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ABSTRACT
Advances in information technology, and its use in research, are
increasing both the need for anonymized data and the risks of poor
anonymization. We present a metric, δ-presence, that clearly links
the quality of anonymization to the risk posed by inadequate anony-
mization. We show that existing anonymization techniques are in-
appropriate for situations where δ-presence is a good metric (specif-
ically, where knowing an individual is in the database poses a pri-
vacy risk), and present algorithms for effectively anonymizing to
meet δ-presence. The algorithms are evaluated in the context of
a real-world scenario, demonstrating practical applicability of the
approach.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Statistical Databases;
K.4.1 [Public Policy Issues]: Privacy

General Terms
Algorithms, Security, Legal Aspects

Keywords
k-anonymity, privacy, delta presence, medical databases

1. INTRODUCTION
The increasing ability to collect, manage, and share information

is raising every-increasing privacy concerns. This poses a challeng-
ing tradeoff between the value (both to society, and to individuals)
from the knowledge available from ubiquitous, shared information,
and the risk to individuals posed by disclosure and misuse of pri-
vate data.

One solution to this problem is anonymity: ensuring that dis-
closed data cannot be linked to the individual whom the data is
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about. The European Community Directive 95/46/EC protects ‘per-
sonal data’:

‘personal data’ shall mean any information relating to
an identified or identifiable natural person (‘data sub-
ject’); an identifiable person is one who can be identi-
fied, directly or indirectly, in particular by reference to
an identification number or to one or more factors spe-
cific to his physical, physiological, mental, economic,
cultural or social identity;

This lends credence to using anonymity to protect privacy. The
United States Healthcare Information Portability and Accountabil-
ity Act (HIPAA) [7] protects ‘individually identifiable data’, and
allows disclosure of data that has been de-identified. But what does
it mean to be ‘de-identified’?

Health information that does not identify an individual
and with respect to which there is no reasonable basis
to believe that the information can be used to identify
an individual is not individually identifiable health in-
formation.

How do we interpret these rules with respect to anonymity? Is
it enough to say that if we cannot positively identify a record as
belonging to an individual, it is suitably anonymous? What if we
can identify the individual with 90% probability? The U.S. HIPAA
rules do give some guidance: if someone applying generally ac-
cepted statistical and scientific principles “determines that the risk
is very small that the information could be used, alone or in com-
bination with other reasonably available information, by an antici-
pated recipient to identify an individual who is a subject of the in-
formation”. While this could be interpreted as data is de-identified
if the recipient could not be absolutely certain a record applied to
an individual, the regulations give further guidance suggesting that
de-identification can be accomplished by removing not only identi-
fying numbers/names/images, but also geographic information that
limits granularity to less than 20,000 individuals or dates more spe-
cific than the year. This implies that identification with high prob-
ability, even if less than 100%, would probably not be considered
suitably de-identified.

An alternative view is to look at the risk posed by disclosure
of information. It is easy to see that anonymity is not enough;
for example, suppose we use k-anonymity to protect data [15, 16].
This says that knowing identifying information about an individual,
there are at least k records in the database that could (with equal
probability) refer to that individual. However, suppose that those
records also include sensitive information, e.g., if an individual is
diabetic. If all k individuals share the same value for the sensitive
information (e.g., all are diabetic), then k-anonymity provides no
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protection against disclosure of that fact. This has lead to alternate
approaches, such as discernibility [8] / l-diversity [12]. However,
it is still difficult to answer the question, “is the data anonymous
enough?”

This paper looks at a basic, and yet common and practical, prob-
lem: the risk is simply from identifying that an individual is (or is
not) in an anonymized dataset. This could occur when there is a de-
sire to publish a dataset to support research on a specific condition,
but identifying individuals meeting that condition is damaging. Ex-
amples could range from counter-terrorism, publishing a database
containing information about suspected terrorist groups to support
research in automated support for discoverying terrorism; to med-
ical research, such as a database of patients with a particular type
of cancer. In both cases, identifying that an individual is present in
the database is damaging, both to the individual, and in the terror-
ism example by disclosing to real terrorist groups that their “cover
organization” is suspect (or not suspected).

The basic idea is that anonymizing such a database should mean
that a recipient of the database should not be able to identify any
individual as being in that database with certainty greater than δ.
This is actually the primary value of anonymization; anonymiz-
ing to protect against linking an individual with sensitive data in
the released dataset can be done just as effectively without anony-
mization [17]. As we shall see, this δ-presence measure has the
nice property that it can be interpreted in terms of increased risk
of disclosure. This enables a meaningful bridge between human-
understandable policy and mathematically sound standards for ano-
nymity. Another, perhaps surprising, outcome is that the k-anony-
mity approach is a bad way to meet this standard; requiring a sub-
stantial and unnecessary loss of detail in the anonymized data. We
present other approaches that meet the standard while providing
much greater detail / value in the disclosed data.

1.1 Example: Diabetes
During the paper, we will use the “medical research dataset”

problem as a running example. Diabetes is an expensive and wi-
despread health problem, representing 11% of U.S. health care ex-
penditures [13]. Of note is that people with diabetes have medical
expenditures 2.4 times the expenditures if they did not have dia-
betes [1]; under the “employer pays” system used at most large U.S.
companies, this would certainly be an incentive for an employer to
(illegally) discriminate against hiring someone with diabetes. As
we can see, it is clear that there is both great value in making data
available to support research on diabetes, and a clear need to protect
the individuals in such data.

