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A b s t r a c t  

Data mining technology has given us new capabili- 
ties to identify correlations in large data sets. This 
introduces risks when the data is to be made pub- 
lic, but the correlations are private. We introduce 
a method for selectively removing individual values 
from a database to prevent the discovery of a set 
of rules, while preserving the data for other appli- 
cations. The efficacy and complexity of this method 
are discussed. We also present an experiment show- 
ing an example of this methodology. 

1 M o t i v a t i o n  

The proliferation of new data mining techniques have 
increased privacy risks because now it is possible to 
efficiently combine and interrogate enormous data 
stores, available on the web, in the search of previ- 
ously unknown hidden patterns. In order to make a 
publicly available system secure, we must ensure not 
only that private sensitive data have been trimmed 
out, but also to make sure that  certain inference chan- 
nels have been blocked. In other words it is not only 
the data, but the hidden knowledge in this data, that  
should be made secure. Moreover, the need for mak- 
ing our system as open as possible - to the degree that  
data sensitivity is not jeopardized - asks for various 
techniques that  account for the disclosure control of 
sensitive data. 

This is not the same as the typical data privacy 
problem. We are not concerned with protecting indi- 
vidual entities - it is assumed that  they are already 
cleared for release. Our concern is with rules that  can 
be learned from that  data. In particular, we have a 
specific set of rules that  we wish to protect. This is 
related to inference protection [7], but the problem 

*Portions of this paper appeared in the ~00~ Conference 
on Research Issues in Data Engineering. The discussion of 
the efficacy of the method (Section 5.4) is completely new. 

now extents to non-strict inferences - rules that  hold 
with only some level of support and confidence. 

The technique presented here applies to applica- 
tions where it is necessary to store imprecise or un- 
known values for some attributes, such as when actual 
values are confidential or not available. We propose 
an innovative technique for hiding rules (i.e., knowl- 
edge) from a data set, by replacing select attr ibute 
values with unknowns. This is similar to previous 
proposals that  replace select values with "false" val- 
ues [9]. However, sometimes false values can have 
bad consequences. Consider a medical institution 
that will make some of its data public, and the data 
is sanitized by replacing actual attr ibute values by 
false values. Researchers may use this data, but ob- 
tain misleading results (for example, by using data 
mining tools to learn rules). In the worst case, such 
misleading rules could be used for critical purposes 
(like diagnosis) and jeopardize patients'  lives. There- 
fore, for many situations it is safer if the sanitization 
process place unknown values instead of false values. 
This obscures the sensitive rules, while protecting the 
user of the data from learning "false" rules. 

The goal of the algorithms presented here are to ob- 
scure a given set of sensitive rules by replacing known 
values with unknowns, while minimizing the side ef- 
fects on non-sensitive rules. This work is in early 
stages; we do not prove either claim. However, we 
do give arguments as to the difficulty of recovering 
sensitive rules, and experiments that  test the side ef- 
fects on non-sensitive rules. We see this as a starting 
point, and encourage others to address this problem. 

The rest of the paper is organized as follows. In 
Section 2 we present some background information 
and the notation used in the rest of the paper. In Sec- 
tion 3 we introduce new metrics required for dealing 
with sensitive association rules. Section 4 provides an 
outline of the rule hiding process and demonstrates it 
by using an example. In Section 5, we present three 
algorithms that  we developed for rule hiding and we 
comment on their performance and efficacy. Section 
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6 presents some initial results from experiments that  
we have performed by using real data sets. Section 
7 summariges the related work in the area of privacy 
preserving data mining rules. Finally, we conclude 
our discussion in Section 8. 

2 Background 

This work is based on the "classical" definitions of as- 
sociation rules using support and confidence, defined 
as follows: Let I = {il, ..,in} be a set of literals, 
called items. Let D be a database of transactions, 
where each transaction T is an itemset such that  
T C I .  A unique identifier, that  we call a TID, is as- 
sociated with each transaction. We say that  a trans- 
action T supports X, a set of items in I ,  if X C T. 

An association rule is an implication of the form 
X ~ Y ,  w h e r e X C  I,  Y C I a n d X N Y = O .  We 
say that  the rule X ~ Y holds in the database D with 
confidence c if ~ > c (where IA[ is the number of 
occurrences of the set of items A in the set of transac- 
tions D). We also say that  the rule X ~ Y has sup- 
port s if ~ > s. Note that  while the support is a 
measure of the frequency of a rule, the confidence is 
a measure of the strength of the relation between sets 
of items. Because the number of itemsets and associ- 
ation rules increases exponentially with the number 
of items in the database, we only consider association 
rules that  have support and confidence higher than 
two user specified thresholds: the Minimum Support 
Threshold MST and Minimum Confidence Threshold 
MCT. 

