
version, ̂Tj , consists of four equivalence classes, ej1, ej2, ej3, and ej4. Given ̂Ti and
̂Tj , the following compatible equivalences can be found.

1. ei1 ∼= ej1 (Fig. 5 (i))
2. ei2 ≺ ej2 (Fig. 5 (ii))
3. ei3 � ej3 and ei3 � ej4 (Fig. 5 (iii))

The fact that two equivalence classes are compatible implies that there exist some
records present in both equivalence classes, although their quasi-identifiers may have
been modified differently. In what follows, we show how matching such records be-
tween compatible equivalence classes could enable the attacker to make high probabil-
ity inferences.
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Inference channels between compatible equivalence classes. As previously discussed,
there are three cases of compatible equivalence classes. We now examine these cases
in conjunction with each of δ(¬ ̂Ti, ̂Tj) and δ(̂Ti, ̂Tj), illustrating how the attacker may
infer Tom’s sensitive attribute, sT .

1. ei
∼= ej or ei ≺ ej: In these cases, the attacker can reason that all the records in

ei must also appear in ej , and the attacker only needs to look at the sensitive at-
tribute values. Let ei[S] and ej [S] be the multisets (i.e., duplicate-preserving sets2)
of sensitive attribute values in ei and ej , respectively.

(a) In the case of δ(¬ ̂Ti, ̂Tj), the attacker knows that Tom’s sensitive attribute
value is not in ei[S], but in ej [S]; i.e., sT /∈ ei[S] and sT ∈ ej [S]. As he
knows that all the values in ei[S] must also appear in ej[S], he can conclude
that sT ∈ (ej[S] \ ei[S]). Therefore, the attacker can infer sT with a proba-
bility greater than 1/� if (ej[S] \ ei[S]) contains less than � number of distinct
values.

(b) In the case of δ( ̂Ti, ̂Tj), sT ∈ ei[S] and sT ∈ ej [S]. However, as both sets are
�-diverse, the attacker does not gain any additional information on sT .

2. ei � ej1 and ei � ej2
3: In this case, the attacker reasons that the records in ei

must appear in either ej1 or ej2. Moreover, as the attacker knows Tom’s quasi-
identifier is q, he can easily determine which of ej1 and ej2 contains Tom’s record.
Let us suppose ej1 contains Tom’s record; i.e., q ⊆ ej1[QT ]. Let ei[S], ej1[S],
and ej2[S] be the multisets of sensitive attribute values in ei, ej1, and ej2,
respectively.

(a) In the case of δ(¬ ̂Ti, ̂Tj), the attacker knows that Tom’s sensitive attribute
value is included in neither ei[S] nor ej2[S], but in ej1[S]; i.e., sT /∈ ei[S],
sT /∈ ej2[S], and sT ∈ ej1[S]. Note that unlike the previous cases, he cannot
simply conclude that sT ∈ (ej1[S] \ ei[S]), as not all the records in ei are in
ej1. However, it is true that Tom’s record is in ej1 ∪ ej2, but not in ei; thus
sT ∈ (ej1[S] ∪ ej2[S]) \ ei[S]. As Tom’s record must be in ej1, the attacker
can finally conclude that sT ∈ ((ej1[S] ∪ ej2[S]) \ ei[S]) ∩ ej1[S]. Therefore,
if this set does not contain at least � distinct values, the attacker can infer sT

with a probability greater than 1/�.
(b) In the case of δ(̂Ti, ̂Tj), the attacker knows that Tom’s sensitive attribute value

appears in both ei[S] and ej1[S]. Based on this knowledge, he can conclude that
(sT ∈ ei[S] ∩ ej1[S]). Thus, attacker can infer sT with a probability greater
than 1/� if (ei[S] ∩ ej1[S]) contains less than � distinct values.

We summarize our discussion on possible inference-enabling sets in Fig. 6. Intu-
itively, a simple strategy that prevents any inference is to ensure that such sets are all
�-diverse. Note that with current static anonymization techniques, this could be a daunt-
ing task as inference channels may exist in every equivalence class and also with respect

2 Therefore, set operations (e.g., ∩, ∪, and \) used in our discussion are also multiset operations.
3 It is possible that �Tj contains more than two equivalence classes that are compatible to ei.

