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Abstract

The resiliency of distributed database systems can

be realized through a collection of integrated fault-

tolerance mechanisms. These include clata replication

techniques, failure detection, failure isolation through

reconfiguration and adaptability, and non-blocking

atomic commitment. Collectively, these mechanism

enhance the availability and operability of the syste]n

in the presence of various types of site and commu-

nication failures. In this paper, we focus on mechan-

isms for data replication, failure detection, and re-

configuration. We present the implementation details

of each of these mechanisms along with their integra-

tion within the RAID system developed at Purdue.

Data replication is implemented through the partial

replication of data relations, and through the use of

a library of replication control methods. An on-line

replication control server (RC) provides highly avail-

able database operations through the adaptable use of

these methods. Failuredetection isirriplementedvi aa

reliable surveillance facility that rnonitorsthe changes

in system connectivity. Such failures include site and

communication failures as well as network partition.

Repairs andnetwork merges are also detected by this

facility, thus leading to the automatic initiation of re-

covery. We wilI show how failure isolation is achieved

through data and server reconfiguration and by the

adaptable use of replication methods.

1 Introduction

RAID [10, 6] 1 is a distributed clatabase systeln that

has been implemented to explore new fault-tolerant

schemes and adaptability policies that can achieve

high levels ofavailability and performance. In this pa-

per, we discuss the implementation of the RAID fault, -

tolerance mechanisms, including dat :~,replication, r%il-

lThe Purdue RAID and RAID-V2 systems are not related
to tlw concept of Ftedundent Array of Inexpensive C)is.ks.
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ure detection and surveillance, and data reconfigura-

tion. The empirical evaluation of these mechanisms

can be found in [8, 7, 19].

The immediate goal of replication in RAID is to in-

crease data, user, and system availability in presence

of failures. By maintaining multiple copies of data re-

lations, some copies of the database remain available

even though the system has suffered site or communi-

cation link failures. Both detectable and predictable

failures are accounted for through a failure detection

facility and a data reconfiguration scheme. A surveil-

lance facility is used to cletect failures and their sub-

sequent repairs. Once a failure is detected, the view

of the system is updated and new transactions are

executed in the new view. This way the failure is

isolatecl. Once a failure is predicted, the database

administrator may issue a control transaction to re-

configure and redistribute the clata relations so as to

temporarily avoid future access to parts of the system

that are anticipated to fail. Our design of the replica-

tion controller is targeted toward tolerating multiple

occurrences of combinations of site and communica-

tion failures as well as network partition.

The surveillance protocol monitors changes in the

connectivity of the RAID sites. Changes in connectiv-

ity are treated as view hints that trigger failure (re-

pair) detection exceptions which, in turn, trigger re-

configuration (recovery) actions. In transaction pro-

cessing systems, surveillance can be responsible for

controlling performance degradation cluring failures.

For example, without failure detection, transactions

that are issued during periods of failure may suffer

delayed negative response that indicates their abor-

tion. This clelay consists of the time wasted in exe-

cuting transactions till the point where remote access

to failed copies is attempted (this could possibly be

the colnn-lit point), plus the time awaited for until a

timeout exception occurs. Not only do these transac-

tions sufFer clelays before they get aborted, but they

also waste system resources (CPIJ cycles and corn-

that copying ie by permieeion of the Aeeocietion for Computing
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munication bandwidth) and contribute to unneces-

sary data contention with other transactions that are

not affected by the failure. Consequently, all transac-

tions (the ones that get aborted and the ones that go

through) experience response time degradation. The

view hints that are exported by the surveillance facil-

ity makes it possible to completely avoicl any delays

before a transaction is aborted due to the failure. This

avoidance spares system resources and eliminate un-

necessary data contention.

Adaptability and reconfigurability are used to cope

with the changing performance and availability re-

quirements. Adaptability can improve both perfor-

mance and availability by allowing data and system

reconfiguration. System reconfiguration aims at iso-

lating parts of the system whose failure has been de-

tected or predicted, or merging isolated parts of the

system whose repair has been confirmed. Such re-

configuration, which is adapted through the use of

the surveillance facility, avoids the cost of executing

‘living in the past’ transactions. Data reconfigura-

tion is another form of adaptability where replication

and distribution specifications of clata relations can

be changed dynamically. Data reconfiguration can be

used to adapt to variations in transaction access pat-

terns in order to improve transaction response tilne

and system throughput. Redistributing a data object

so as to create a local copy and hence avoid remote

access is an example of such adaptation. When fail-

ures are predicted, data reconfiguration can be used to

temporarily relocate copies whose sites are anticipated

to fail. In RAID, data rec.onfigurability is achieved by

employing a technique whereby copies can be r~lacle

potent/impotent, dynamically.

