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Abstract

The resiliency of distributed database systems can
be realized through a collection of integrated fault-
tolerance mechanisms. These include data replication
techniques, failure detection, failure isolation through
reconfiguration and adaptability, and non-blocking
atomic commitment. Collectively, these mechanisins
enhance the availability and operability of the systein
in the presence of various types of site and commu-
nication failures. In this paper, we focus on mecha-
nisms for data replication, failure detection, and re-
configuration. We present the implementation details
of each of these mechanisms along with their integra-
tion within the RAID system developed at Purdue.
Data replication is implemented through the partial
replication of data relations, and through the use of
a library of replication control methods. An on-line
replication control server (RC) provides highly avail-
able database operations through the adaptable use of
these methods. Failure detection is implemented via a
reliable surveillance facility that mounitors the changes
in system connectivity. Such failures include site and
communication failures as well as network partition.
Repairs and network merges are also detected by this
facility, thus leading to the automatic initiation of re-
covery. We will show how failure isolation is achieved
through data and server reconfiguration and by the
adaptable use of replication methods.

1 Introduction

RAID [10, 6] ! is a distributed database systemn that
has been implemented to explore new fault-tolerant
schemes and adaptability policies that can achieve
high levels of availability and performance. In this pa-
per, we discuss the implementation of the RAID fault-
tolerance mechanisms, including data. replication, fail-

!The Purdue RAID and RAID-V2 systems are not related
to the concept of Redundent Array of Inexpensive Disks.
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ure detection and surveillance, and data reconfigura-
tion. The empirical evaluation of these mechanisms
can be found in [8, 7, 19].

The immediate goal of replication in RAID is to in-
crease data, user, and system availability in presence
of failures. By maintaining multiple copies of data re-
lations, some copies of the database remain available
even though the system has suffered site or communi-
cation link failures. Both detectable and predictable
failures are accounted for through a failure detection
facility and a data reconfiguration scheme. A surveil-
lance facility is used to detect failures and their sub-
sequent repairs. Once a failure is detected, the view
of the system is updated and new transactions are
executed in the new view. This way the failure is
isolated. Once a failure is predicted, the database
administrator may issue a control transaction to re-
configure and redistribute the data relations so as to
temporarily avoid future access to parts of the system
that are anticipated to fail. Our design of the replica-
tion controller is targeted toward tolerating multiple
occurrences of combinations of site and communica-
tion failures as well as network partition.

The surveillance protocol monitors changes in the
connectivity of the RAID sites. Changes in connectiv-
ity are treated as view hinis that trigger failure (re-
pair) detection exceptions which, in turn, trigger re-
configuration (recovery) actions. In transaction pro-
cessing systemns, surveillance can be responsible for
controlling performance degradation during failures.
For example, without failure detection, transactions
that are issued during periods of failure may suffer
delayed negative response that indicates their abor-
tion. This delay consists of the time wasted in exe-
cuting transactions till the point where remote access
to failed copies is attempted (this could possibly be
the commit point), plus the time awaited for until a
timeout exception occurs. Not only do these transac-
tions suffer delays before they get aborted, but they

also waste system resources (CPU cycles and com-
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munication bandwidth) and contribute to unneces-
sary data contention with other transactions that are
not affected by the failure. Consequently, all transac-
tions (the ones that get aborted and the ones that go
through) experience response time degradation. The
view hints that are exported by the surveillance facil-
ity makes it possible to completely avoid any delays
before a transaction is aborted due to the failure. This
avoidance spares system resources and eliminate un-
necessary data contention.

Adaptability and reconfigurability are used to cope
with the changing performance and availability re-
quirements. Adaptability can improve both perfor-
mance and availability by allowing data and system
reconfiguration. System reconfiguration aims at iso-
lating parts of the system whose failure has been de-
tected or predicted, or merging isolated parts of the
system whose repair has been confirmed. Such re-
configuration, which is adapted through the use of
the surveillance facility, avoids the cost of executing
living in the past’ transactions. Data reconfigura-
tion is another form of adaptability where replication
and distribution specifications of data relations can
be changed dynamically. Data reconfiguration can be
used to adapt to variations in transaction access pat-
terns in order to improve transaction response time
and system throughput. Redistributing a data object
so as to create a local copy and hence avoid remote
access is an example of such adaptation. When fail-
ures are predicted, data reconfiguration can be used to
temporarily relocate copies whose sites are anticipated
to fail. In RAID, data reconfigurability is achieved by
employing a technique whereby copies can be made
potent/impotent, dynamically.

