
Leveraging the “Multi” in Secure Multi-Party Computation

Jaideep Vaidya
Department of Computer Sciences and CERIAS

Purdue University
250 N University St

West Lafayette, IN 47907-2066

jsvaidya@cs.purdue.edu

Chris Clifton
Department of Computer Sciences and CERIAS

Purdue University
250 N University St

West Lafayette, IN 47907-2066

clifton@cs.purdue.edu

ABSTRACT
Secure Multi-Party Computation enables parties with pri-
vate data to collaboratively compute a global function of
their private data, without revealing that data. The in-
crease in sensitive data on networked computers, along with
improved ability to integrate and utilize that data, make
the time ripe for practical secure multi-party computation.
This paper surveys approaches to secure multi-party com-
putation, and gives a method whereby an efficient protocol
for two parties using an untrusted third party can be used
to construct an efficient peer-to-peer secure multi-party pro-
tocol.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
Security

General Terms
Security

Keywords
Privacy, Secure Multi-party Computation, Secure Distributed
Computation

1. INTRODUCTION
In the new era of enhanced privacy and security conscious-

ness, secure distributed computing is gaining increasing at-
tention. A plethora of situations exist where multiple parties
have local data, and would like to share this data to obtain
globally useful results. This desire often conflicts with pri-
vacy concerns; sharing and integrating this data may well
violate privacy constraints. Theoretical results [10] show
that it is possible to securely compute almost any function
without revealing anything other than the output. However,
performing this computation in a practical manner is quite

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’03, October 30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-776-1/03/0010 ...$5.00.

another issue. The general method is inefficient for complex
operations over large data sets.

This has motivated research on practical efficient proto-
cols for secure computation in many domains. The empha-
sis has been on computation efficiency, communication effi-
ciency, or both. Most work has been on two-party protocols
that are both provably secure and efficient. With three or
more (increasing number of) parties, the challenges (and so-
lutions) become more difficult.

However, there is hope. We present a method where,
by making certain assumptions about what can and can-
not be revealed, we leverage the very multiplicity of parties
in multi-party computation. Proposing a concrete solution
for all problems is an extremely difficult task. Rather than
doing so, we suggest a methodology that allows generation
of efficient multiparty solutions provided

• a secure two-party solution to the problem exists, and

• a minor, and quantifiable, set of extra information is
allowed to be revealed.

We begin with a short review of secure multi-party compu-
tation and discussion of related work. In Section 3, we give
an informal definition of the privacy constraints enforced by
secure multi-party computation, and describe various ap-
proaches to secure multi-party computation. Our method
to generate multi-party protocols is presented in Section 4,
followed by some demonstrative examples in Section 5. We
conclude with a short discussion of ideas for future work.

2. RELATED WORK
There has been work in cooperative computation between

entities that mutually distrust one another. This computa-
tion may be of any sort: scientific, data processing or even
secret sharing. Secure two party computation was first in-
vestigated by Yao [22] and was later generalized to multi-
party computation. The seminal paper by Goldreich et al.
[10] proves the existence of a secure solution for any func-
tionality. The approach used is as follows: the function f to
be computed is first represented as a combinatorial circuit.
The parties then run a short protocol for every gate in the
circuit. Every participant gets (randomly chosen) shares of
the values of the input and output for each gate; the exclu-
sive or of the shares is the actual value. One share alone
carries no information about the input or function value, as
which party gets which share is determined randomly. At
the end, the parties exchange their shares, enabling each
to compute the final result. This protocol has been proven

53

to give the desired result without disclosing anything other
than the result. This approach, though appealing in its sim-
plicity and generality, implies that the size of the protocol
depends on the size of the circuit, which depends on the size
of the input. Other general techniques have been proposed
[4, 16]. However, the general methods are typically rather
inefficient for large inputs, especially with a large number of
parties.

The cost of circuit evaluation for large inputs has resulted
in a slew of algorithms for more efficiently computing specific
functionalities. Many protocols have been developed to solve
specific problems, published both in the security literature
as well as in the literature of application areas. Some exam-
ples include secure summation[19], scalar product[2, 12, 20],
some scientific computation[6], secure set union[14], secure
set intersection cardinality[21], private permutation[7], and
computing entropy[9].