However, we consider two compatible equivalence classes here for simplicity.
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ei
∼= ej ei ≺ ej ei � ej1 and ei � ej2

δ(¬�Ti, �Tj) ej [S] \ ei[S] ej [S] \ ei[S] ((ej1[S] ∪ ej2[S]) \ ei[S]) ∩ ejk[S], k = 1, 2
δ(�Ti, �Tj) ei[S], ej [S] ei[S], ej [S] ei[S] ∩ ejk[S], k = 1, 2

Fig. 6. Summary of inference-enabling sets

to every previously released dataset. In the following section, we address this issue by
developing an efficient approach to preventing inferences during data anonymization.

4 Secure Anonymization

In this section, we present an approach to securely anonymizing a dataset based on pre-
viously released datasets. We first describe a simple �-diversity algorithm and propose
a novel quality metric that measures the amount of data distortion in generalized data.
Based on the algorithm and the quality metric, we then develop an approach where new
records are selectively inserted to a previously anonymized dataset while preventing
any inference.

4.1 �-Diversity Algorithm and Data Quality

Data anonymization can be considered a special type of optimization problem where
the cost of data modification must be minimized (i.e., the quality of data must be maxi-
mized) while respecting anonymity constraints (e.g., k-anonymity or �-diversity). Thus,
the key components of anonymization technique include generalization strategy and
data quality metric.

�-diversity algorithm. In [16], Machanavajjhala et al. propose an �-diversity algorithm
by extending the k-anonymity algorithm in [13] to ensure that every equivalence class
is �-diverse. In this paper, we present a slightly different �-diversity algorithm which
extends the multidimensional approach described in [14]. The advantage of the multidi-
mensional approach is that generalizations are not restricted by pre-defined generaliza-
tion hierarchies (DGH) and thus more flexible. Specifically, the algorithm consists of the
following two steps. The first step is to find a partitioning scheme of the d-dimensional
space, where d is the number of attributes in the quasi-identifier, such that each partition
contains a group of records with at least � number of distinct sensitive attribute values.
In order to find such a partitioning, the algorithm recursively splits a partition at the me-
dian value (of a selected dimension) until no more split is allowed with respect to the
�-diversity requirement. Then the records in each partition are generalized so that they
all share the same quasi-identifier value, thereby forming an equivalence class. Com-
pared to the technique based on DGH in [16], this multidimensional approach allows
finer-grained search and thus often leads to better data quality.

Data quality metric. The other key issue is how to measure the quality of anonymized
datasets. To date, several data quality metrics have been proposed for k-anonymous
datasets [3,10,14,11,21]. Among them, Discernibility Metric (DM) [3] and Average
Equivalence Class Size Metric [14] are two data quality metrics that do not depend
on generalization hierarchies. Intuitively, DM measures the effect of k-anonymization
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Fig. 7. Generalization and data distortion

process by measuring how much records are indistinguishable from each other. How-
ever, DM does not consider the actual transformation of data values. For instance, sup-
pose that there are more than k records that already have the identical quasi-identifer
value and that they are all in the same equivalence class. Even though these records are
not generalized at all, DM penalizes each of these un-generalized records. The same
issue arises for the average equivalence class size metric, which measures the quality of
anonymization directly based on the size of the equivalence classes.

To address this shortcoming, we propose a data quality metric that captures the
amount of data distortion by measuring the expansion of each equivalence class (i.e., the
geometrical size of each partition). For instance, consider Fig. 7 (i), where the records
are spatially represented in 2-dimensional space for quasi-identifier, {Age, Weight}. In
the figure, the dotted regions group the records into two 3-diverse equivalence classes,
e1 and e2. Note that as all the records in an equivalence class are modified to share the
same quasi-identifer, each region indeed represents the generalized quasi-identifier of
the records contained in it. For instance, the generalized records in e1 may share the
identical quasi-identifier 〈[a1 − a2], [w1 − w2]〉. Thus, data distortion can be measured
naturally by the size of the regions covered by equivalence classes. Based on this idea,
we now define a new data quality metric, referred to as Information Loss metric (IL) as
follows.