The paper is organized as follows. The rest of this
section is devoted to an overview of the second ver-
sion of the RAID system (RAID-V2). Section 2 elab-
orates on the various RAID replication mechanisms.
Sections 3 gives the details of the RAID surveillance
facility. Adaptability and data reconfiguration is dis-
cussed in section 4. Finally, summary and conclusions
are given in Section 5.

1.1 An Overview of the RAID-V2 System

RAID-V2 is the second version of the RAID dis-
tributed database system [10, 6]. RAID-V2 is a server-
based, relational, distributed database system that is
being developed on Sun workstations under the Unix
operating system. In this section, we give a brief de-
scription of the RAID-V2 system and its performance.
Details of the design and implementation of the sys-
tem can be found in [6].

Each database site in the RAID system consists of
seven servers, each of which encapsulates a subset of
the functionality of the system. The seven servers are
the User Interface (UI), the Action Driver (AD), the
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Figure 1: The RAID-V2 System Architecture

Access Manager (AM), The Concurrency Controller
(CC), the Atomicity Controller (AC), the Replication
Controller (RC), and the Surveillance Controller (SC).
The user interface is a front-end that allows a user to
invoke QUEL-type queries on a relational database.
The action driver translates parsed queries into a se-
quence of low-level read and write actions. The access
manager is responsible for the storage, indexing, and
retrieval of information on a physical device. The con-
currency controller checks that read and write actions
of different transactions do not conflict. The atomicity
controller is responsible for ensuring that transactions
are committed or aborted atomically across all sites.
The replication controller manages multiple copies of
data objects to provide system reliability and mutual
consistency of replicated data. The Surveillance con-
troller collects connectivity information about RAID
sites, and advertises view changes to the replication
controller. Figure 1 illustrates the paths of communi-
cation in RAID.

Servers in RAID communicate solely through the
exchange of messages [9]. All inter-server actions con-
sist of a request and a reply. Once a request is issued
for a transaction, further progress on that transaction
is blocked until a reply is received.

2 Replication Mechanisms

Replication control is the part of transaction man-
agement that is responsible for ensuring one-copy seri-
alizability [5]. Many replication control methods have
been introduced in the literature [4, 2, 26, 15, 1, 20,
16, 22]. Usually, replication control is built on top
of a concurrency control component that guarantees
serializability of the equivalent hypothetical one-copy
database. Therefore, in a layered implementation of a
transaction manager, replication control comes higher
in the hierarchy than concurrency control [6]. A log-



ical operation on a database object is tested for one-
copy equivalence by the replication controller and is
then transformed into physical operations on avail-
able replicas. The replication control then passes the
physical operations to the concurrency controllers for
serializability check. An implementation of a replica-
tion control method usually requires the use of a data
directory as well as view information in order to de-
termine which sites to involve in performing a certain
logical operation.

Replication and object fragmentation has been imn-
plemented in several research projects [25, 14, 27, 24].
Replication in RAID is designed to meet and help
achieve five main objectives. These are increased
fault-tolerance, replication and location transparency,
data reconfigurability and adaptability, and controlled
performance degradation during failures. To achieve
these objectives, we have implemented a variety of
replication mechanisms. Specifically, we have imple-
mented off-line replication management tools, a stand-
alone replication control server (RC), quorum selec-
tion heuristics, kernel-level support for quorumn oper-
ations, and a RC-interface to a surveillance facility.