Lindell and Pinkas [15] examined the problem of com-
puting the entropy for horizontally partitioned data using a
clever application of the Taylor series expansion. Agrawal et
al. also independently suggested techniques for computing
the intersection, intersection size, join and join size for large
databases [1].

Naor et al. [17] define a reduction from a multi-party
scenario into a two-party solution. Kantarcioglu and Vaidya
[13] also define a similar architecture that enables privacy
preserving data mining for multiple parties. Both of these
assume that all the parties will be able to agree on two
specific parties to trust, and also elevates the security risk
of losing all the information to the “cracking risk” of just two
parties. The reduction in this paper requires that any two
parties need to agree on at least one other party to trust.
This is a feasible alternative to the need for an external
trusted third party, which is often difficult to achieve.

Du and Atallah [8] is an excellent survey of secure mul-
tiparty computation problems and their applications while
[5] suggests a practical approach to applying secure multi-
party computation by accepting a compromise on security.
We further extend this idea. Under relatively practical as-
sumptions about privacy constraints, we demonstrate how
to exploit the very complexity of a problem (specifically, the
multiplicity of parties) to create an efficient solution.

3. MODELS FOR SECURE MULTI-PARTY
COMPUTATION

We now give an overview of varieties of secure multiparty
protocols. We will illustrate with a simple and well-studied
example, the scalar dot product problem. While this is a
two-party problem, the ideas readily extend to more parties.
The problem is formally defined as follows:

Assume party A has the vector ~X = (x1, . . . , xn) and

party B has the vector ~Y = (y1, . . . , yn). The parties wish

to compute the scalar product (or dot product) ~X · ~Y =
∑n

i=1
xi ∗ yi, without revealing any information about ~X or

~Y that is not inherently revealed by the result ~X · ~Y .

3.1 Secure protocols with a trusted third party
The simplest approach is based on the existence of a trusted

third party. A trusted party is one to whom private values
can be revealed without violating privacy constraints. If
we have a single party that is trusted by all of the partic-
ipants, an extremely simple protocol is available. Simply

have each party send its input to the trusted third party,
and the trusted party computes and shares the result. The
same protocol can be utilized independent of the number of
local parties.

In reality, many protocols work this way. A common ex-
ample is payment escrow. The buyer sends payment to the
escrow agent, who validates that payment is received and
tells the seller to proceed with the transaction. Only when
the goods are delivered does the escrow agent release pay-
ment. In more complex transactions (e.g., Real Estate),
there may be additional parties, such as mortgage compa-
nies, and the computation required of the escrow agent may
be more complex.

This is the “gold standard” for secure multiparty com-
putation. With our running example, we assume a trusted
third party T . Both A and B send their vectors to T which
performs the dot product and returns the result. Clearly
neither A nor B learns anything from the protocol except
the result, nor (assuming secure communication) does any
other party except T . This is also generally an efficient pro-
tocol.

The biggest disadvantage to this model is the loss of pri-
vacy – there must be a party trusted with all of the data.
Legal issues, trade secrets, and privacy concerns combine
to make existence of such a party doubtful, especially with
many parties. The goal of secure multiparty computation
is to approximate such a model in the absence of a trusted
party.

3.2 Completely secure multi-party protocols
The opposite extreme is a computation carried out only

by the parties who possess the data and desire the results.
Thus, a secure two-party protocol is completely carried out
by two parties, say, Alice and Bob, without involving any
other parties in the computation. Each gets its own output,
with nobody else getting anything. Typically, without sim-
plifying assumptions, these protocols are quite inefficient.

There are several scalar product protocols in the literature
for efficiently and securely computing scalar product using
only two parties[2, 12, 20].

The protocol in [20] is completely algebraic: one party
adds randoms to its values and sends it to the other party,
which does some computation and sends data computed
from its own values back. By clever choice of the original
randoms, and proper values sent back, the first party is able
to compute the scalar product. The total cost is about 1.5
times the input size. This protocol is not completely pri-
vate, as the information seen in the protocol along with ex-
ternally learning half of the private values reveals the other
half. The other protocols use more expensive cryptographic
approaches to achieve privacy approximating the untrusted
third party model, assuming parties do not “cheat” in the
execution of the protocol.