Take the Diabetes dataset from the UCI machine learning repos-
itory [6] as an example. This contains data on 70 patients. What
is a reasonable risk of identifying an individual as being in this
dataset? At first glance, we might say that we don’t want an ad-
versary to be able to identify with certainty greater than a random
guess: 70/260,000,000 (the size of the dataset divided by the num-
ber of individuals in the U.S. in 1994), or 0.000027%. However, if
we look at the larger problem we realize that the risk is identifying
that an individual has diabetes. As 7% of the U.S. population has
diabetes [13], even without the anonymized dataset an adversary
would know the probability that an individual has diabetes is much
greater than 0.000027%. The real question is, how much could
the anonymized database improve the adversary’s estimate of the
probability that an individual has diabetes? The “no better than a
random guess” standard is clearly too conservative.

We now give background and notations used in the paper, fol-
lowed by the formal definition of δ-presence. In Section 4 we
will evaluate the increase in risk posed by a given belief that an
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Figure 1: DGH structures

individual is or is not in the database. This increase in risk is an
appropriate metric for setting policy, and can be mapped back to
pick a meaningful value of δ that satisfies the policy. Section 5
gives an example of why k-anonymity and related techniques are
not appropriate solutions. We give two algorithms for anonymiz-
ing a database to achieve δ-presence in Section 6; demonstrating
different approaches and why each might be appropriate for differ-
ent purposes. Section 7 gives a set of experiments showing how
k-anonymity and the algorithms of Section 6 affect the quality of
data in achieving δ-presence. We conclude with a discussion of
future work in this area.

2. BACKGROUND AND NOTATION
Before formalizing the problem of hiding presence of individual

from a given database, we give some basic notation and review the
original k-anonymity framework.

Given a dataset (table) T , T [c][r] refers to the value of column
c, row r of T . T [c] refers to the projection of column c on T and
T [.][r] refers to selection of row r on T (the rth tuple or record).

DEFINITION 1 (GENERALIZATION FUNCTION).
Given a data value v, a generalization function ψ returns the set of
all generalizations of v.

Although there are many ways to generalize a given value, in this
paper, we will stick to generalizations according to DGH structures
given in Figure 1. (e.g., ψ(USA) = {USA, N. America, America,
*}) We will also write, for tuples t and t∗, t∗ ∈ ψ(t) when t∗[i] ∈
ψ(t[i]) for all possible index i.

DEFINITION 2 (TABLE GENERALIZATION). Given two ta-
bles T1 and T2, we say T2 is a generalization of T1 if and only if
|T1| = |T2| and records in T1, T2 can be ordered such a way that
T2[i][ j] ∈ ψ(T1[i][ j]) for every attribute i ∈ QI and for every possi-
ble index j. We say tuple t1 = T1[.][ j] is linked to tuple t2 = T2[.][ j]
and write (t2 ∈ T2) � (t1 ∈ T1).

In Tables 1-3, tables P∗1 , P∗2 and P∗3 are different generalizations
of table P. (The T tables will be discussed in Section 3, and should
be ignored for now.)

DEFINITION 3 (k-ANONYMITY). A table T ∗ is k-anonymous
w.r.t. a set of attributes QI if each record in T ∗[QI] appears at least
k times.
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Table 1: Public dataset P and research subset T
P

Publicly Known Data
Name Zip Age Nationality Sen.

a Alice 47906 35 USA 0
b Bob 47903 59 Canada 1
c Christine 47906 42 USA 1
d Dirk 47630 18 Brazil 0
e Eunice 47630 22 Brazil 0
f Frank 47633 63 Peru 1
g Gail 48973 33 Spain 0
h Harry 48972 47 Bulgaria 1
i Iris 48970 52 France 1

T
Research Subset

Zip Age Nationality
b 47903 59 Canada
c 47906 42 USA
f 47633 63 Peru
h 48972 47 Bulgaria
i 48970 52 France

(Initial “key” columns for clarity only; Sen. represents sensitive data not publicly known.)

Table 2: k-anonymization of Table 1
P∗1

Publicly Released Dataset
Zip Age Nationality Sen.

a 4* ≤ 40 * 0
d 4* ≤ 40 * 0
e 4* ≤ 40 * 0
g 4* ≤ 40 * 0

b 4* > 40 * 1
c 4* > 40 * 1
f 4* > 40 * 1
h 4* > 40 * 1
i 4* > 40 * 1

T ∗1
Research Subset

Zip Age Nationality

b 4* > 40 *
c 4* > 40 *
f 4* > 40 *
h 4* > 40 *
i 4* > 40 *

The idea behind this definition is the following; each record in
the private dataset contains publicly available information in some
attributes QI (quasi-identifiers). The values of these attributes can
be exploited to (almost uniquely) link those records to records in
other tables. The goal of k-anonymity is to limit an adversary’s
ability of linking a record from a set of released records to a spe-
cific individual. (E.g., for dataset P in Table 1, attributes Zip, Age,
Nationality can be considered as QI attributes. Attribute Sen. can
be considered as sensitive. Dataset P∗1 of Table 2 is a 4-anonymous
generalization of P. Note that by only seeing P∗1 , an adversary can
at best link a tuple <47906,35,USA>, Alice, to the tuples a,d,e,
and g of P∗1 .)

DEFINITION 4 (EQUIVALENCE CLASS). The equivalence
class of tuple t in dataset T ∗ is the set of all tuples in T ∗ with
identical quasi-identifiers to t.

In dataset P∗1 , the equivalence class for tuple a is {a,d,e,g}.
In this framework the adversary is presumed to have access to all

publicly known data (represented in a, possibly huge, public table
P) that links names to other set of attributes (e.g., day of birth, sex,
race.) When a data holder (e.g., a medical institution) releases a ta-
ble with sensitive information (disease attribute), the adversary can
match quasi-identifiers in both tables to discover unique links be-
tween records in the public and released table. k-anonymity limits
the linking ability of the adversary to groups of at least k records
by the use of table generalizations.