The off-line replication management tools are
used for creating, administrating, and reconfiguring
replicated databases under RAID. The on-line RC
server transforms logical operations—parsed by an SQL
interpreter— into physical operations on quorums. The
distinctive feature of the RC is its quoruin-based inter-
face to a library of replication control methods. The
interface facilitates the adaptable use of a variety of
these methods. Quorumn selection heuristics are used
in RAID to reduce the message traffic overhead associ-
ated with the quorum methods. To further minimize
quorum overhead, a kernel-level multicast facility is
implemented. Details of the multicast implementation
and performance can be found in [9]. The RC-interface
to the RAID surveillance facility provides useful hints
for selecting available quorums and for controlling per-
formance degradation during failures.

In this section, we present the design and imple-
mentation details of the RAID replication mecha-
nisms.

2.1

A RAID replicated database is created, off-line, ac-
cording to a specification of its relation schema and
replication information. Each database is given a
unique logical name. To use the database, an instance
of the RAID system is created under this logical name.
Once an instance is activated, users can attach to it
through user interfaces. User transactions are parsed
into read and write operations and are directed to the
on-line RC server.

The construction and replication of a RAID rela-
tional database is done off-line and can be described

Off-line Replication Management
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Figure 2: RAID Database Layout

by the following process. The relations schemas and
replication information are first entered into a fill-in-
the-space spec file. For each relation, the spec file con-
tains the relation name, a list of attribute descriptors,
and a list of Host-Path pairs. Three internal attributes
are always part of every relation. These are the tu-
ple_ad, version_number, and the used.bil attributes.
The tuple_id attribute is used to implement tuple-level
granularity for the concurrency controller. The ver-
ston_number attribute is used by a variety of repli-
cation control mnethods to identify up-to-date copies.
The used_bit attribute acts as a marker for deleted tu-
ples. An attribute descriptor consists of the attribute
name, type, length, and primary key flag. The list of
the Host-Path pairs specifies the locations at which a
relation is to be replicated. Hostis an internet domain
natne and Path is an absolute path name of the direc-
tory that contains a database copy on the associated
host. For example, “/uraid10/raid/databases” is the
absolute path where the “DebitCredit9” database is
to be stored at the host “raid10.cs.purdue.edu”.

Once the spec file is created, the database can be
constructed and initialized using the dbcreate com-
mand. The dbcreate command takes two arguments.
The spec file and the logical name to be given to the
database, Dbcreate reads in the spec file and cre-
ates the database directory and configuration file. The
directory is a representation of the replication infor-
mation found in the spec file. The configuration file
contains a mapping of the Host-Path pairs into logical
unique id’s. This mapping is mandated by the RAID
high-level communication routines, where servers ad-
dresses are not specified in terms of host names but
rather in terms of wirtual siles that are named by
unique logical id’s. As will be shown, the mapping
is also used to automate the instantiation of RAID.
In addition to the directory and the configuration file,
dbcreate creates user and meta relations. The meta
relations contains schemas information of users and
meta relations. User relations are optionally initial-



ized by inserting tuples from a specified input file. Af-
ter creating all these files in a local temporary direc-
tory, dbcreate remote copies the directory, the configu-
ration file, the meta relations and the spec file itself to
every Host-Path pair found in the configuration file.
User relations are then remote copied according to the
replication information found in the RAID directory.
Figure 2 depicts the RAID database layout.

In addition to dbcreate, RAID provides coinmands
to remove, reset, and extend its databases. It also pro-
vides a powerful command that automatically starts
up an appropriate instance of RAID at all hosts where
a database is stored. The dbrmn command destroies a
database by removing all local and remote files related
to that database. The dbresel command combs all
the tuples from user relations and leaves the database
as if it were just created with emnpty relations. The
dbertend allows more relations to be added to the
database, adjust the directory, and update the meta
relations. Finally, the raid command takes a database
path name, where a copy of the database is s tored,
and uses it to start up an appropriate RAID instance.
From the configuration file, which can be found in the
database path name, the raid command learns of all
the Host-Path pairs and their mapped unique logi-
cal id’s. For each Host-Path pair (H,, F,) with logi-
cal id k, the comimand remotely creates a replication
controller, an atomicity controller; a concurrency con-
troller, a surveillance controller, and an access man-
ager on the host H,. The ra:d command passes the
logical id k, As a command-line argument, to all the
instantiated servers at host H,. In addition, the repli-
cation controller and the access manager servers are
passed the path P;. This way, the replication con-
troller knows how to locate the RAID directory and
the access manager knows where to find the schema in-
formation. The raid command can also accept servers’
command line arguments, and passes them on to the
respective servers,