The Secure Multi-Party Computation literature has shown
that virtually any functionality can be privately computed
in this model[10, 16]. The general approaches do not scale
well to complex problems over large data sets, leading to
many specialized protocols for specific functionalities.

We now look at two alternative models, enabling practi-
cal and efficient solutions while maintaining an equivalent
degree of privacy.

54

Commodity
Commodity

Commodity Server Model

CharlesBob

Information
"Encrypted"

Information
"Encrypted"

Information
"Encrypted"

Alice

Untrusted

3rd party

Untrusted third party model

Commodity

Charles

BobAlice

Completely secure multi−party model

Commodity
Server

CharlesBobAlice

Figure 1: Different computation models

3.3 Two party protocols with an untrusted third
party

The existence of an untrusted third party enables efficient
protocols without revealing private information. The idea of
an untrusted third party is that it is willing to perform some
computation for the parties in the protocol (perhaps for a
fee). It is not trusted with the data or the results. The trust
placed in this party is that it:

1. not collude with any of the participating parties to
violate information privacy, and

2. correctly executes the protocol.

Correct execution of the protocol is only required to guar-
antee correct results; even a dishonest third party is unable
to learn private information in the absence of collusion.

Typically the third party is given some information in en-
crypted form. By encryption, we simply mean that the third
party cannot make any sense of the data given to it without
the assistance of the local parties involved in the protocol.
The third party performs a computation on the encrypted
data, possibly exchanging information with the other parties
in the process. Finally, the encrypted computation result is
revealed to the local parties, who are able to decrypt the
result.

For our scalar product protocol, consider the following: A
and B together decide on a (possibly random) permutation
π of n elements that is known only to them. A and B also

generate a common random vector ~R of n elements. Now,
A generates the vector ~X ′ = π(~X + ~R), while B generates
~Y ′ = π(~Y + ~R). A and B send ~X ′ and ~Y ′ to the third
untrusted party U .

U computes the scalar product S = ~X ′ · ~Y ′. Identically
permuting both vectors has no effect on the scalar product,
since it effectively is only changing the order of additions in
the sum. Thus, S = ~X · ~Y + ~X · ~R + ~Y · ~R + ~R · ~R. A and
B also send ~X · ~R and ~Y · ~R to U . U subtracts these from
S to get S′ = ~X · ~Y + ~R · ~R. U sends S′ back to A and
B, who subtract ~R · ~R to get the final result. Since neither
~R nor the permutation π is known to U , it learns nothing
of ~X, ~Y , or the result. This protocol is also very efficient
in communication complexity, since the permutation π and
the random vector R can be generated with a single random
seed - the communication cost is O(n), where n is the size
of the vectors.

3.4 Two party protocols with commodity server
Beaver [3] introduced an alternative third party model –

the commodity server model. In this model, a commod-
ity server generates data that is used by the two parties,
enabling them to “synchronize” their protocols. The trust
requirements are the same as for an untrusted third party;
the key practical difference is that the third party generally
has a lower computation cost as a commodity server rather
than as an untrusted third party.

A commodity-server based protocol is given in [9]. The

55

idea is that the commodity server generates two random
vectors, ~Ra and ~Rb, and two random shares ra, rb, of the
scalar product of ~Ra · ~Rb (i.e., ra + rb = Ra · Rb). The pair

(~Ra, ra) is sent to A, while (~Rb, rb) is sent to B. A and
B carry on a computation involving these pairs and their
own input to find the scalar product ~X · ~Y . The complete
protocol is given in [9].

Commodity server protocols are in general less efficient
than the class of protocols of subsection 3.3. However, a
convincing proof that the third party does not learn any-
thing is trivial, as it never receives any information.

3.5 Summary
Multi-party protocols without using any other parties are

often complicated and inefficient. While a trusted third
party allows us to easily solve problems, the assumption
of such a completely reliable party is not always practical.
Protocols using a commodity server or an untrusted third
party allow elegant solutions that meet privacy constraints
and achieve acceptable performance. The basic assumption
of third party protocols is non-collusion: the third party will
not work with one of the participants to violate the privacy
of another participant. The different computation models
are summarized in Figure 1.