The paper is organized as follows. The rest of this

section is devoted to an overview of the second ver-

sion of the RAID system (RAID-V2). Section 2 elab-

orates on the various RAID replication mec.hanisnls.

Sections 3 gives the details of the RAID surveillance

facility. Adaptability and data reconfiguration is dis-

cussed in section 4. Finally, summary and conclusions

are given in Section 5.

1.1 An Overview of the RAID-V2 System

RAID-V2 is the second version of the RAID dis-

tributed database system [10, 6]. RAID-V2 is a server-

based, relational, distributed database syste)]i that is

being developed on Sun workstations u,ldel the IJnix

operating system. In this section, we give a brief de-

scription of the RAID-V2 system and its perfornlance.

Details of the design and irrll~lel~lel~t:itioll of the sys-

tem can be found in [6].

Each database site in the RAID system consists of

seven servers, each of which encapsulates a subset of

the functionality of the system. The seven servers are

the (Jser Interface (UI), the Action Driver (AD), the

Figure 1: The RAID-V2 System Architecture

Access Manager (AM), The Concurrency Controller

(CC), the Atomicity Controller (AC), the Replication

Controller (RC), and the Surveillance Controller (SC).

The user interface is a front-end that allows a user to

invoke QIJEL-type queries on a relational database.

The action driver translates parsed queries into a se-

quence of low-level read and write actions. The access

manager is responsible for the storage, indexing, and

retrieval of information on a physical device. The con-

currency controller checks that read and write actions

of clifferent transactions do not conflict. The atomicity

controller is responsible for ensuring that transactions

are committed or aborted atomically across ail sites.

The replication controller manages multiple copies of

data objects to provide system reliability and mutual

consistency of replicated data. The Surveillance con-

troller collects connectivity information about RAID

sites, and advertises view changes to the replication

controller. Figure 1 illustrates the paths of communi-

cation in RAID.

Servers in RAID communicate solely through the

exchange of messages [9]. All inter-server actions con-

sist of a request and a reply. Once a request is issued

for a transaction, further progress on that transaction

is blocked until a reply is received.

2 Replication Mechanisms

Replication control is the part of transaction man-

agrr nrllt that is responsible for msrrrlngone-copy seri-

alizability [5]. Many replication control methods have

been introduced in the literature [4, 2, 26, 15, 1, 20,

16, 22]. Usually, replication control is built on top

of a concurrency control component that guarantees

serializability of the equivalent hypothetical one-copy

database. Therefore, in a layered implementation of a

transaction rnanager, replication control comes higher

in the hierarchy than concurrency control [6]. A log-
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ical operation on a database object is tested for one-

copy equivalence by the replication controller and is

then transformed into physical operations on avail-

able replicas. The replication control tl~en passes the

physical operations to the concurrency controllers for

serializability check. An irnplementationof a replica-

tion control method usually requires the use ofa data

directory as well as view informationin order to de-

termine which sites toinvolveiu perfornlinga certain

logical operation.

Replication and object fragmentationh asbeen im-

plemented inseveral research projects [25, 14,27)24].

Replication in RAID is designed to meet and help

achieve five main objectives. These are increased

fault-tolerance, replication and location transparency,

datareconfigurability and adaptability, and controlled

performance degradation cluring failures. To achieve

these objectives, we have implemented a variety of

replication mechanisms. Specifically, we have imple-

mented off-line replication management, tools, a stand-

alone replication control server (R(;), quorum selec-

tion heuristics, kernel-level support for quorum oper-

ations, and a RC-interface to a surveillance facility.