2.2 The On-line
Server (RC)

The replication controller (RC) features highly
available database operations through the use of
quorum-based methods. RC is, in general, tolerant
to network partition and can tolerate up to [241] site
failures, in an n-site systern. A distinctive feature of
the RC is its quorum-based interface to a library of
replication control methods. The interface hides the
details of a particular replication method from the RC
server. This resulted in a clean implementation of an
infrastructure that can opt or adapt to use certain ex-
isting replication method or other methods that can
be added in the future. Currently, RC can adapt to
use the read-one-write-all, the quoruin consensus, or
the general quorum assignment methods. Another dis-

Replication Control
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tinctive feature of the RC is its experimental-based
policies that govern the proper use of replication meth-
ods through adapting the degree of replication and
through dynamic data reconfiguration. In general, the
RAID policies aim at maximizing the availability of
fault-intolerant inethods, and minimizing performance
penalties of inethods which are highly fault-tolerant.
In addition, the RC features replication and relocation
transparency, and controlled performance degradation
during failures.

9

.

2.2.1 The RC Interface

The RC maps logical actions from a local action driver
(AD) into physical actions on available copies. The
mapping is done through the quorum-based interface
that unifies access to a library of replication control
methods. When presented with a logical action on
some relation, the interface consults the local copy of
a fully-replicated directory to locate all existing copies
of that relation. It then uses the view hint vector
that is exported by the surveillance facility to identify
which copies are currently available. The interface
then passes the set of sites where copies are currently
available, along with the action needed to the repli-
cation control method. The latter decides whether
available copies are enough to perform the action, in
which case it returns a quorum of sites that is a sub-
set of the available sites. Since it is possible to have
more than one such quorum, some quorum selection
Lieuristics are used. Section 2.3 explain the use of these
heuristics.

The RC interfaces with other RAID servers as fol-
lows. It receives Read requests from local ADs or re-
mote RCs, and StartCommit requests from local ADs.
When the RC receives a Read request from its local
AD, it passes it to the quorum interface. If no quo-
rums are available, the RC sends a NackRead back to
the AD. Otherwise, it maps the AD request into re-
quests to a quorum of physical copies, and transfers
the request to the RCs on the sites that contain the
physical coples (requests to the local site are passed on
to the local CC). Read requests from remote RCs are
for physical copies contained on the local site and are
also passed on to the local CC. After the RC has ob-
tained the necessary replies from remote RCs and its
local CC, it checks if all replies are positive, in which
case, it returns the most up-to-date tuples to the AD.
If one or more of the replies are negative, it sends a
NackRead back indicating that the request can not be
satisfied due to concurrency conflict. If one or more of
the replies never arrived, the AD will eventually time-
out and will send an abort message to the RC to flush
the transaction out of the system.

Similar to the Read requests, the RC handles Start-
Commit requests by finding a quorum for each Write



Figure 3: Control Flow in RAID Replication
Controller (RC)

operation in the StartCommit request. The RC con-
structs a commit request only if a quorum is found for
every Write operation. The commit request contains
the set of sites from which the transaction read (union
of read quorums), the set of sites to which the transac-
tion wishes to write(union of write quorums), and an
update list that contains relations with their respec-
tive write quorums. If a quorum is found for every
write operation, the RC constructs and forwards the
commit request to its local AC to start a commitment
session. Otherwise, the RC sends a NackStartCommit
back to the local AD.

Figure 3 depicts the communication paths between
RC and other servers in RAID. The labels on the
pathes of Figure 3 are explained below.

1. Transaction arrives at a AD from its Ul.

2. AD processes transaction into read and write op-
erations, reading through the RC. Write opera-

tions are saved in the AD until commit time.

. The RC reads by communicating with its CC and
with remote RCs.

. Tuples are returned from the CC or remote RCs
to the originating RC, ...

. and from the RC to the AD.

. When the AD has completed the read phase of
transaction processing it passes the list of tuples
that should be updated to the' RC.