Definition 7. (Information loss) Let e = {r1, . . . , rn} be an equivalence class where
QT = {a1, . . . , am}. Then the amount of data distortion occurred by generalizing e,
denoted by IL(e), is defined as:

IL(e) = |e| ×
∑

j=1,...,m
|Gj |
|Dj |

where |e| is the number of records in e, and |Dj | represents the domain size of attribute
aj . |Gj | represents the amount of generalization in attribute aj (e.g., the length of an
interval which contains all the attribute values existing in e). �

4.2 Updates of Anonymized Datasets

As previously described, our goal is to produce an up-to-date anonymized dataset by
inserting new records into a previously anonymized dataset. Note that in our discussion
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below, we assume that all �-diverse tables are maintained internally as partitioned, but
unmodified tables. That is, each �-diverse table consists of a set of equivalent groups,
{e1, . . . , em}, which contain un-generalized records. This is a practical assumption as
generating actual �-diverse records for publication from a partitioned table is a relatively
simple task. Consequently, given such a partitioned table and a new set of records, our
insertion algorithm produces a new partitioned table which includes the new records.

Suppose that an anonymized table ̂T , which is an �-diverse version of a private ta-
ble T , has been published. Suppose that at a later time, a new set of records R =
{r1, . . . , rn} has been inserted into T . Let us denote the updated T as T ′. Intuitively, a
new �-diverse version ̂T ′ can be generated by inserting R into ̂T . The key requirements
for such insertions are: 1) ̂T ′ must be �-diverse, 2) the data quality of ̂T ′ should be
maintained as high as possible, and 3) ̂T ′ must be inference-free.

We now briefly describe such an insertion algorithm which ensures the first two
requirements. A key idea is to insert a record into a “closest” equivalence class so that
the necessary generalization is minimized. For instance, let us revisit Fig. 7, which (i)
depicts six records partitioned into two 3-diverse equivalence classes, and (ii) shows
revised equivalence classes after record r is inserted. Observe that as r is inserted into
e1 resulting in e′1, the information loss of the dataset is increased by IL(e′i) − IL(ei).
However, if r were inserted into e2, then the increase of the information would have
been much greater. Based on this idea, we devise an insertion algorithm that ensures
high data quality as follows.

1. (Add) If a group of records in R forms an �-diverse equivalence class which does
not overlap with any of existing equivalence classes, then we can simply add such
records to ̂T as a new equivalence class.

2. (Insert) The records which cannot be added as a new equivalence class must be in-
serted into some existing equivalence classes. In order to minimize the data distor-
tion in ̂T ′, each record ri is inserted into equivalent group ej in ̂T which minimizes
IL(ej ∪ {ri}) − IL(ej).

3. (Split) After adding or inserting all the records in R into ̂T , it is possible that
the number of distinct values in some equivalence class exceeds 2�. If such an
equivalence class exists, then we may be able to split it into two separate equiva-
lence classes for better data quality. Note that even if an equivalence class is large
enough, splitting it may or may not be possible, depending on how the records are
distributed in the equivalence class.

Clearly, the algorithm above do not consider the possibility of inference channels at
all. In the following section, we enhance this algorithm further to ensure that an updated
dataset does not create any inference channel.