4. A GENERAL, EFFICIENT, AND SECURE
MULTI-PARTY PROTOCOL

One problem with untrusted third party and commodity
server protocols is the requirement that an external party
be willing to perform computation. While this may be an
interesting business model, in this section we present an al-
ternative. For associative functions, if we slightly relax the
security guarantees, we can generate an efficient multi-party
protocol for any function for which we have an efficient two-
party protocol in the untrusted third party model. The basic
idea is to utilize participants as untrusted third parties. By
choosing what participants can see in their role as an un-
trusted third party, we can ensure they learn no more than
an external party would.

4.1 Assumptions
The general protocol trades off security for efficiency. How-

ever, a small compromise in security results in a large ame-
lioration of efficiency. Also, since this is a general tech-
nique rather than a particular solution, it requires actual
two-party protocols to be used as plug-ins. These issues are
now discussed in detail.

4.1.1 Function Restrictions
The general method presented here is not applicable to

all problems. In fact, it is only applicable to a class of func-
tions Fg (representing the class of functions solvable by our
general method), the properties of which are defined below.

A k-input function y = f(x1, . . . , xk) belongs to the class
of functions Fg, if and only if y = f(x1, . . . , xk) = x1 ⊗ x2 ⊗
· · · ⊗ xk, and further, that ⊗ is associative.

Examples of such functions include set union / intersec-
tion, as well as most additive/multiplicative functionalities.

4.1.2 Two party solution with protocol P

The primary assumption is that an efficient secure pro-
tocol P exists to solve the problem for two parties. The

protocol may make use of a single untrusted third party or
a single commodity server, i.e., protocol P is a protocol of
the class of protocols described in either Section 3.3 or Sec-
tion 3.4. This protocol P will be used as a plug-in to the
general protocol.

It is allowable for P to provide the results to the third
party rather than the original parties. Such asymmetric
protocols allows use where ⊗ is invertible, i.e., given a =
x ⊗ b, we could determine x. In these cases, a symmetric
protocol that gives the results to the parties with the data
would automatically violate privacy. Examples of protocols
where this is an issue are given in Section 5.

4.1.3 Adaptability of protocol P

Rather than an actual protocol, we give a methodology for
constructing a protocol and proving it secure. This requires
the integration of protocol P into the overall plan. Integra-
tion necessitates minor modifications to the protocol. The
protocol P should be reasonably malleable to incorporate
such modifications. This is not really an assumption, but
rather one of the engineering requirements to get the whole
thing to work.

4.1.4 Collusion
The core security assumption is identical to that needed

in the untrusted third party / commodity server model.
The chosen third party should not collude with either party
against the other. Thus, every pair of two parties must be
able to find at least one other party that it trusts not to
collude with the other party in the pair. While patholog-
ically dishonest and untrusting parties may find this diffi-
cult, in many practical situations it is feasible. For exam-
ple, in business relationships this level of trust is common
(e.g., non-disclosure agreements), but legal or contractual
requirements may impose stronger constraints than can be
satisfied by such agreements. This provides us with an alter-
native to finding a non-colluding external third party that is
willing to participate in the protocol, which is often difficult
to achieve.

4.2 The general framework
Given k parties, the goal is to compute a function y ∈

Fg, where y = f(x1, . . . , xk), where x1, . . . , xk are the local
inputs of the k parties. Note, by assumption 4.1.1, since
y ∈ Fg , y = x1⊗x2⊗· · ·⊗xk. By assumption 4.1.2, we have
a protocol P to securely compute the two-input function ⊗.

The key idea is to create two partitions P0 and P1. Split
the k parties equally into the two partitions. We can now
use the parties in partition Pi as untrusted third parties to
evaluate partition P1−i. To visualize this, construct a binary
tree on the partition Pi with the leaves being the parties in
Pi (Figure 2). There can be at most |Pi|−1 interior nodes in
the binary tree. Due to the (almost) equi-partitioning, the
following invariant always holds: |P1−i| ≥ |Pi| − 1, for both
values of i. Thus, there are sufficient parties in the other
partition to act as interior nodes. The role of the parties in
partition P1−i is to act as the commodity server or untrusted
third party for the parties in partition Pi.