. The RC passes the update list to the AC. The up-
date list includes the set of sites to participate in
distributed commit, with read-only sites specified
separately, and the list of updates, including the
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set of sites at which each update must be com-
pleted.

. The AC sends a positive or negative acknowledge-
ment to the RC.

The RC passes the acknowledgement on to the
AD.

10. AD returns the acknowledgement to the Ul

2.2.2 The RC Server Implementation

The RC server consists of approximately 2500 lines of
code written in C. In addition to the library of replica-
tion methods and the quorum interface, the code for
the RC server consists of three sections: initialization,
main loop, and termination and statistics dump.

Initialization includes setting up communication
with the RAID name server which we call the ORA-
CLE {11]. The RC set up communication by sending a
registration request to the ORACLE. The RC request
includes a Tell Me_About list that specify which other
servers the RC wishes to know of their whereabout.
Members of the list can be marked synchronous or
asynchronous. In the first case, the registration re-
quest will block until the awaited synchronous mem-
ber has contacted the ORACLE. In the second case,
the request will not block, and RC will be notified
with the address of the awaited asynchronous mem-
ber as soon as the latter register with the ORACLE.
The RC*s Tell_Me_About list includes as synchronous
members, other RC’s, local CC, local AC, and local
SC; and as asynchronous members, all local AD’s.

Once communication is initialized, RC reads the
RAID directory from the database path name passed
by the raid command. It also tries to read a commu-
nication cost matrix. The cost can be determined by
the number of gateways the remote request has to go
through, or by the inverse of the computation power
{MIPS) of the remote sites. The RC then initializes
the transaction table which maintains state informa-
tion of local transactions and remote requests; initial-
izes its view hint which keeps connectivity and reacha-
bility information of other RC’s; and finally initializes
the replication control method that is specified, as an
argument, to be used.

The main loop consists of receiving a high-level
RAID message, decoding and processing the message,
and blocking to receive another. When a message is
received, its header is decoded in order to extract the
message type and the id of the transaction to which
the message is destined. The transaction table is then
searched for a matching transaction id. If the transac-
tion is found, its state information is used to process
the message.
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Figure 4: The RAID Replication Control Automaton

Figure 4 depicts a simplified version of the RC
server automaton. The automaton specifies all possi-
ble sequences of state transitions a RAID transaction
may go through. From Non-FEzisting, a new trans-
action moves to Trans-Reading by sending out read
requests to a quorum of sites. When all replies ar-
rive, the transaction moves to Trans-Processing state.
To process another read operation, the transaction
sends another set of read requests and moves to Trans-
Reading state again. The transaction loops between
these two states until it gets aborted by the user issu-
ing the transaction, in which case it moves to Trans-
uAborting; until one of the replies that arrived is
negative (due to concurrency conflict), in which case
it moves to Non-FEzisting state; or until 1t reaches
its commit point, in which case it moves to Trans-
Prepare-to-Commit state. At this state, the update
list of all deferred writes of the transaction is built.
In the case of quorum consensus, version numbers
are packed into the update list. lmmediately after
the update list is ready, the transaction moves into
Trans-Commilling state where it stays there until it
receives the result of the commitment and moves to
Non-FEzisting state. On the other hand, a remote read
request creates a subtransaction that sends a read
request to its local concurrency controller and then
moves immediately to Subir-Reading state. The sub-
transaction stays on that state until it either receives
a reply, in which case it forwards it to the home site
issuing the request, or gets aborted by the user issuing
the home transaction in the home site.

When a transaction or a remote request reaches the
Non-Ezisting state, it is removed from the transaction
table. When in any waiting state, one of the replies
never arrives, RAID end-to-end timeout mechanism
aborts the transaction after a timeout value by flush-
ing an abort message throughout the whole system.
More details can be found in Figure 4 by following
each single transition.

650

Termination of the RC server happens when a kill
signal sent by the ORACLE is received. When the kill
message is received, the RC aborts all pending trans-
actions and dump RC statistics into well known files.
The statistics include number of RC aborts which are
aborts due to quorum unavailability, average update
list size, and average read and quorum size.