3. PRESENCE OF INDIVIDUALS IN DATA
Given that being linked to the research subset is a privacy risk,

we instantly see that releasing the research subset T is not ac-

ceptable; each individual can be uniquely linked with the publicly
known data. k-anonymization does not solve the problem – even
though T ∗1 is anonymized to a single group, someone who knows
the publicly known data in P can identify Bob, Christine, Frank,
Harry, and Iris as being in the research subset based on their age.
(This is because of the lack of �-diversity with respect to the sen-
sitive attribute that makes individuals candidates for the research
subset, but as we discuss in Section 5.2 this is not the entire prob-
lem.) We now give a definition for δ-presence, a metric to evaluate
the risk of identifying an individual in a table based on generaliza-
tion of publicly known data.

DEFINITION 5 (δ-PRESENCE). Given an external public ta-
ble P, and a private table T , we say that δ-presence holds for a
generalization T ∗ of T , with δ = (δmin,δmax) if

δmin ≤ P (t ∈ T | T ∗)≤ δmax ∀ t ∈ P

In such a dataset, we say that each tuple t ∈ P is δ-present in T .
Therefore, δ = (δmin,δmax) is a range of acceptable probabilities
for P (t ∈ T | T ∗). From now on, we assume T ⊆ P.

In Tables 1 and 3, dataset T ∗3 shows a ( 1
2 , 2

3 )-present general-
ization of T w.r.t. public dataset P. P (tuple a ∈ T | T ∗3 ) =
|{b,c, f}|

|{a,b,c,d,e, f}| = 1
2 . The same probability holds for tuples b,c,d,e,

and f . Probability for tuples g,h, and i is |{h,i}|
|{g,h,i}| =

2
3 .

We now briefly discuss some properties of δ-presence.

Anti-monotonicity.

DEFINITION 6 (NON-OVERLAPPING GENERALIZATION).
Given a public table P, private table T and a generalization T ∗ of
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T , we say T ∗ is non-overlapping w.r.t. P and T if and only if there
does not exist p ∈ P, t∗1 ,t∗2 ∈ T ∗ such that t∗1 �= t∗2 and t∗1 ∈ ψ(p),
t∗2 ∈ ψ(p)

In other words, a generalization is non-overlapping when a “real”
tuple can match at most one generalized tuple. In Tables 1, 2, and
3; datasets P∗1 , P∗2 , and P∗3 are non-overlapping generalizations of
P. Similarly T ∗1 and T ∗3 are such generalizations of T .

THEOREM 1. Given a public table P, private table T , a
non-overlapping generalization T ∗1 of T , and a non-overlapping
generalization T ∗2 of T ∗1 . If T ∗1 is (δmin,δmax) present w.r.t. P and
T then so is T ∗2 .

PROOF. T ∗1 is non-overlapping δ-present if and only if for every
distinct tuple p ∈ P;

δmin ≤ P (p ∈ T | T ∗1 ) =
C(p∗1,T ∗1 )

Σt | p∗1∈ψ(t)C(t,P)
≤ δmax

where C(t,T ) is the cardinality of tuple t in table T and p∗1 is the
tuple in T ∗1 with p∗1 ∈ψ(p). (There can exactly be one such distinct
tuple if δmin �= 0. Otherwise, if such a tuple does not exist, p∗1 is
the null tuple.) Let A(t ′) be the function for C(t ′,T ∗1 ) and similarly
B(t ′) = Σt | t ′∈ψ(t)C(t,P). Since T ∗2 is a non-overlapping general-
ization of T ∗1 , for every distinct tuple p ∈ P, P (p ∈ T | T ∗2 ) can be
calculated in terms of A and B;

C(p∗2,T
∗

2 ) = Σt∗1 | p∗2∈ψ(t∗1 )A(t∗1 )

Σt | p∗2∈ψ(t)C(t,P) = Σt∗1 | p∗2∈ψ(t∗1 )B(t∗1 )

where p∗2 is the tuple in T ∗2 with p∗2 ∈ ψ(p). Since x≤ a1
b1

, · · · , an
bn
≤

y implies x≤ a1+···+an
b1+···+b2

≤ y;

δmin ≤
Σt∗1 | p∗2∈ψ(t∗1 )A(t∗1 )

Σt∗1 | p∗2∈ψ(t∗1 )B(t∗1 )
=

C(p∗2,T
∗

2 )
Σt | p∗2∈ψ(t)C(t,P)

≤ δmax

Then T ∗2 is also δ present w.r.t. P, T .

COROLLARY 1. If T ∗2 is not δ present w.r.t. P and T then
neither is T ∗1 .

Ranges and Bounds. Given a dataset T ∗ which is a total sup-

pression of T we have P (t ∈T | T ∗) = |T |
|P| for any t ∈P. This means

T ∗ respects ( |T ||P| ,
|T |
|P| )-presence but does not respect (δ′min,δ

′
max)-

presence if |T ||P| < δ′min or δ′max <
|T |
|P| . Since T ∗ is a non-overlapping

generalization of any dataset T ∗g that, in turn, it is a non-overlapping
generalization of T , by anti-monotonicity property we have that
T ∗g does not respect (δ′min,δ

′
max)-presence neither. This means any

presence requirement (δmin, δmax) for a public dataset P and private

subset T should satisfy δmin ≤ |T ||P| ≤ δmax.

4. INFORMATION GAIN:
SELECTING A GOOD δ

The presence parameters δmin, δmax defines the level of trade-off
between the utility and privacy of the anonymized dataset. As δmin
increases (or δmax decreases), more information is hidden leading
to better privacy protection but poorer dataset utility. This means
that a maximal δmin and minimal δmax value should be selected
such that privacy conditions of the application are met. In this sec-
tion, we use the diabetes dataset example to demonstrate how to

bound probability of disclosure in ways that correspond to real risk
of misuse.