In the first round, the k/4 of the parties from the other
partition act as third parties for the k/2 parties in the first
partition. For the remaining log k/2 − 1 rounds the other
k/4 parties of the 2nd partition act as third parties upwards
along the tree. Each third party receives some form of the

56

P

Stage (log k/2)

1,..,k/2

k/2−2,..,k/2

...
3k/4−1k/2+2k/2+1

P

P

PP

P

P

1,2,3,4

k−2,k−33,4 P

P

P Stage 1

k/2k/2−1P4321 PPPP

k
P

P1,2 3k/4P

2

Stage 2

Figure 2: The general protocol process applied on partition P0

intermediate result, and utilizes it in the next round. It is
important to analyze the amount of data revealed to the
third party at this point and modify the protocol if neces-
sary to limit the information disclosure. The entire process
is illustrated in Figure 2, where we show the process for
partition P0 consisting of the first k/2 parties. Thus, all of
the parties Pk/2+1, . . . Pk act as third parties / commodity
servers in a single call to the protocol P when applied to the
parties at the leaf nodes. There are a total of log k/2 rounds
in which several calls to the protocol P are made in parallel.

Once a similar process is done for the other partition P1,
the two topmost representatives of the two parties use a
secure two party protocol P ′ to compute the final result.
Every party possibly acquires some information about a few
of the other parties, which goes against the precept of secure
multi-party computation. But as long as the information
revealed is held within strict (and provable) bounds, it is
often worthwhile to trade this limited information disclosure
for efficiency and practicality. As we shall show in Section
5, the intermediate information disclosed can generally be
presented in a form that does not reveal private information.

4.2.1 Security
Given a secure multi-party computation (SMC) style proof

of security for protocol P , it is straightforward to provide a
proof of security for the entire protocol. The proof depends
upon applying the composition theorem[11], considering P
to be the subroutine called. The views of interior nodes
will generally be straightforward to simulate, given that the

results of the protocol P using that node as the untrusted
party are viewed as part of the result seen by that party.
This allows a simple simulation proof showing no other data
is revealed. An example of such a proof is given in [21].

5. EXAMPLES
In this section, we give some examples of applying the

general methodology to practical problems. Section 5.1 pro-
vides a solution to the rather trivial problem of computing
the XOR. Section 5.2 provides a much more concrete demon-
stration of the methodology to compute the set intersection.

5.1 A trivial application - XOR
Computing the exclusive or of a distributed set of bits

provides a simple demonstration of this methodology. The
problem is as follows: Given k parties P1 . . . Pk, each having
its own private bit bi, securely compute s = b1⊕b2⊕· · ·⊕bk,
where ⊕ signifies the XOR operation. Securely computing
XOR makes no sense for only two parties, as the result re-
veals the other party’s input, however it is a viable problem
for n > 2 parties, or for two parties if some third party (and
only the third party) is allowed to view the result.

Consider two parties A and B with the source data x and
y, and a third party U that is allowed to know the result x⊕y
but is not trusted with either x or y. A suitable protocol P
follows: A and B jointly agree on two random bits r1 and
r2. Then, A sends Ma = x ⊕ r1 ⊕ r2 to U , while B sends

57

Mb = y ⊕ r1 ⊕ r2 to U . U can now easily find the result:

Ma ⊕ Mb = (x ⊕ r1 ⊕ r2) ⊕ (y ⊕ r1 ⊕ r2)

= (x ⊕ y) ⊕ (r1 ⊕ r1) ⊕ (r2 ⊕ r2)

= (x ⊕ y) ⊕ 0 ⊕ 1

= x ⊕ y

U can take the inverse of the XOR of the two messages it
receives to get the desired result x ⊕ y.

This protocol can easily be extended to more than two
parties by simple application of the general methodology.
The complete set of parties is separated into two partitions.
The interior nodes for the computation tree of one parti-
tion will be the parties from the other partition. Repeated
application of the protocol P at all levels gives the desired
result. Each party does learn some additional information
(the XOR of the bits of the subtrees below it), but since
none of these includes its own bits, it gains no information
about the individual data values at the leaves of the tree.
The exception is the root, as its bit is included in the result
it learns, however since all it learns is the desired final result
what it learns is inescapable.

A slight variation would allow a completely secure pro-
tocol. Instead of just choosing r1 and r2, parties would
choose additional randoms in collaboration with the other
leaf nodes such that the random values would only cancel
out at the root.