2.2.3 The RC Quorum Interface

The RC quorum interface i1s shown in figure 5. The
interface consists of six high-level function calls. For
each read request, there is a Single READ_Quorum
invocation. The parameters passed are transaction
id, RC method name, and relation descriptor. Sin-
gle_.READ_Quorum passes the relation descriptor on
to the Available_Sites function call. The latter in-
dexes the directory to determine the set of sites where
the relation is replicated. This set is then filtered
by the view hint returning the set of available copies
for that relation. Single. READ_Quorum then passes
the set of available sites along with the RC method
name to the replication control methods library where
the appropriate routine is invoked. For methods
where more than one quorum is available, the library
routines select a particular quorum using either the
Random_Permutation or the Min_Site_Permutation
heuristics or both. The Single.READ_Quorum invo-
cation ends by returning a read quorum (set of sites
from which the RC requests the relation). When all re-
quests have been replied, RC invokes Construct_Value
to determine the most-up-to-date relation. Con-
strucl_Value returns a relation that consists of tuples
that have the highest version numbers. For all the
writes, there 1s an ALL_.WRITE_Quorum invocation.
The parameters passed are transaction id, RC method
name, and the update list. For each element in the
update list, ALL_.WRITFE_Quorum invokes the Sin-
gle. WRITE_Quorum function call. The latter pro-
ceeds analogous to the Single. READ_Quorum and
returns a write quorum for the passed update ele-
ment. The ALL_.WRITE_Quorum ends by returning
the union of the write quorums of all the relations
included in the update list. The RC then invokes
the Pack.Update function call in order to include the
union of the write quorums in the update list. For
some methods, the Pack.Update function call modi-
fieg the version numbers of the relation tuples. When
the packed update list is returned by Pack_Update,
R(C hands the list to its local AC in order to start
commitment. Finally, when the RC server is started,
it invokes Inil_RC_Prolocol to do any necessary ini-
tialization. For example, reading the quorum param-
eters relation in the case of the quorum consensus
method. Inil_RC_Protocol always invokes Recover for
possible recovery procedures required by certain repli-
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Figure 5: RC Quorum Interface

cation methods.

2.3 Quorum Selection Heuristics

In the quorum consensus method, an operation can
usually be performed by more than just one quorum.
In order to select a quorum, the RC quorum interface
uses one of three heuristics. The RANDOM heuris-
tic generates a random permutation out of the set of
sites where data is replicated and returns the smallest
prefix of the permutation that constitutes a quorum.
The MINSITE heuristic descendingly sorts the set of
sites according to their weights, and returns the small-
est prefix of the sorted set that constitutes a quorum.
The RAND-MINSITE heuristic generates two quo-
rums form the RANDOM and the MINSITE heuristics
respectively, and returns the RANDOM quorum only
if it has the same size as the MINSITE quorum. Oth-
erwise, it returns the MINSITE quorum. Intuitively,
random selection of quorums produces uniform mes-
sage traffic which, in turn, helps load-balancing the
RAID sites. Random selection, however, can result in
large-size quorums and hence can increase the volume
of message traffic. On the other hand, smallest-size
selection of quorums incurs optimal volume of mes-
sage traffic. Smallest-size quorum selection, however,
results in a skewed load distribution among the RAID

sites. The performance of these heuristics were stud-
ied in [18}.

3 The RAID Surveillance Mechanism

Surveillance in RAID is implemented as a separate
server named the Surveillance Controller, or SC. The
SC servers detect both site and link failures as well as
subsequent repairs. Whenever a change in the system
connectivity is detected, the SC servers export a new
view hint to the Replication Control servers (RC) to
reflect the change. In response, RC’s adapt to the
new view hint and discard quorums that span failed or
unreachable sites. This way, transactions’ operations
are directed only to sites that are reachable.

The design of the RC and the SC servers does not
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contain or create functional dependency between the
two servers. This separation was realized by the fol-
lowing requirements.

o The RC does not require the surveillance facility,
although it highly benefits from it. This allows
for instantiating RAID without the SC servers, if
so desired. It also allows transaction processing
to continue despite SC server failure.