In the context of the current work, we assume that  
an association rule (and its corresponding large item- 
set thereof) is also characterized by yet another met- 
ric that  we call the sensitivity level. The sensitivity 
level of a rule denotes whether the rule is sensitive 
or not. For the sake of this presentation, we assume 
that  a rule whose support and confidence is below the 
MST and MCT is not sensitive. In other words, the 
sensitivity depends entirely on these two other met- 
rics. In a general framework of sensitivity analysis, we 
consider that  other factors affect the sensitivity of the 
rule (i.e., the rule refers to products of third parties). 
In our previous work [3, 9, 6] we have demonstrated 
how to hide a certain set of association rules that  
are considered sensitive from the database by using 
the support and the confidence of these rules. It  is 
straightforward that if we turn to 0 the 1-values that  
provide support to a large itemset, then the support 
of the corresponding rule decreases, and consequently 
the rule is not sensitive any more. 

3 Privacy Preserving Associa- 
tion Rules 

In order to extend the idea of association rule dis- 
covery to privacy preserving association rule mining, 
we need to make some modifications to the origi- 
nal setting. To allow us to introduce unknowns into 
the database, we will use an alternate b i tmap rep- 
resentation for transactions. Given a set of literals 
I = {il, ...,i,~}, a transaction T C I can also be rep- 
resented as a bi tmap vector (tl, ..., tn), where tj = 1 
if and only if ij 6 T. Using this representation for 
transactions and itemsets, we can compute if a trans- 
action T supports an itemset X (X C T) by testing 
i f X A T = X .  

The reason for introducing this representation is 
that  it allows us to represent an unknown value by re- 
placing the bi tmap vector with a three-valued vector 
such that  tj =?  if the presence of ij E T is unknown. 

With the new approach that  involves unknowns, 
the definition of support is modified. Instead of a 
single value for the support of an itemset A, we have a 
support interval [minsup( A ), raaxsup( A )] where the 
actual support of itemset A can be any value between 
rainsup(A) and maxsup(A). The minsup(A) is the 
percentage of the transactions that  contain ls for all 
the items in A and maxsup(A) is the percentage of 
the transactions that  contain either 1 or ? for all the 
items in A. 

The confidence formula is also modified since it 
will also have a degree of uncertainty. Instead of 
a single value for the confidence of a rule A =~. 
B, we have a confidence interval [minconf(A 
B),maxconf(A ~ B)], where the actual confi- 
dence of a rule A ~ B can be any value between 
minconf(A =-~ B) and maxconf(A ~ B). Given the 
minimum and maximum support values of itemsets 
A U B and A, the minimum confidence value for a 
rule A ~ B is, minconf(A ~ B) = minsup(A W 
B) x lO0/maxsup(A), and the maximum confidence 
value is maxconf(A ~ B) = maxsup(A tJ B) × 
lO0/minsup(A). 

When there are no unknown values (i.e., ?) then 
minimum and maximum values for the support and 
confidence will be MST and the MCT correspond- 
ingly. During the sanitization process, when we start  
placing ?s, the minimum and maximum values will 
start  to set apart, and in this way, the degree of un- 
certainty for the rule, will increase. 

46 S I G M O D  Reco rd ,  Vol. 30, No.  4, D e c e m b e r  2001 



4 S e n s i t i v e  A s s o c i a t i o n  R u l e  

H i d i n g  

In order to hide a rule A ~ B, we can either decrease 
the support of the itemset A U B below the minimum 
support threshold, or we can decrease the confidence 
of the rule below the minimum confidence threshold. 
This can be accomplished by placing ?s in place of the 
actual values to increase the uncertainty of the sup- 
port and confidence of the rules (i.e., length of the 
support and confidence intervals). Considering the 
support interval and the minimum support thresh- 
old (MST), we may have the following cases for an 
itemset A containing a sensitive association rule: 

• A remains sensitive when minsup(A) > MST, 

• A is not sensitive when maxsup(A) is smaller 
than MST, 

• A is sensitive with a degree of uncertainty when 
minsup(A) _< MST < maxsup(A) 

The same reasoning applies to the confidence inter- 
val and the minimum confidence threshold (MCT). 
Note that it is possible for the support of a rule to 
be above the MST, and for the confidence to have a 
degree of uncertainty and vice versa. Also, both the 
confidence and the support may be above the thresh- 
old. 

We consider a sensitive rule to be hidden when 
it is sensitive with a degree of uncertainty, i.e. 
minsup(A) < MST < maxsup(A) or minconf(A =~ 
B) < MCT < maxconf(A =~ B). 

From a rule hiding point of view, in order to hide a 
rule A ~ B by decreasing its support, the only way 
is to replace ls by ?s for the items in A U B. In this 
way, we will only change the minimum support value 
while the maximum support value will be the same. 
As we replace ls by ?s marks for the items in A U B, 
the minimum support value of A ~ B will decrease 
and after some point it will go below the minimum 
support threshold. 