The off-line replication manage) ]]ent tools are

used for creating, administrating, and reconfiguring

replicated databases under RAID. The oil-line RC

server transforms logical operations-parsed by an SQL

interpreter– into physical operationson quorums. Ttle

distinctive feature of the RC is its quorulrr-based inter-

face to a libraryof replication control methods. The

interface facilitates the aciaptable use of a variety of

these methods. Quorum selection heuristics are used

in RAID to reduce the message traffic overhead associ-

ated with the quorum methods. To further mini] nize

quorum overhead, a kernel-level multicast faciIity is

implemented. Details of the multicast implementation

and performance can be found in [9]. The RC-int,erface

to the RAID surveillance facility provides useful hints

for selecting available quorums and for controlling per-

formance degradation during failures.

In this section, we present the design and imple-

mentation details of the RAID replication mecha-

nisms.

2.1 Off-line Replication Management

A RAID replicated database is created, off-line, ac-

cording to a specification of its relation schenia and

replication information. Each database is given a

unique logical name. To use the database, an instance

of the RAID system is created under this logical name.

Once an instance is activated, users can attach to it

through user interfaces. [Jser transactions are parsed

into read and write operations and are directed to the

on-line RC server.

The construction and replication of a RAID rela-

tional database is done off-line and can be described
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Figure 2: RAID Database Layout

by the following process. The relations schemas and

replication information are first entered into a jilLzrt-

ihe-.space spec file. For each relation, the spec file con-

tains the relation name, a list of attribute descriptors,

and a list of Host-Path pairs. Three internal attributes

are always part of every relation. These are the tu-

ple_~d, verszon_nu?nber, and the used-btt attributes.

The fuple-zd attribute is used to implement tuple-level

granularity for the concurrency controller. The ver-

s~omnuvl ber attribute is used by a variety of repli-

cation coutrol lnethods to iclentify up-to-date copies.

The used-hit attribute acts as a marker for deleted tu-

pies. An attribute descriptor consists of the attribute

nanle, type, length, and primary key flag. The list of

the Host-Path pairs specifies the locations at which a

relation is to be replicated. Host is an internet domain

nal[le and Path is an absolute path name of the direc-

tory that contains a clatabase copy on the associated

host. For exa]nple, “/uraid 10/raid/databases” is the

absolute path where the “DebitCredit9” database is

to be stored at the host “raidlO. cs.purdue.edu”.

Once the spec file is created, the database can be

constructed and initialized using the dbcreate com-

lnand. The dbcreate command takes two arguments.

The spec file and the logical name to be given to the

database. Dbcreate reads in the spec file and cre-

ates the database directory and configuration file. The

directory is a representation of the replication infor-

rnat,ion found in the spec file. The configuration file

contains a mapping of the Host-Path pairs into logical

unique id’s. This mapping is mandated by the RAID

higtl-level communication routines, where servers ad-

dresses are not specified in terms of host names but

rather in terms of rnriual sites that are named by

unique logical id’s. As will be shown, the mapping

is also used to automate the instantiation of RAID.

In addition to the directory ancl the configuration file,

clbcreate creates user and meta relations. The meta

relations contains schemas information of users and

meta relations. User relations are optionally initial-
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ized by inserting tuples from a specified input file. Af-

ter creating all these files in a local te~llporary direc-

tory, dbcreate remote copies the clirectory, the configu-

ration file, the meta relations and the spec file itself to

every Host-Path pair found in the configuration file.

User relations are then remote copied according to the

replication information found in the RAID directory.

Figure 2 depicts the RAID database layout.

In addition to dbcreate, RAID provides comniancls

to remove, reset, and extend its databases. It also pro-

vides a powerful command that, autol~iatically starts

up an appropriate instance of RAID at all hosts where

a database is stored. The dbrw command destroies a

database by removing all local and relnote files related

to that database. The dbreset cornrnand corubs all

the tuples from user relations and leaves the database

as if it were just created with empty relations. The

dbeztend allows more relations to be added to the

database, adjust the directory, and update the nlet,a

relations. Finally, the raid command takes a database

path name, where a copy of the database is s tored,

and uses it to start up an appropriate RAID instance.