4.3 Preventing Inference Channels

In Section 3, we discussed that in order to prevent any inference channel, all the
inference-enabling sets (see Fig. 6) must be �-diverse. We now discuss how to enhance
our unsecure insertion algorithm to ensure such sets are all �-diverse. Specifically, we
examine each of three major operations, add, insert, and split, and describe necessary
techniques to achieve inference-free updates.
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Clearly, the add operation does not introduce any inference channel, as it only adds
new �-diverse equivalence classes that are not compatible to any previously released
equivalence class. However, the insert operation may introduce inference channels (i.e.,
ej [S] \ ei[S]). That is, if the new records inserted into an equivalence class contain less
than � number of distinct sensitive values, then the equivalence class becomes vulnera-
ble to inference attacks through δ(¬ ̂Ti, ̂Tj). Thus, such insertions must not be allowed.
In order to address this issue, we modify the insertion operation as follows. During
the insertion phase, instead of inserting records directly to equivalence classes, we in-
sert records into the waiting-lists of equivalence classes. Apparently, the records in a
waiting-list can be actually inserted into the corresponding equivalence class if they are
�-diverse by themselves; until then, they are suppressed from the anonymized dataset.
Note that as more records are continuously inserted into the table (and into the waiting-
lists), for most records, the waiting period would not be too significant. However, to
expedite the waiting period, we also check if the records in the waiting-lists can be
added as an independent equivalence class which does not overlap with any other exist-
ing equivalence class.

There are two kinds of possible inference channels that may be introduced when an
equivalence class ei is split into ej1 and ej2. The first possibility is: ((ej1[S]∪ ej2[S]) \
ei[S]) ∩ ejk[S], k = 1, 2. Clearly, if such sets are not �-diverse, then they become vul-
nerable to inference attacks through δ(¬ ̂Ti, ̂Tj). Thus, the condition must be checked
before splitting ei. The other possible inference channel is: ei[S] ∩ ejk[S], k = 1, 2.
This implies that if there are not enough overlapping sensitive values between the orig-
inal equivalence class and each of the split equivalence classes, then split equivalence
classes become vulnerable to inference attacks through δ(̂Ti, ̂Tj). Thus, unless such
condition is satisfied, ei must not be split. The tricky issue in this case is, however,
that inference channels may exist between any of the compatible equivalence classes
that were previously released. For instance, if there exists equivalence class e′i that was
released before ei, then the splitting condition must be satisfied with respect to e′i as
well. This means that the system needs to maintain the information about the previous
releases. Although this approach leads to extra computational overhead, it is necessary
to maintain data privacy. In order to facilitate this, we store such information for each
equivalence class; that is, each equivalence class keeps the information about its pre-
vious states. Note that it does not require a huge storage overhead, as we need to keep
only the information about the sensitive attribute (not all the records). We also purge
such information when any previous equivalence class becomes no longer compatible
to the current equivalence class.

Clearly, inference preventing mechanisms may decrease the quality of anonymized
data. Although it is a drawback, it is also the price to pay for better data privacy.

5 Experimental Results

In this section, we describe our experimental settings and report the results in details.

Experimental setup. The experiments were performed on a 2.66 GHz Intel IV proces-
sor machine with 1 GB of RAM. The operating system on the machine was Microsoft
Windows XP Professional Edition, and the implementation was built and run in Java
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2 Platform, Standard Edition 5.0. For our experiments, we used the Adult dataset from
the UC Irvine Machine Learning Repository [18], which is considered a de facto bench-
mark for evaluating the performance of anonymization algorithms. Before the experi-
ments, the Adult data set was prepared as described in [3,11,14]. We removed records
with missing values and retained only nine of the original attributes. In our experiments,
we considered {age, work class, marital status, occupation, race, gender, native coun-
try, salary} as the quasi-identifier, and education attribute as the sensitive attribute.

For the experiments, we implemented three different �-diversity approaches: Static
I, Static II, and Dynamic. Static I is an approach where the entire dataset is anonymized
whenever new records are inserted, while Static II anonymizes new records indepen-
dently and merges the result with the previously anonymized dataset. Dynamic im-
plements our approach, where new records are directly inserted into the previously
anonymized dataset while preventing inference channels.

Vulnerability. The first question we investigated was how vulnerable datasets were
to inferences when they were statically anonymized (i.e., Static I). In the experiment,
we first anonymized 10K records and generated the first “published” dataset. We then
generated twenty more subsequent datasets by anonymizing 1,000 more records each
time. Thus, we had the total of twenty-one �-diverse datasets with different sizes ranging
from 10K to 30K. After obtaining the datasets, we examined the inference-enabling sets
existing between the datasets. For instance, we examined the inference-enabling sets of
the 12K-sized dataset with respect to the 10K- and 11K-sized datasets. Whenever we
found an inference channel, we counted how many records were vulnerable by it. Fig. 8
shows the results where � = 5, 7. As expected, more records become vulnerable to
inferences as the size of dataset gets larger; for the 30K-sized dataset with � = 7, about
8.3% of records are vulnerable to inferences. Note that there were no vulnerable records
in datasets generated by Static II and Dynamic.