RC treats the connectivity information that it im-
ports from the SC server as a view hint [23] and
not as a synchronized view. This way, the cor-
rectness of the replication methods used by the
RC server does not depend on the surveillance
facility.

The main idea behind our protocol is to periodi-
cally send out [_am_alive broadcast messages, and to
periodically check for received I_am_alive messages.
We use interrupt signals to create this periodicity.
Each SC maintains a private timer for each participant
SC. A timer for an SC participant at site j reflects
the duration of time that has passed since the last
I.am_alive message was received from site j. When-
ever an [.am_alive message from site j is received, the
SC at the receiving site resets the timer correspond-
ing to the SC st site j. If the I_am_alive message from
site j is not received in a certain period of time, its
corresponding timer will expire indicating that either
a site or a link failure has occurred. The protocol can
be described as follows.

¢ As soon as an SC starts up, it sets the alarm to
be interrupted every fixed interval of time. We
call the duration of this time the delta time. SC
then blocks waiting to receive messages or peri-
odic alarm signals.

When SC is interrupted, it wakes up and does
one of two chores, in alternation. In the first al-
ternation, it broadcasts an I_am_alive message to
remote SC’s.

Each SC uses a timer for every other SC. Each
timer includes the number of ticks left before it
goes off. Whenever an [_am_alive message is re-
ceived from an SC on site 1, the ticks in the timer
of site 1 are reset to a positive constant that we
call TimeoutTicks.

When SC is interrupted and it is in the second al-
ternation, it checks the validity of its view. It does
so by decrementing one tick from all the timers. It
then builds a temporary view by including sites
that have non-zero positive number of ticks re-
maining after the decrement. Sites that have not
sent an [_am_alive message within ( Timeout Ticks



x delta) seconds are the ones whose timers con-
tain zero number of ficks. The TimeoutTicks
count guards against lost or extremely delayed
messages. If the new temporary view is found
different from the old view, SC installs the tem-
porary view as permanent and notifies its local
RC with that view. If) by the subsequent second
alternation, SC does not receive an acknowledge-
ment message from its local RC, it re-notifies the
RC with its current view, which could possibly be
different from the one originally sent.

The protocol takes delta and TimeoutTicks as pa-
rameters. The choice of these paramneters imposes a
compromise between increased comniunication over-
head (in case of small values of delta) and increased
abort rate of living-in-the-past transactions (in case
of large values of dela). The default values of these
parameters are set to 30.0 seconds, and 3 ticks, respec-
tively.

The RAID surveillance protocol has the following
features:

¢ Symmetry: the protocol is decentralized and does
not require a coordinator. This avoids running
an election protocol in the case of a coordinator
failure.

Asynchronous coordination: the protocol partic-
ipants are allowed to be completely out of syn-
chrony. This avoids clock drift probleins and so-
lutions.

Reliability: the protocol makes no assumptions
on the timeliness or reliability of niessage delivery.
Instead, it guards against message loss or delays.

versatility: the protocol does not need to be
restarted when adding or removing new partic-
ipants. This accommodates for dynamic systemn
reconfiguration.

The performance and effectiveness of the surveil-
lance protocol was examined experimentally in [19].
Several other surveillance protocols have been pro-
posed in the literature [28, 3, 21, 13, 12, 17].

4 Data Reconfiguration

Data reconfiguration is used in RAID to improve
the performance and to guard against anticipated fail-
ures. To improve transaction response time and sys-
temn throughput, RAID can adapt to variations in the
transaction read/write mix by re-distributing the data
in order to optimize the quorum size of the dominant
operation. Redistribution can also aimn at creating a
local copy in order to avoid remote access. When fail-
ures are predicted, data reconfiguration can be used to
temporarily relocate copies whose sites are anticipated
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to fail. To achieve data reconfiguration in RAID, we
use a technique whereby copies of an object can be re-
generated or made invalid. Qur reconfiguration tech-
nique requires that objects be physically fully repli-
cated. Each replica can, however, be made invalid,
or can be regenerated. An invalid copy is not part
of the database until it is regenerated. In addition
to redistributing a data object, our technique can —to
some extent— reconfigure the replication method that
is used with that object. This 1s done by reconfiguring
the object’s read and write quorums.