From the configuration file, which can be found in the

database path name, the ra~d colrlmand learns of all

the Host-Path pairs and their mapped unique logi-

cal id’s. For each Host-Path pair (H,, Pj ) with logi-

cal id k, the command remotely creates a replication

controller, an atomicity controller, a concurrency con-

troller, a surveillance controller, and an access nlau-

ager on the host H,. The razrl command passes the

logical id k, As a command-line argunlent, to all the

instantiated servers at host H,. In addition, the repli-

cation controller and the access manager servers are

passed the path Pj. This way, the replication con-

troller knows how to locate the RAID directory and

the access manager knows where to find the schema in-

formation. The raid comrnanrl can also accept servers’

command line arguments, and passes them on to the

respective servers,

2.2 The On-line Replication Control

Server (RC)

The replication controller (RC) features highly

available database operations through the use of

quorum-based methods. RC is, in general, tolerant,

to network partition and can tolerate up to (%1 site

failures, in an n-site system. A distinctive feature of

the RC is its quorum-based interface to a library of

replication control methods. The interface hides the

details of a particular replication method from the RC!

server. This resulted in a clean implementation of an

infrastructure that can opt, or adapt to use certain ex-

isting replication method or other methods that can

be added in the future. Currently, RC can adapt, to

use the read-one-write-all, the quorum consensus, or

the general quorum assignment methods. Another dis-

tinctive feature of the RC is its experimental-based

policies that govern the proper use of replication meth-

OCIS through adapting the degree of replication and

through dynatnic data reconfiguration. In general, the

RAID policies aim at maximizing the availability of

fault-intolerant lrrethods, and minimizing performance

penalties of methods which are highly fault-tolerant.

In addition, the RC features replication and relocation

transparency, and controlled performance degradation

during failures.

2.2.1 Tl~e R(j’ Interface

The RC maps logical actions from a local action driver

(AD) into physical actions on available copies. The

mapping is clone through the quorum-based interface

that unifies access to a library of replication control

methods. When presented with a logical action on

some relation, the interface consults the local copy of

a fully-replicated directory to locate all existing copies

of that relation. It then uses the view hint vector

that is exported by the surveillance facility to identify

which copies are currently available. The interface

then passes the set of sites where copies are currently

available, along with the action needed to the repli-

cation control method. The latter decides whether

available copies are enough to perform the action, in

which case it returns a quorum of sites that is a sub-

set of the available sites, Since it is possible to have

lnore than one such quorum, some quorum selection

heuristics are used. Section 2.3 explain the use of these

heuristics.

The RC interfaces with other RAID servers as fol-

lows. It receives Read requests from local ADs or re-

mote RCS, and StartCommit requests from local ADs.

When the RC receives a Read request from its local

AD, it passes it to the quorum interface. If no quo-

rums are available, the RC sends a NackRead back to

the AD. Otherwise, it maps the AD request into re-

quests to a quorum of physical copies, and transfers

the request to the RCS on the sites that contain the

physical copies (requests to the local site are passed on

to the local CC). Read requests from remote RCS are

for physical copies contained on the local site and are

also passecl on to the local CC. After the RC has ob-

tained the necessary replies from remote RCS and its

local CC, it checks if all replies are positive, in which

case, it returns the most up-to-date tuples to the AD.

If one or more of the replies are negative, it sends a

NackRead back indicating that the request can not be

satisfied due to concurrency conflict. If one or more of

the replies never arrived, the AD will eventually time-

out and will send an abort message to the RC to flush

the transaction out, of the system.

Similar to the Read requests, the RC handles Start-

( ~ornmit requests by finding a quorum for each Write

648



Figure 3: Control Flow in RAID Replication

Controller (RC)

operation in the StartCommit request. The RC con-

structs a commit request only if a quorum is found for

every Write operation. The commit request contains

the set of sites from which the transaction read (union

of read quorums), the set of sites to which the transac-

tion wishes to write(union of write quorums), and an

update list that contains relations with t,heir respec-

tive write quorums. If a quorum is found for every

write operation, the RC constructs and forwards the

commit request to its local AC to start a commitment

session. Otherwise, the RC sends a NackSt art commit

back to the local AD.

Figure 3 depicts the communication paths between

RC and other servers in RAID. The labels on the

pathes of Figure 3 are explained below.

1.

2.

3.

4.

5!.

6.

7.

Transaction arrives at a AD froni its lJI.

AD processes transaction into read and write op-

erations, reacling through the K. Write opera-

tions are saved in the AD until comlnit time.

The RC reads by communicating with its CC and

with remote RCS.

Tuples are returned from the CC or remote R(.k

to the originating RC, . . .

and from the RC to the AD.

When the AD has completed the read phase of

transaction processing it passes the list of tuples

that should be updated to the’ RC.