Let Ip be the event that person p has diabetes. Since the rate
of diabetes in all US population is public information [13], any
adversary will have a prior belief br on Ip given the public dataset
P:

br = P (Ip) = 0.07

The private dataset T is a subset of the set of all diabetes patients
in P. Seeing some anonymization T ∗ of T , attacker will have a
posterior belief bo on Ip:

bo = P (Ip | T ∗)
= P (Ip | p ∈ T ) ·P (p ∈ T | T ∗)+

P (Ip | p �∈ T ) ·P (p �∈ T | T ∗)
= 1 ·P (p ∈ T | T ∗)+

P (Ip) · |P|− |T |
|P|− |T | · (1−P (p ∈ T | T ∗))

= P (p ∈ T | T ∗) · |P| · (1−br)
|P|− |T | +

br · |P|− |T |
|P|− |T |

We start with an acceptable cost due to misuse. Assume a hiring
decision, and that a $100 annual difference in total cost of employee
is noise (difference in productivity, taking an extra sick day, salary
negotiation, etc.) Thus if expected annual cost of medical treatment
of diabetes based on misuse of the database is c < $100, the risk of
misuse is acceptably small. The total cost of diabetes per person is
around d = $10,000 [1]. The probabilistic acceptable misuse, am,
is then c

d = 1
100 ; we must ensure:

bo ·d−br ·d ≤ c

bo−br ≤ am

P (p ∈ T | T ∗) · (1−br)|P|
|P|− |T | +

br |P|− |T |
|P|− |T | −br ≤ am

P (p ∈ T | T ∗) ≤ am · |P|+(1−am−br)|T |
(1−br)|P|

Letting |T | 	 0.04|P| as in our experiments and applying the
above numbers, we get:

P (p ∈ T | T ∗) � 0.05

This gives us the minimum δmax parameter to protect against
substantial misuse when hiring a single job applicant. However
the upper bound does not protect against misuse when compar-
ing two job applicant p1, p2. The reason is that in this setting,
an anonymization that gives bo = 0.032 for p1 (this happens when
P (p1 ∈ T | T ∗) � 0) and bo = br = 0.07 for p2 is perfectly okay,
which implies p2 is much more likely to have diabetes than p1.
We need to ensure that the company can’t “cherry-pick” employees
known not to be in the database. Thus the posterior belief should
not be arbitrarily low. If we let probabilistic acceptable misuse
am = 200

10000 = 0.02 then

br−bo ≤ am

P (p ∈ T | T ∗) ≥ −am · |P|+(1+am−br)|T |
(1−br)|P|

� 0.02
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This gives us a maximum δmin parameter.

5. RELATED WORK
In this section, we investigate possible solutions to the δ-presence

problem using previously proposed generalization-based privacy
methods. Throughout the section, we assume we have public dataset
P and private dataset T from Table 1, and we want to enforce a non-
overlapping ( 1

2 , 2
3 )-presence.

5.1 k-anonymity
By its definition, k-anonymity assumes all public tuples reside in

the private dataset so presence of a given public tuple is not an un-
known. (E.g., P(t ∈ T ) = 1 for any public t ∈ T .) This implies that
direct optimal k-anonymization approach (an optimal k-anonymity
algorithm, while providing anonymity, also minimizes a given cost
metric to maximize utility) is not suitable for the δ-presence prob-
lem and finding a suitable k parameter to provide presence may be
impossible. T ∗1 in Table 2 shows a non-overlapping 5-anonymization
of T that is optimal by the Loss (LM) and Discernibility (DM) met-
rics (discussed further in Section 7). T ∗1 violates ( 1

2 , 2
3 ) presence

(actually any presence with δmax < 1 is violated) since there are
only 5 tuples in P and T with age ‘> 40’ meaning every such tuple
is in T . (E.g., P(t[id = b] ∈ T ) = 1.) Since any optimal solution,
regardless of k, maps age column to value ‘> 40’ or a lesser granu-
larity, it turns out that optimal solutions for any k (based on gener-
alization) will not be ( 1

2 , 2
3 )-present for T . (k-anonymity methods

can give δ-presence, as we shall see in Section 7, but there is not a
direct relationship between k and δ.)

The above approach fails because public dataset P is not taken
into account in the anonymization process. A simple solution would
be to anonymize the public dataset P and assign the anonymization
mappings to tuples in private dataset T . This parametric anonymi-
zation technique (w.r.t. a given public dataset P), called weak k-
anonymity and proposed in [4] to reduce data distortion, still does
not necessarily provide presence property since it still does not take
into account which tuples are in T and which are not. P∗1 in Table 2
shows the optimal non-overlapping 4-anonymization of P w.r.t. LM
and DM metrics. The mapping in P∗1 , when applied to T , creates
T ∗1 which is not ( 1

2 , 2
3 )-present. Dataset P∗2 in Table 3 is an optimal

anonymization for k = 2 and k = 3 which is still not δ-present. The
only optimal k-anonymization that gives δ-presence in this example
is full suppression although there exist δ-present generalizations of
higher utility for P,T .