5.2 Secure Set Intersection
A more useful example is securely obtaining the size of

the intersection of several sets. The problem is defined as
follows. There are k parties, P1, . . . , Pk, each with a local set
Sk drawn from a common (global) universe U . They wish
to compute | ∩k

j=1 Sj |, i.e., the cardinality of the common
intersection set. This is useful for several applications for
example data mining association rules (see [21] for details.)

Since set intersection is associative, we can use the pro-
tocol of Section 4 provided we have a secure two-party pro-
tocol using an untrusted third party. We now outline a two
party protocol P using a third untrusted party to compute
|Sa ∩ Sb| for two parties A and B. The key idea behind
protocol P is to use a commutative encryption scheme (e.g.,
RSA[18] with both keys kept private). Commutativity en-
sures that Ek1(Ek2(x)) = Ek2(Ek1(x)). Parties A and B
generate encryption keys Ea and Eb respectively. A en-
crypts the items in its set Sa with Ea and sends them to
B. Similarly, B encrypts the items in Sb with Eb and sends
them to A. Each site now encrypts the received items with
its own key, and sends the doubly-encrypted sets S′

a and S′

b

to U . U now finds the intersection of these two sets. Because
of commutativity of the encryption, an item x ∈ Sa∩Sb will
correspond to an item Ea(Eb(x)) = Eb(Ea(x)) that appears
in both S′

a and S′

b. Therefore, the size of the intersection
|S′

a ∩S′

b| = |Sa ∩Sb|. Thus U learns the size of the intersec-
tion, but learns nothing about the items in the intersection.

Extending this to more than two parties is simple. The
lowest layer proceeds as above. At the higher layers, the par-
ties encrypt with the keys of their sibling’s children. Since a
party never sees any of the values from the sibling’s children
(even after encryption), knowing the keys gives no informa-
tion. More details are given in [21].

A similar protocol can be constructed to determine the
size of set union.

6. CONCLUSION
Protecting privacy while doing meaningful computation

over distributed data is a tough task. However, there have
been great strides in research on secure distributed compu-
tation. Theoretically, both two-party and multi-party pro-
tocols are possible for almost any computation. Practical
solutions have been found for several types of two-party
computations. However, secure multi-party computations
are not as well explored.

We have presented a method for converting two-party pro-
tocols that use an untrusted third party into secure multi-
party protocols that do not require a third party. Through
use of the composition theorem of [11] and the provably se-
cure protocol of Section 4, it is straightforward to generate
and prove secure a multi-party protocol given a secure two-
party protocol with an untrusted third party. The method
requires only the assumption of non-collusion, and a will-
ingness to reveal a small and provably limited amount of
additional information. This method works for any asso-
ciative function. Developing a general method which goes
beyond associative functions is an interesting future direc-
tion for research.

Practical use of secure multi-party computation will re-
quire the ability to easily generate new computations corre-
sponding to the requirements of a particular set of partic-
ipants. The task of generating such protocols and proving
them secure must be made easier. One way to do this is
by providing a toolkit of secure protocols, and methods to
combine them. We have presented once such combination
method. Further work along these lines will enable secure
multi-party computation to become a significant enabler for
electronic collaboration that preserves privacy.

7. REFERENCES
[1] R. Agrawal, A. Evfimievski, and R. Srikant.

Information sharing across private databases. In
Proceedings of ACM SIGMOD International
Conference on Management of Data, San Diego,
California, June 9-12 2003.

[2] M. J. Atallah and W. Du. Secure multi-party
computational geometry. In Seventh International
Workshop on Algorithms and Data Structures (WADS
2001), Providence, Rhode Island, USA, Aug. 8-10
2001. [Online]. Available: http://www.cerias.purdue.
edu/homes/duw/research/paper/wads2001.ps

[3] D. Beaver. Commodity-based cryptography (extended
abstract). In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing. ACM
Press, 1997, pages 446–455.

[4] D. Chaum, C. Crepeau, and I. Damgard. Multiparty
unconditionally secure protocols. In Proceedings of the
20th ACM Symposium on the Theory of Computing.
ACM Press, 1988, pages 11–19.