The RC passes the update list, to the AC. The up-

date list includes the set, of’ sites to participate in

distributed cornrnit, with read-only sites specified

separately, and the list of updates, including the

8.

9.

10.

set of sites at which each update must be com-

pleted.

The AC sends a positive or negative acknowledge-

ment to the RC.

The RC passes the acknowledgement on to the

AD.

AD returns the acknowledgement to the UI.

2.z.2 The RC Server lmplexnelltation

The RC server consists of approximately 2500 lines of

code written in C. In addition to the library of replica-

tion methods and the quorum interface, the code for

the RC server consists of three sections: initialization,

main loop, and termination and statistics dump.

Initialization includes setting up communication

with the RAID name server which we call the ORA-

CLE [1 1]. The RC set up communication by sending a

registration request to the ORACLE. The RC request

includes a Tell-h4e.About list that specify which other

servers the RC wishes to know of their whereabout.

Members of the list can be marked synchronous or

asynchronous. In the first case, the registration re-

quest will block until the awaited synchronous mem-

ber has contacted the ORACLE, In the second case,

the request will not block, and RC will be notified

with the adclress of the awaited asynchronous mem-

ber as soon as the latter register with the ORACLE.

The RC’S Tell-Me_A bout list includes as synchronous

members, other RC’S, local CC, local AC, and local

SC; and as asynchronous members, all local AD’s.

Once commurtication is initialized, RC reads the

RAID directory from the database path name passed

by the raid communal. Italso tries to read a commu-

nication cost matrix. The cost can be determined by

the number of gateways the remote request, has to go

through, or by the inverse of the computation power

(MIPS) of the remote sites. The RC then initializes

the transaction table which maintains state informa-

tion of local transactions and remote requests; initial-

izes its view hint which keeps connectivity and reacha-

bility information of other RC’S; and finally initializes

the replication control n-iethod that is specified, as an

argulnent, to be used.

The main loop consists of receiving a high-level

RAID message, decoding and processing the message,

and blocking to receive another. When a message is

received, its header is decoded in orcler to extract the

message type and the id of the transaction to which

the message is destined. The transaction table is then

srarc.heel for a matching t,ransac.tion id. If the transac-

tion is found, its state information is used to process

the message.
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Figure 4 depicts a simplified version of the RC

server automaton. The automaton specifies all possi-

ble sequences of state transitions a RAID transaction

may go through. From JVOn-EZZStZng) a new trans-

action moves to Trans-Reading by sending out read

requests to a quorum of sites. When all replies ar-

rive, the transaction moves to Trans-Processing state.

To process another read operation, the transaction

sends another set of read requests and moves to Trans-

Reading state again. The transaction loops between

these two states until it gets aborted by the user issu-

ing the transaction, in which case it l~loves to Trans-

uAborting; until one of the replies that arrived is

negative (due to concurrency conflict), in which case

it moves to Non- Ezisting state; or until it reaches

its commit point, in which case it moves to Trans-

Prepare-to-Commii state. At this state, the update

list of all deferred writes of the transaction is built.

In the case of quorum consensus, version numbers

are packed into the update list. Immediately after

the update list is ready, the transaction moves into

Trans-Committing state where it stays there until it

receives the result of the commitment and n[oves to

Non-Existing state. On the other hand, a remote read

request creates a subtransaction that sends a read

request to its local concurrency controller and then

moves immediately to Subtr-Reading state. The sul>-

transaction stays on that state until it either receives

a reply, in which case it forwards it to the home site

issuing the request, or gets aborted by the user issuing

the home transaction in the home site.

When a transaction or a remote request, reaches the

Non-Existing state, it is removed from the transaction

table. When in any waiting state, one of the replies

never arrives, RAID end-to-end timeout Inechanisrll

aborts the transaction after a timeout value by flushi-

ng an abort message throughout the whole system.

More details can be found in Figure 4 by following

each single transition.

Termination of the RC server happens when a kill

signal sent by the ORACLE is received. When the kill

message is received, the RC aborts all pending trans-

actions and dump R(; statistics into well known files.

The statistics include number of RC aborts which are

aborts due to quorum unavailability, average update

list size, and average read and quorum size.