5.2 �-diversity
k-anonymization on public dataset P failed because it does not

enforce mixing of present and absent tuples inside any equivalence
class. One approach is to represent presence and absence informa-
tion in the Sen. attribute of P; this could be considered a sensitive
attribute. [12] is a related notion that extends the definition of k-
anonymity to enforce diversity among sensitive values of equiva-
lence classes. The most flexible variation of �-diversity is the re-
cursive (c, �) diversity which enforce the rule; r1 ≤ c(r� + · · ·+ rm)
in every equivalence classes eq where ri is the ith frequent sensitive
value in eq and m is the total number of distinct sensitive values
in eq. (Original definition of recursive diversity uses < in the en-
forced rule. Without loss of generality, we stick to ≤ version to
ease discussion) In our case, we only have 2 different sensitive val-
ues so m = 2 and � = 2 with c≥ 1 makes sense. So given n1 is the
number of tuples with Sen.:1 and n0 is the number of tuples with
Sen.:0 in a given equivalence class eq, the following constraints are

enforced for each eq;

r1
r2
≤ c

(
n1

n0
≤ c∧n1 ≥ n0) ∨ (

n0

n1
≤ c∧n0 > n1)

(
n1

n0
≤ c∧n1 ≥ n0) ∨ (

n1

n0
≥ 1

c
∧n0 > n1)

and for c≥ 1;

1
c
≤ n1

n0
≤ c (1)

For ( a1
b1

, a2
b2

) presence in non-overlapping anonymizations, the fol-
lowing constraints should be enforced for each equivalence class:

a1

b1
≤ n1

n1+n0
≤ a2

b2

b2

a2
≤ n1+n0

n1
≤ b1

a1

b2

a2
−1≤ n0

n1
≤ b1

a1
−1

b2−a2

a2
≤ n0

n1
≤ b1−a1

a1

a1

b1−a1
≤ n1

n0
≤ a2

b2−a2
(2)

There are two main reasons for why �-diversity is not suitable for
providing (δmin, δmax) presence. First is that the recursive (c, �)
diversity only has one parameter c to express the two parameter
(δmin,δmax)-presence. Second; recursive (c, �) diversity does not
distinguish between the values of sensitive attributes, that is Equa-
tion 1 is symmetric (e.g., if it is okay to have m tuples with Sen.:1
and n tuples with Sen.:0 in an equivalence class then it is also okay
to have n tuples with Sen.:1 and m tuples with Sen.:0.) Equation 2
is not symmetric for most values of δmin, δmax. This also makes it
impossible to fit a recursive (c, �) diversity constraint into even one
of the δ constraints.

Table 3 shows an example of this. Since the number of parame-
ters do not match, the best we can do is to match the bounds with
each other one at a time. To match the upper bound constraint
of presence (δmax = 2

3 ) with the upper bound constraint of diver-
sity, we need to set c = a2

b2−a2
where a2

b2
= 2

3 so c = 2. Table P∗2
shows an optimal recursive (2,2) diverse P. However this gener-
alization mapping does not create a corresponding ( 1

2 , 2
3 )-present

T generalization since for equivalence class of tuples d, e and f,
n1

n0+n1
= 1

3 ≤ (δmax = 1
2 ). If we match the lower bounds c = b1−a1

a1

where a1
b1

= 1
2 , we get c = 1. Since n1 > n0 in P, there does not

exist (2,1)-diverse non-overlapping generalization of P and conse-
quently there is no generalization mapping to enforce presence on
T . However dataset T has a ( 1

2 , 2
3 ) present generalization; T ∗3 .

�-diversity provides diversity on sensitive attributes, however we
require constraining the distribution of sensitive attributes. A more
flexible algorithm that will enforce Equation 2 will be introduced in
Section 6. Although this paper focuses on non-overlapping anony-
mizations; checking (δmin,δmax) presence on anonymizations con-
taining overlapping equivalence classes is much more difficult and
complex. In that case, equivalence classes will not be independent
and �-diversity would be irrelevant.

It should be noted that Equation 2 is the necessary and sufficient
condition for δ-presence property for non overlapping generaliza-
tions. So a direct cost-optimal approach to δ-presence that con-
straints non-overlapping generalizations with Equation 2 would be
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Table 3: P∗2 : (2,2) recursive diverse P; T ∗3 : ( 1
2 , 2

3 ) present T
P∗2

Public Dataset Sen.
Zip Age Nationality

a 4790* * N. America 0
b 4790* * N. America 1
c 4790* * N. America 1

d 4763* * S. America 0
e 4763* * S. America 0
f 4763* * S. America 1

g 4897* * Europe 0
h 4897* * Europe 1
i 4897* * Europe 1

P∗3
Public Dataset Sen.

Zip Age Nationality

a 47* * America 0
b 47* * America 1
c 47* * America 1
d 47* * America 0
e 47* * America 0
f 47* * America 1

g 48* * Europe 0
h 48* * Europe 1
i 48* * Europe 1

T ∗3
Research Subset

Zip Age Nationality

b 47* * America
c 47* * America
f 47* * America
h 48* * Europe
i 48* * Europe

an upper bound for any other approach (such as k-anonymity and
�-diversity) in terms of data utilization.

6. ALGORITHMS
We now introduce algorithms for achieving δ-presence. We first

give an optimal full-domain generalization algorithm; this works
under the constraint that if a value is generalized, all occurrence of
that value must be generalized. We then relax this restriction. (The
difference between these approaches is analogous to the difference
between the k-anonymization algorithms of [10] and [11].)

6.1 Single-Dimensional Presence Algorithm:
SPALM

In Theorem 1, we proved the monotonicity property of pres-
ence. This property can be used to create optimal (w.r.t. a precision
metric) and practical presence algorithms that make use of apriori-
style pruning on the universal candidate space. Such algorithms
were proposed in [15, 10, 12] for k-anonymity when only full do-
main generalization of datasets are allowed. In this subsection, we
present a similar algorithm SPALM that produces δ-present full-
domain generalizations and at the same time maximizes a given
precision metric. The following notations and definitions briefly
recall the problem setting:

For two values v∗,v of the same attribute Ai, we write v∗ = Δi(v)
if and only if v∗ is the immediate parent of v in the domain general-
ization hierarchy for Ai. To express greater levels of generalization,
for the nth generalization of v, we write Δn

i (v) = Δi(· · ·Δi
︸ ︷︷ ︸

n

(v) · · ·).