Data Quality. Next, we compared the data quality resulted by Static I, Static II, and
Dynamic. For each approach, we generated different sizes of �-diverse datasets, rang-
ing from 1K to 30K, with increment of 1,000 records. For the data quality measure, we
used the average cost of IL metric (described in Section 4.1). That is, the quality of an
anonymized dataset ̂T was computed as:

∑

e∈E IL(e) / |̂T |, where E is a set of all

equivalence classes in ̂T . Intuitively, this measure indicates the degree to which each
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record is generalized. Our experiment results are shown in Fig. 9. Although Dynamic
results in lower data quality when compared to Static I, it produces much higher qual-
ity data than Static II. Moreover, the quality is maintained regardless of the data size.
Fig. 10 shows the number of suppressed records in Dynamic approach. Note that each
number shows the total number of suppressed records with respect to the entire dataset.
For instance, when � = 5, only 421 records needed to be suppressed for the 30K-sized
dataset.

Execution Time. Fig. 11 shows the execution times of anonymizing various sizes of
datasets. As shown, the execution time of Static I increases linearly with respect to the
size of the dataset, while Static II and Dynamic produce anonymized datasets almost
constantly. Note that in the cases of Static II and Dynamic, the reported numbers are
the total execution times which include the management of waiting-lists.

6 Related Work

In this section, we briefly survey existing literature that addresses data privacy. Instead
of providing a comprehensive survey, we discuss various aspects of data privacy. Note
that we do not include the k-anonymity or �-diversity work here as detailed discussion
can be found in Section 2.

Ensuring privacy in published data has been a difficult problem for a long time, and
this problem has been studied in various aspects. In [12], Lambert provides informa-
tive discussion on the risk and harm of undesirable disclosures and discusses how to
evaluate a dataset in terms of these risk and harm. In [4], Dalenius poses the problem
of re-identification in (supposedly) anonymous census records and firstly introduces
the notion of “quasi-identifier”. He also suggests some ideas such as suppression or
encryption of data as possible solutions.

Data privacy has been extensively addressed in statistical databases [1,5], which pri-
marily aim at preventing various inference channels. One of the common techniques is
data perturbation [15,17,23], which mostly involves swapping data values or introduc-
ing noise to the dataset. While the perturbation is applied in a manner which preserves
statistical characteristics of the original data, the transformed dataset is useful only for
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statistical research. Another important technique is query restriction [6,8], which re-
stricts queries that may result in inference. In this approach, queries are restricted by
various criteria such as query-set-size, query-history, and partitions. Although this ap-
proach can be effective, it requires the protected data to remain in a dedicated database
at all time.

Today’s powerful data mining techniques [7,9,19] are often considered great threats
to data privacy. However, we have recently seen many privacy-preserving data mining
techniques being developed. For instance, Evfimievski et al. in [2] propose an algorithm
which randomizes data to prevent association rule mining [20]. There has also been
much work done addressing privacy-preserving information sharing [24,2], where the
main concern is the privacy of databases rather than data subjects.

7 Conclusions

In this paper, we presented an approach to securely anonymizing a continuously grow-
ing dataset in an efficient manner while assuring high data quality. In particular, we
described several inference attacks where attacker tries to undermine the imposed pri-
vacy protection by comparing a multiple number of anonymized datasets. We analyzed
various inference channels and discussed how to avoid such inferences. We also in-
troduced Information Loss (IL) metric, which measures the amount of data distortion
caused by generalization. Based on the discussion on inference channels and IL metric,
we then developed an algorithm that securely and efficiently inserts new records into an
anonymized dataset while assuring high data quality.
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