2.2.3 The RC Quorum Interface

The RC quorum interface is shown in figure 5. The

interface consists of six high-level function calls. For

each read request, there is a Single.REA D. Quorum

invocation. The parameters passed are transaction

id, RC method name, and relation descriptor. Sin-

gle-REA D- Quorum passes the relation descriptor on

to the Available.Sites function call. The latter in-

dexes the directory to determine the set of sites where

the relation is replicated. This set is then filtered

by the view hint returning the set of available copies

for that relation. Single_ READ-Quorum then passes

the set of available sites along with the RC method

name to the replication control methods library where

the appropriate routine is invoked. For methods

where more than one quorum is available, the library

routines select a particular quorum using either the

Random_ Pern) utation or the h!fin-.~ite_Permuta tion

heuristics or both. The Single-READ-Quorum invo-

cation ends by returning a read quorum (set of sites

from which the RC requests the relation). When all re-

quests have been replied, RC invokes Construct_ Value

to determine the most-up-to-date relation. Con-

siruct_ Value returns a relation that consists of tuples

that have the highest version numbers. For all the

writes, there is an ALL- WRITE_ Quorum invocation.

The parameters passed are transaction id, RC method

name, and the update list. For each element in the

update list, ALL- WRITE-Quorum invokes the Sin-

g/e- WRITE- Quorun/ function call. The latter pro-

ceeds analogous to the Single-READ .Quorum and

returns a write quorum for the passed update ele-

nlent. The ALL_ WRITE_ Quorum ends by returning

the union of the write quorums of all the relations

included in the update list. The RC then invokes

the Park Update function call in order to include the

union of the write quorums in the update list. For

some methods, the Pack- tJpdate function call modi-

fies the version numbers of the relation tuples. When

the packed update list is returned by Pack- Update,

RC hands the list to its local AC in order to start

colnniitment. Finally, when the RC server is started,

it invokes In it-RC-Prot ocol to do any necessary ini-

tialization. For example, reading the quorum param-

eters relation in the case of the quorum consensus

method. Init-RC-Protocol always invokes Recover for

possible recovery procedures required by certain repli-
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Figure 5: RC Quorum Interface

cation methods.

2.3 Quorum Selection Heuristics

In the quorum consensus method, an operation can

usually be performed by more than just one quoruln,

In order to select a quorum, the RC quorulll interface

uses one of three heuristics. The RANDOM heuris-

tic generates a random permutation out of the set of

sites where data is replicated and returns the smallest

prefix of the permutation that const it,ut,es a quorum.

The MINSITE heuristic descendingly sorts the set of

sites according to their weights, aucl returns the small-

est prefix of the sorted set that constitutes a quorml}.

The RAND-MINSITE heuristic generates two quo-

rums form the RANDOM ancl the MI NSITE heuristics

respectively, and returns the RANDOM quorum only

if it has the same size as the MINSITE quorum. Oth-

erwise, it returns the M IN SITE quorum. Intuitively,

random selection of quorums produces uniform mes-

sage traffic which, in turn, helps load-balancing the

RAID sites. Random selection, however, can result in

large-size quorums and hence can increase the volume

of message traffic. On the other hand, smallest-size

selection of quorums incurs optimal volume of mes-

sage traffic. Smallest-size quorum selection, however,

results in a skewed load distribution among the RA I I)

sites. The performance of these heuristics were stud-

ied in [18].

3 The RAID Surveillance Mechanism

Surveillance in RAID is implemented as a separate

server named the Surveillance Controller, or SC. The

SC servers detect both site and link failures as well as

subsequent repairs. Whenever a change in the system

connectivity is detected, the SC servers export a new

view hint to the Replication Control servers (R(3) to

reflect the change. In response, R(]’s adapt to the

new view hint and discard quorums that span failed or

unreachable sites. This way, transactions’ operations

are directed only to sites that are reachable.

The design of the RC and the SC servers does not

contain or create functional dependency between the

two servers. This separation was realized by the fol-

lowing requirements.

● l’he RC does not require the surveillance facility,

although it highly benefits from it. This allows

for instantiating RAID without the SC servers, if

so desirecl. It also allows transaction processing

to continue despite SC server failure.

● RC treats the connectivity information that it im-

ports from the SC server as a view hint [23] and

not as a synchronized view. This way, the cor-

rectness of the replication methods used by the

RC server does not depend on the surveillance

facility.