We say a table T ′ is a [g′1, · · · ,g′n] full domain generalization
of table T with set of attributes {A1, · · · ,An} if and only if for all
pairs of tuples t,t ′ such that (t ∈ T ) � (t ′ ∈ T ′); we have t ′[Ai] =
Δg′i

i (t[Ai]) for all 1 ≤ i ≤ n. Let T ′′ be a [g′′1 , · · · ,g′′n ] full domain
generalization of table T , We say T ′′ is a higher level generaliza-
tion than T ′ and write T ′′  T ′ if and only if T ′ �= T ′′ and g′i ≤ g′′i
for all 1 ≤ i ≤ n. For cost metrics proposed so far, a high level
generalization (e.g., T ′′) is more costly than a lower generalization
(e.g., T ′).

The possible full domain generalizations of table T form a lattice
on the relation. (see Figure 2.) To find a cost-optimal δ-present
(or k-anonymous) generalization, each generalization on the lattice
needs to be checked and the lowest cost δ-present dataset should be
identified. However the monotonicity or anti-monotonicity prop-
erty of presence can be used to prune the lattice and reduce the
search space. In contrast to previous k-anonymity algorithms, we
exploit only the anti-monotonicity property of presence and pro-

[0,0,0]

[0,0,1] [0,1,0] [1,0,0]

[0,0,2] [0,1,1] [1,0,1] [0,2,0] [2,0,0][1,1,0]

.

.

.

[5,3,3]

[4,3,3] [5,2,3] [5,3,2]

Figure 2: Full Domain Generalization Lattice

pose a top-down approach. (E.g., if T ′′ is not δ-present, neither
is T ′.) We observed that a top-down approach prunes much faster,
especially when the data is of high dimensionality and sparsely dis-
tributed (as in the experimental data used in coming section). No-
tice that, for very high dimensional spaces, optimal solutions for
k-anonymity (and therefore, optimal δ-presence) are subject to the
curse of dimensionality, as discussed in [2].

The following pseudo-code summarizes SPALM.

Algorithm 1 SPALM
Require: publicly available table P; private table T , a cost metric

COST;
Ensure: return minimum cost (δmin,δmax) present full domain

generalization of T .
1: insert sen. attribute into P according to T as in Table 1.
2: create lattice lat for all possible generalization mappings for

N. Let n be the number of levels in lat.
3: for all level i : 1−n do
4: for all node m in level i of lat do
5: create N∗; full domain generalization of N according to

mapping in m
6: if N∗ is not (δmin,δmax) present then
7: delete node m and all siblings and grandsiblings of m

from lat
8: return the least-cost generalization and the corresponding map-

ping among the generalizations being tested.
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SPALM, in the worst case, checks for δ-presence for every gen-
eralization mapping on the lattice. Given that the fully suppressed
table P∗ is a [g1, · · · ,gn] full domain generalization of the origi-
nal P, the number of nodes in the lattice is ∏n

i=1 gi. If no prun-
ing can be performed, the worst-case complexity of SPALM is
O(∏n

i=1 gi · |P|).

6.2 Multi-Dimensional Presence Algorithm:
MPALM

While the SPALM algorithm is an optimal algorithm, it relies
on single-dimensional generalizations, that is, if a value in a tu-
ple is generalized, then all such values in the table are generalized.
Clearly, if we relax this constraint, the search space is a superset
that may produce better optimal solutions. Although finding opti-
mal solutions in the multi-dimensional case may be infeasible, re-
cent work [11] shows that sub-optimal generalizations are likely to
give lower distortion than optimal single-dimension generalization.
Here we consider a sub-optimal multi-dimensional generalization
algorithm that provides δ-presence; we also propose a number of
heuristics to be evaluated in the experiments section.

Algorithm 2 MPALM
Require: publicly available table P; private table T
Ensure: return a (δmin,δmax)-present multi-dimensional general-

ization of T w.r.t P
1: Let Q be an empty queue of tables;
2: Let R be an empty set of tables;
3: enqueue(Q,P);
4: while Q is not empty do
5: Ti← dequeue(Q);
6: j← 0;
7: repeat
8: j++;
9: C← choose_column(Ti,T, j);

10: v← choose_value(Ti,T,C);
11: until v �= null or j = number_o f _columns(T )
12: if v �= null then {split column C on value v}
13: T<v

i ← {t ∈ Ti | t[C] < v}
14: T≥v

i ← {t ∈ Ti | t[C]≥ v}
15: enqueue(Q,T <v

i );
16: enqueue(Q,T≥v

i );
17: else {no δ-present split found}
18: R← R∪Ti;
19: for all Ti ∈ R do
20: return smallest bounding box of Ti∩T ;

Algorithm 2 describes MPALM, which allows a group of tuples
to be generalized while leaving other tuples with the same values in
their original state. Q is a queue containing the portions of the table
to be generalized further. Notice that at the beginning, it contains
P, not T . This is because the algorithm, during the generalization
step (lines 9–10), needs to consider tuples not in T to enforce δ-
presence. In the while loop (4–18), the algorithm extracts a table
Ti from Q and tries to partition the tuples into two partitions: the
former (line 13) containing tuples where the value of attribute C
is less than v, and the latter (line 14) with the remaining tuples.
Choosing C and v can be done arbitrarily, and leads to different
strategies. We considered 3 strategies for choosing the column and
3 strategies for choosing the threshold value as discussed below.