[5] W. Du and Z. Zhan. A practical approach to solve
secure multi-party computation problems. In
Proceedings of New Security Paradigms Workshop,
Virginia Beach, virginia, USA, September 23-26 2002.

[6] W. Du and M. J. Atallah. Privacy-preserving
cooperative scientific computations. In 14th IEEE
Computer Security Foundations Workshop, Nova
Scotia, Canada, June 11-13 2001, pages 273–282.
[Online]. Available: http://portal.acm.org

58

[7] W. Du and M. J. Atallah. Privacy-preserving
statistical analysis. In Proceeding of the 17th Annual
Computer Security Applications Conference, New
Orleans, Louisiana, USA, December 10-14 2001.
[Online]. Available: http://www.cerias.purdue.edu/
homes/duw/research/paper/acsac2001.ps

[8] W. Du and M. J. Atallah. Secure multi-party
computation problems and their applications: A
review and open problems. In New Security Paradigms
Workshop, Cloudcroft, New Mexico, USA, September
11-13 2001, pages 11–20. [Online]. Available:
http://www.cerias.purdue.edu/homes/duw/research/
paper/nspw2001.ps

[9] W. Du and Z. Zhan. Building decision tree classifier
on private data. In IEEE International Conference on
Data Mining Workshop on Privacy, Security, and
Data Mining, C. Clifton and V. Estivill-Castro, Eds.,
vol. 14. Maebashi City, Japan: Australian Computer
Society, Dec. 9 2002, pages 1–8. [Online]. Available:
http:
//www.jrpit.flinders.edu.au/CRPITVolume14.html

[10] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game - a completeness theorem for
protocols with honest majority. In 19th ACM
Symposium on the Theory of Computing, 1987, pages
218–229. [Online]. Available:
http://doi.acm.org/10.1145/28395.28420

[11] O. Goldreich. Secure multi-party computation. Sept.
1998, (working draft). [Online]. Available:
http://www.wisdom.weizmann.ac.il/∼oded/pp.html

[12] I. Ioannidis, A. Grama, and M. Atallah. A secure
protocol for computing dot-products in clustered and
distributed environments. In The 2002 International
Conference on Parallel Processing, Vancouver, British
Columbia, Aug. 18-21 2002.

[13] M. Kantarcioglu and J. Vaidya. An architecture for
privacy-preserving mining of client information. In
IEEE International Conference on Data Mining
Workshop on Privacy, Security, and Data Mining,
C. Clifton and V. Estivill-Castro, Eds., vol. 14.
Maebashi City, Japan: Australian Computer Society,
Dec. 9 2002, pages 37–42. [Online]. Available:

http://crpit.com/Vol14.html

[14] M. Kantarcıoǧlu and C. Clifton. Privacy-preserving
distributed mining of association rules on horizontally
partitioned data. IEEE Trans. Knowledge Data Eng.,
to appear.

[15] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Advances in Cryptology – CRYPTO 2000.
Springer-Verlag, Aug. 20-24 2000, pages 36–54.
[Online]. Available: http://link.springer.de/link/
service/series/0558/bibs/1880/18800036.htm

[16] M. Naor and K. Nissim. Communication preserving
protocols for secure function evaluation. In
Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, Heraklion, Crete, Greece, July
6-8 2001. [Online]. Available:
http://doi.acm.org/10.1145/380752.380855

[17] M. Naor, B. Pinkas, and R. Sumner. Privacy
preserving auctions and mechanism design. In
Proceedings of the 1st ACM Conference on Electronic
Commerce. ACM Press, 1999.

[18] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
21(2):120–126, 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

[19] B. Schneier, Applied Cryptography, 2nd ed. John
Wiley & Sons, 1995.

[20] J. Vaidya and C. Clifton. Privacy preserving
association rule mining in vertically partitioned data.
In The Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Edmonton, Alberta, Canada, July 23-26 2002, pages
639–644. [Online]. Available:
http://doi.acm.org/10.1145/775047.775142

[21] J. Vaidya and C. Clifton. Secure set intersection
cardinality with application to association rule
mining. ACM Transactions on Information Systems
Security, submitted.

[22] A. C. Yao. How to generate and exchange secrets. In
Proceedings of the 27th IEEE Symposium on
Foundations of Computer Science. IEEE, 1986, pages
162–167.

59