The main idea behind our protocol is to periodi-

cally send out I_am_afive broadcast messages, and to

periodically check for received I-am-alive messages.

We use interrupt signals to create this periodicity.

Each SC maintains a private timer for each participant

SC. A timer for an SC participant at site j reflects

the cluration of time that has passed since the last

I.a?n.ahve message was received from site j. When-

ever an I-am_ alive message from site j is received, the

SC at the receiving site resets the timer correspond-

ing tlo the SC stl site j. If the l_rrm-ahve message from

site j is not received in a certain period of time, its

corresponding timer will expire indicating that either

a site or a link failure has occurred. The protocol can

be described as follows.

As soon as an SC starts up, it sets the alarm to

be interrupted every fixed interval of time. We

call the duration of this time the delta time. SC

then blocks waiting to receive messages or peri-

odic alarm signals.

When SC is interrupted, it wakes up and does

one of two chores, in alternation. In the first al-

ternation, it broadcasts an I_am_a/ive message to

remote SC’S.

Each SC uses a timer for every other SC. Each

timer includes the number of ticks left before it

goes off. Whenever an I-am. a/ive message is re-

ceived from an SC on site i, the ticks in the timer

of site i are reset to a positive constant that we

call TimeoutTicks.

When SC is interrupted and it is in the second al-

ternation, it checks t,he validity of its view. It does

so by decrernenting one tick from all the timers. It

then builds a temporary view by including sites

that have nomzero positive number of ticks re-

maining after the clec.rement. Sites that have not

sent an I-am.alive message within ( Timeout Ticks
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X delta) seconcls are the ones whose timers con-

tain zero number of tacks. The Timeout Tzcks

count guards against lost or extrelrlely delayed

messages. If the new temporary view is found

different from the old view, SC installs the tem-

porary view as permanent and notifies its local

RC with that view. If, by the subsequent second

alternation, SC does not receive an acknowledge-

ment message from itjs local rw, it re-notifies the

RC with its current view, which could possibly be

different from theone originally sent.

The protocol takes della and TtnteoutTlcksas pa-

rameters. The choice of these paraltleters imposes a

compromise between increased comnlunication over-

head (in case of small values of delta) and increased

abort rate of living-in-the-past transactions (in case

of large values of delta). The default values of these

parameters areset to30. Oseconds, and3ticks, respec-

tively.

The RAID surveillance protocol has tile following

features:

● Symmetry: the protocol is decentralized and does

not require a coordinator. This avoids running

an election protocol in the case of a coordinator

failure.

● Asynchronous coordination: the protocol partic-

ipants are allowed to be completely out of syn-

chrony. This avoids clock drift, prohlelns and so-

lutions.

● Reliability: the protocol makes no assuinptions

on the timeliness or reliability of lltessage delivery,

Instead, it guards against message loss or delays.

. versatility: the protocol does not, need to be

restarted when adding or renlovillg new partic-

ipants. This accommodates for dynarllic systeln

reconfiguration.

The performance and effectiveness of the surveil-

lance protocol was examined experimentally in [19].

Several other surveillance protocols have been pro-

posed intheliterature [28,3,21, 13, 12, 17].

4 Data Reconfiguration

Data reconfiguration is usec] in RAID to improve

the performance and to guard against anticipated fail-

ures. To improve transaction response tirrie and sys-

tem throughput, RAID can adapt, to variations in the

transaction read/write mix by re-distributing the data

in order to optimize the quorum size of the dominant

operation. Redistribution can also aim at creating a

local copy in order to avoid remote access. When fail-

ures are predicted, data reconfiguration can be used to

temporarily relocate copies whose sites are anticipated

to fail. To achieve data reconfiguration in RAID, we

use a technique whereby copies of an object can be re-

generated or rllade invalid. Our reconfiguration tech-

nique requires that objects be physically fully repli-

cated. Each replica can, however, be made invalid,

or can be regenerated. An invalid copy is not part

of the database until it is regenerated. In addition

to redistributing a data object, our technique can –to

solrle extent- reconfigure the replication method that

is used with that object. This is done by reconfiguring

the object’s read and write quorums.