To implement reconfiguration, RAID uses a fully-
replicated Quorum Relalion that encapsulates the
database distribution and quorum information. Ta-
ble 1 shows the quorum relation of a four-relation
DebitCredit database in an 8-site RAID. For each re-
lation, the size of the read and write quorums and the
weights of the copies are specified. Copies with zero
weight are wnvalid copies. In order to read(write) a
relation, a nuniber of copies with total weight greater
than or equal to R.Quorum(W_Quorum) is required.
As an example, consider the Branch and Account rela-
tions. The Branch relation is configured so that it has
three copies at site 0, 1, and 2. It is also configured so
that it must be accessed through the read-one-write-
all method (ROWA). The Account relation is fully
replicated and is configured to be accessed through
a quorum consensus read-same-as-write method (QC-
RSW).

RAID wuses data reconfiguration to implement
adaptability policies. For instance, one of the RAID
adaptability policies prescribes the appropriate de-
grees of replication to use under different transaction
characteristics and failure conditions. The policy is
implemented by updating the quorum relation to re-
flect the new validation/invalidation of the replicas.
The definition of this policy is based on an integrated
experimental study of availability and performance in
RAID. In this study, the effect of varying the degree
of replication on the performance and availability of
replication methods is examined both experimentally
and analytically. The degree of replication that in-
curs the minimum compromise of the performance and
availability (called the practical degree of replication)
1s found and is prescribed for use under a given trans-
action characteristics and failure conditions.

Figures 6, and 7, demonstrate two experiments in
this study in a 9-site RAID system. Figure 6 shows the
response time and availability of the ROWA method
for read-only transactions and for workstation relia-
bility of 0.90. The practical degree of replication is 2
copies. Higher degrees of replication do not improve
availability or impair the response time. Figure 7
shows the response time and availability of the QC-
RSW method for 50 update percent and for worksta-



Table 1: The RAID Quoruin Relation

Relation | R_Threshold | W_Threshold | Wy | Wy | Wa { Wy | W5 | Ws | Wi | Ws
Teller 4.00 6.00 0 1 1 0 1 1 1 1
Branch 1.00 3.00 1 1 1 0 0 0 0 0
Account 5.00 5.00 1 1 1 1 1 1 1 1
History 3.00 5.00 1 1 1 1 1 1 0 0
091 — ;0 5 Conclusion
8'?2 :? o ROWA This paper describes the design and implementa-
¢ ROWA 08— I~ 6 Response tion of some fault-tolerance mechanisms in the dis-
Availability 4 _] / > ( 1;‘(;‘:;) tributed database systemn RAID. These mechanisms
8::23:' [y include adaptable data replication, failure detection,
EPS cinalinalinindshainaingi i f and failure isolation through reconfiguration. Repli-
I O I cation in RAID has been implemented in terms of a
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Figure 6: Read-one-write-all: 0% Updates,
0 90 Reliability
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Figure 7: Quorum Consensus(Read-sane-as-write):
50% Updates, 0 90 Rehabihty

tion reliability of 0.90. The practical degree of replica-
tion is 5 copies. Higher degrees of replication severely
impairs response time and, in the same time, does not
increase availability significantly.

Table 2 lists a sample of the practical degrees of
replication for both the ROWA and the QC-RSW, for
0, 20, and 50 update percents, and for 0.90, 0.95, and
0.99 workstation reliability. The degree of replication
of the database relations can be adapted to the prac-
tical values once estimates of the transactions’ update
percent or the workstation reliabilities are obtained.
The adaptability is accomplished by updating the quo-
rumn relation in accordance with table 2.

stand-alone replication controller, off-line replication
management, quorurmn selection heuristics, and an in-
terface to a surveillance facility. Failure detection is
iinplemented via a reliable surveillance facility that
maintains network-independent reachability informa-
tion called view hints. We have shown how the surveil-
lance facility is integrated with replication control,
to increase fault-tolerance and to control performance
degradation during failures. Finally, we have demon-
strated the use of data reconfiguration and replication
adaptability to achieve failure isolation.
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