The output of MPALM is a set of smallest bounding boxes, one
for each Ti ∈ R. A bounding box is a rectangle if T has two col-
umns; a multidimensional cuboid in general, where each dimen-

sion represents a column of T . To be the smallest bounding box,
the cuboid must contain all the tuples in Ti and there must not be a
smaller one with the same property.

At each iteration, MPALM chooses a column to be split for tu-
ples in Ti. Columns where no splitting leads to δ-presence are
skipped, and the next one (according to the column strategy) will
be chosen. The δ-presence constraint can be verified on T , and
T ∩Ti is the set of tuples in Ti to be disclosed. This choice can be
done arbitrarily, but a good heuristic will improve data utility. The
strategies we considered are the following:

next (n) gives priority to the next column (by rotating through col-
umns);

priority (p) is a static user-defined priority. Columns with high
priority are less likely to be generalized since at each loop
the algorithm will try to split them. In Section 7, we used the
order in the dataset (adult), i.e., age, workclass, education,
marital-status, occupation, relationship, race, gender, native-
country;

best (b) selects the column with the largest number of attribute
values among tuples in Ti. This strategy tries to avoid gener-
alizing values with the most diversity.

Another degree of freedom in the MPALM algorithm is how to
choose the attribute value for splitting, once the column has been
chosen. We looked at three heuristics:

balanced cardinality (1) selects the value that minimizes |T<v
i −

T≥v
i | ;

first split (2) takes the first split encountered, i.e., 0 < |T<v
i | is

minimized. This strategy clearly produces unbalanced splits;

balanced attribute-values (3) is similar to (1), but chooses a
value v of a given column C s.t. |valuesC (T<v

i ) − valuesC

(T≥v
i )| is minimized, where valuesC (T ) is the number of

different attribute values for column C in table T .

The most computationally expensive part of MPALM is the inner
loop (repeat) of line 7–11, which is inside the outer loop (while)
4–18. For each set of tuples Ti extracted from the queue Q, the
heuristics choose_column and choose_value require |C| · |Ti| passes
in the worst case, where |C| is the number of columns of table T .
Thoroughly, we have ∑Ti∈Q |C| · |Ti| = |C|∑Ti∈Q |Ti| passes. The
sequence of Ti extracted from Q depends on data distribution and
the heuristics used to split data (after each split, subtables are en-
queued again until no further split on any column is possible.) Note
that the maximum number of split is given by |P|. For perfectly
balanced splits, we have a sequence of Ti coming out from the

queue of sizes |P|: |P|2 , |P|2 , then |P|4 four times, which adds up to
O(|P| log2 |P|). In this case, computational complexity of MPALM
is therefore O(|C||P| log2 |P|). Unbalanced splits give a queue Q of
Ti of size |P|, |P|−1,1, |P|−2,1, . . . , |P|− (|P|−1),1, which leads
to a worst case complexity of O(|C||P|2).

7. EXPERIMENTS
As has been learned with k-anonymization, the right way to ano-

nymize data can be very dependent on the data and purpose for
which it is to be used [14] We have presented two different ap-
proaches to enforcing δ-presence, with several variants of these ap-
proaches. We now compare those approaches on both simulated
and real data.
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Figure 3: Minimum needed and actual values of k for achieving δ-presence
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(b) Discernibility Metric - random dataset
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(c) Loss Metric - diabetes dataset
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Figure 4: k-anonymity vs. δ-presence algorithms
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We evaluate how varying δ affects the cost of anonymizing the
dataset, as determined by the Loss Metric (LM) [9] and the Dis-
cernibility Metric (DM) [5]. The LM measures the amount of gen-
eralization as a normalized information loss. For example, in Fig-
ure 1 generalizing “Canada” to “N. America” incurs a penalty of
2/6; to “America” gives a penalty of 4/6. The DM measures the
size of the induced equivalence classes. Each tuple is assigned a
cost based on the number of identical tuples in the anonymized
dataset. With k-anonymization, the penalty essentially captures
how much k is exceeded. This probably unfairly penalizes k-ano-
nymity, as it would be possible to generalize in a way that satis-
fies δ-presence while making each row in the anonymized dataset
unique, thus giving no DM-penalty.

The simulated dataset is created through random selection of a
4% subset of the UCI adult dataset [6]. The entire adult dataset
(specifically, the 45222 records with on unknowns) is considered
the “Universe”, a randomly selected subset of 1957 records is taken
as the dataset of individuals whose discovery in the dataset is to be
protected against.

For a more realistic test we also perform a biased selection sim-
ulating a database of individuals with diabetes; the selection is bi-
ased toward individuals with demographics matching those of ac-
tual diabetes patients (as given in [13].) Specifically, for each indi-
vidual we estimate their probability of being in the diabetes subset
based on independent probabilities for diabetes given age, race, and
gender as shown in [13]; this gives a dataset skewed towards peo-
ple with similar characteristics. (This is also the reason for 1957
records in the dataset, as this is the number obtained using these
statistics to guide selection.)

We evaluated several approaches to achieving δ-presence on these
datasets. As a baseline, we start with k-anonymity. This posed sev-
eral difficulties. First, what is the appropriate value of k? As dis-
cussed in Section 5.1, there is no direct mapping between δ and k,
even for the relatively simple case of δmin = 0. It is even possible
that for a given k, one anonymization may satisfy δ-presence and
another may not.