To implement reconfiguration, RAID uses a fully-

replicated Q7~orwnL Relation that encapsulates the

database distribution and quorum information. Ta-

ble 1 shows the quorum relation of a four-relation

Debit(jredit database in an 8-site RAID. For each re-

lation, the size of the read and write quorums and the

weights of the copies are specified. Copies with zero

weight are 2n ualid copies. In order to read(write) a

relation, a nuniber of copies with total weight greater

than or equal to R-Quorum(W_Quorum) is required.

As an exaniple, consider the Branch and Account rela-

tions. The Branch relation is configured so that it has

three copies at site 0, 1, and 2. It is also configured so

that it rrlust be accessecl through the read-one-write-

all uiethocl (ROWA). The Account relation is fully

replicated and is configured to be accessed through

a quorum consensus reacl-same-as-write method (QC-

RSW).

RA1 D uses data recoldiguration to implement

adaptability policies. For instance, one of the RAID

adaptability policies prescribes the appropriate de-

grees of replication to use under different transaction

characteristics and failure conditions. The policy is

implemented by updating the quorum relation to re-

flect the new validation/invalidation of the replicas.

The clefinition of this policy is based on an integrated

experimental study of availability and performance in

RAID. In this study, the effect of varying the degree

of replication on the performance and availability of

replication methods is examined both experimentally

and analytically. The degree of replication that in-

curs the minirnurn compromise of the performance and

availability (called the practical degree of replication)

is found and is prescribed for use under a given trans-

action characteristics and failure conditions.

Figures 6, and 7, demonstrate two experiments in

this stucly in a 9-site RAID system. Figure 6 shows the

response time and availability of the ROWA method

for read-only transactions and for workstation relia-

bility of 0.90. The practical degree of replication is 2

copies. Higher clegrees of replication do not improve

availability or impair the response time. Figure 7

shows the response time and availability of the QC-

RSW method for 50 upclate percent and for worksta-

652



Table 1: The RAID Quoruln Relation

Relation R-Thresllolcl W_Tlmesllolcl WI w? w~ W4 W5 Wlj W7 1’V8

Teller 4.00 6.00 0 1 1 0 1 1 1 1

Branch 1.00 3.00 1 1 1 0 0 0 0 0

Account 5.00 5.00 1 1 1 1 1 1 1 1

History 3.00 5.00 1 1 1 1 1 1 0 0

e RO WA
Availability

0.2
‘“-J 4

3
01 -e--e-+4--e-++- 2

1 2345(378

Degree of Replication

Figure 6: Read-one-write-all: 0(%
O 90 Rellablllty

1

● QGRSW
Availability

9

[Jpdat,es,

5 Conclusion

This paper describes the design and implementa-

tion of some fault-tolerance mechanisms in the dis-

tributed database system RAID. These mechanisms

include adaptable data replication, failure detection,

and failure isolation through reconfiguration. Repli-

cation in RAID has been implemented in terms of a

stand-alone replication controller, off-line replication

]Ilan agement, quorum selection heuristics, and an in-

terface to a surveillance facility. Failure detection is

ilnplellleuted via a reliable surveillance facility that

maintains network-independent reachability informa-

tion called view hints. We have shown how the surveil-

., .-” A”

lance facility is integrated with replication control,

to increase fault-tolerance and to control performance

Llf!
degradation during failures. Finally, we have demon-

0.9
08

w

x?” 9
/ 8

0.7
0.6 A’ 7

05
/ 6

04 _- A ~- 5

0.3 4
02 3
0.1 ~

o Q(”:-RSW

Response

Time
(seconds)

OhTTTnTtl
1 23456783

Degree of Iiepllcmtion

Figure 7: Quorultl Consensus( [{eacl-salll(’- ~ls-~vrite):
50% Updates, O 90 Rellahlity

tion reliability of 0.90. The practical degree of replica-

tion is 5 copies. Higher degrees of replication severely

impairs response time and, in the sallle tillle, does not

increase availability significantly.

Table 2 lists a sample of the practical dl’grtws of

replication for both the ROWA and the Q(:-RSW, for

O, 20, and 50 update percents, and for 0.90, 0.95, and

0.99 workstation reliability. The degree of replication

of the database relations can be adapted to tile prac-

tical values once estimates of the t,ransact,iolls’ update

percent or the workstation reliabilities are ol>tnillml.

The adaptability y is accomplished by updating the quo-

rum relation in accordance with table 2.

strat,ecl the use of data reconfiguration and replication

adaptability to achieve failure isolation.
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