Figure 3 shows the minimum value of k needed to achieve vari-
ous values of δ through generalization as well as the actual size of
the smallest equivalence class when the anonymization algorithm
was run for that value of k (using an exhaustive search for the small-
est k such that the anonymization algorithm satisfied the given δ.)
This is done for two types of k-anonymization: an optimal single
dimensional anonymization in the style of [10] (i.e., if a value is
generalized, all occurrences of that value are anonymized), and a
heuristic multi-dimensional k-anonymization in the style of Mon-
drian [11] that relaxes this restriction. In some cases, the entire
dataset is anonymized (in effect suppressing all quasi-identifiers.)

For higher values of δmin (e.g., δ = (.04, .07)), no value of k sat-
isfied δ-presence. The problem is that while k-anonymity prevents
linking an individual to a record, it does not prevent excluding an
individual from matching a record.

Figure 4 shows the utility impact of using k-anonymity to achieve
δ-presence versus the algorithms of Section 6. (The MPALM num-
bers are for the n1 strategy, as this is the most analogous with k-
anonymity approaches.) In general, we see that the multi-dimen-
sional δ-presence algorithm gives significantly higher data utility as
judged by both loss and discernibility metrics (although in one case
the optimal single-dimensional optimization fares significantly bet-
ter.) Of note is that the multidimensional approach seems to have
trouble with the skewed dataset; more on this later.

We next compare several strategies for directly achieving δ-pres-
ence using the algorithms given in Section 6. Figures 5 and 6 high-
light the anonymization cost; we see that the multidimensional ap-
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Figure 9: k-anonymity vs. MPALM for the n2 strategy on the
diabetes dataset

proach achieves privacy with lower distortion of the dataset, partic-
ularly for larger values of δmax. This holds even though the single-
dimensional approach is finding the optimal anonymization given
the constraint that if a value is generalized, all occurrences of that
value are generalized. This demonstrates significant benefit to in-
creasing the flexibility of the generalization, as is done in the mul-
tidimensional case. (Similar results were obtained on the random
dataset, but are omitted due to space constraints.) In particular the
n2 strategy of rotating through columns and choosing the “first fit”
generalization appears effective.

Not only does the heuristic multi-dimensional generalization give
as good or better data utility than the optimal single-dimensional
generalization, it is also efficient. Figure 7 reports runtimes on
a 2.16GHz Intel Core 2 Duo. It may seem surprising that as the
amount of generalization required goes down, the computational
cost goes up. This makes sense when we consider that the search
space (number of generalizations meeting the δ-presence require-
ments) increases as we relax δ.

To better understand the effect of δmin and δmax on the distortion
of the dataset, we look more deeply into the n2 strategy in Figure
8. High values of δmin (i.e., preventing discovery that an individual
is not in the dataset) comes at a high price, particularly for the bi-
ased dataset. This is not surprising; the greater homogeneity of the
biased dataset makes it more likely that some individuals not in the
dataset would not be similar to any of the individuals in the dataset,
forcing a high level of generalization. Somewhat surprising is the
outcome of low δmin with low δmax or high δmin with high δmax with
the biased dataset. For a low probability that an individual is in the
dataset, the algorithm is giving better utility when it is forced to
ensure that individuals cannot be excluded from the dataset. Con-
versely, if individuals cannot be excluded from the dataset, better
results are achieved if individuals cannot be determined to be in
the dataset. This is an anomaly resulting from the heuristic nature
of the search, as from Definition 5 it is clear that a dataset satis-
fying (say) δ = (0.02,0.05) also satisfies δ = (0,0.05) Since this
anomaly doesn’t appear on the randomly selected data, we feel that
appropriate strategies for achieving δ-presence on skewed datasets
is a good challenge for future work.

Finally, we compare the n2 strategy with Mondrian-style k-ano-
nymity using the same strategy. Figure 9 shows that k-anonymity
still is not as effective at preserving data utility while preventing
disclosure that an individual is in a dataset.
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8. CONCLUSIONS AND FUTURE WORK
While k-anonymity and related techniques have received con-

siderable attention, it isn’t clear that it is the best way to balance
privacy and data utility [17]. We have presented a problem where
anonymization is an appropriate solution, and a metric δ-presence
correlates to the real risk/cost of a privacy violation. Datasets ano-
nymized directly to meet the δ-presence standard distort data less
than k-anonymization to comparable privacy levels.

Extending this work to linking with sensitive data in a disclosed
dataset, as with �-diversity, is straightforward (and could be eas-
ily accomplished using the technique of [17].) Other areas where
work is needed include investigating algorithms for achieving δ-
presence; the algorithms in Section 6 are given as an exploration of
the space rather than a “best solution”. It is also possible to design
δ-presence algorithms that guarantee bounds on optimality as it is
done for k-anonymity in [3]. Further development of δ-presence
will address a variety of real-world privacy issues that are not ade-
quately addressed by other methods.

δ-presence definition can be revisited by assuming a stronger
adversary with more background knowledge. It should be noted
that as adversary prior knowledge increases, the cost of disclo-
sure decreases and a cost-utility relation could be addressed (in-
stead of privacy-utility). In certain applications, where a public
dataset is not available but some statistical properties of the public
dataset (e.g., distribution of values, size, . . . ) is known, enforcing
δ-presence property becomes even more challenging. It is also pos-
sible to use randomization instead of generalizations on the private
dataset to provide δ-presence. (Authors are currently working on
a hybrid approach where generalization is done through probabil-
ity distributions.) In all these cases, more advanced bayesian or
statistical techniques would be required.
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Figure 5: Loss Metric cost for a variety of strategies on the simulated diabetes patient dataset
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Figure 6: Discernibility Metric cost for a variety of strategies on the simulated diabetes patient dataset
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Figure 7: CPU time for a variety of strategies on the simulated diabetes patient dataset
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Figure 8: Anonymization cost vs. various values of δmin and δmax for the MPALM n2 strategy
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