We can hide a rule A ~ B by decreasing its con- 
fidence by replacing both ls and 0s by ?s. The 
confidence interval of A =~ B is [minconf(A =~ 
B),maxconf(A ~ B)] and our aim is to de- 
crease the minconf(A ~ B) below the MCT. Re- 
call that minconf(A ~ B) = minsup(A U B) × 
lO0/maxsup(A). So we should decrease minsup(A U 
B) and/or increase maxsup( A ). The minsup( A U B) 
can be decreased by either placing a ? in place of a 
1 in either A or B. If we place a ? in place of A then 
rninsup(A) will also decrease, causing an increase in 
the maximum confidence value, since maxconf(A 

Table 1: Sample Database of Transactions 

TID A B C D 
Ti 1 1 0 1 
T2 0 1 0 0 
Ts 1 0 1 1 
Ta 1 1 0 0 
T5 1 1 0 1 

Table 2: Sample Database of Transactions with Un- 
known Attribute Values 

TID A B C D 
T1 ? 1 0 1 
T2 0 1 0 0 
T3 1 0 1 ? 
T4 1 ? 0 0 
T5 1 ? 0 1 

B) = maxsup(A U B) x lO0/minsup(A). For rule 
hiding, it would be desirable to keep the maximum 
confidence as low as possible, and for this reason, it 
is better to place a ? for an item in B. To increase 
maxsup(A), we should replace the 0 values for the 
items in A with a ?. 

Both processes can have side effects, either reduc- 
ing the minimum support for other rules (where ls 
are replaced by ?s), or increasing the maximum sup- 
port (where 0s are replaced by ?s). 

A sample database of transactions is shown in 
Table 1. The database consists of 5 transactions 
whose items are drawn from the set (A, B, C, D}. 
For this database, when we set the minimum sup- 
port threshold to 50% and the minimum confidence 
threshold to 70%, the frequent (large) items are A, 
B, and D with supports 80%, 80%, and 60%, re- 
spectively. Frequent itemsets of size 2 are the AB, 
and AD with support 60%. The rules obtained 
from these large itemsets are A =~ B, and A 
D both having 75% confidence. Table 2 shows a 
database with unknown attribute values. In case of 
unknown attribute values, we previously defined the 
concepts of minimum support and maximum support, 
as well as the minimum confidence and maximum 
confidence. For example, minsup(A) = 60%, and 
maxsup(A) = 80%. When we set the minimum sup- 
port threshold to 50%, we see that  both minsup(A) 
and maxsup(A) are above the minimum support 
threshold. However, for item B, minsup(B) = 40%, 
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and maxsup(B) = 80%, and minsup(B)  is below the 
threshold while maxsup(B)  is above the threshold. 
Among the itemsets of size 2, minsup(AB)  = 0%, 
and maxsup(AB)  = 80%. By observing the rules, 
we note that mincon f (A  =~ B) = minsup(AB)  x 
lO0/maxsup(A) = 0%, and maxcon f (A  ~ B) = 
maxsup(AB)  × lO0/minsup(A) = 100% 1 

5 Algor i thms  for Rule  Hiding  

We have built two algorithms for rule hiding. The 
first one focuses on hiding the rules by reducing 
the minimum support of the itemsets that  generated 
these rules (i.e., generating itemsets). The second 
one focuses on reducing the minimum confidence of 
the rules. Based on the concepts of interval support 
and interwl confidence that  we introduced, we would 
like to reduce either the minimum support or min- 
imum confidence values below MST orMCT by a 
certain safety margin SM. So, for a rule A ~ B, 
after the hiding process one of the following inequal- 
ities should hold; minsup(A ~ B) _< M S T  - SM,  
ormincon/(A ~ B) < M C T  - SM.  

5 .1  R u l e  H i d i n g  b y  R e d u c i n g  t h e  S u p -  

p o r t  

This algorithm (GIH) hides sensitive rules by decreas- 
ing the minimum support of their generating itemsets 
until the minimum support is below the MST by SM. 
The item with the largest minimum support is hidden 
from the minimum length transaction. The generat- 
ing itemsets of the rules in Rh (set of sensitive rules) 
are considered for hiding. The generating itemsets of 
the rules in Rh are stored in Lh (set of large item- 
sets) and they are hidden one by one by decreasing 
their minimum support. The itemsets in Lh a r e  first 
sorted in descending order of their size and minimum 
support. Then, they are hidden starting from the 
largest itemset. If there are more than one itemsets 
of ma~ximum size, then the one with the highest min- 
imum support is selected for hiding. The algorithm 
works like follows: Let Z be the next itemset to be 
hidden. Algorithm hides Z by decreasing its support. 
The algorithm first sorts the items in Z in descend- 
ing order of their minimum support, and sorts the 
transactions in Tz (transactions that support Z) in 
ascending order of their size. The size of a transac- 
tion is determined by the number of items it contains. 
At each step the item i E Z, with highest minimum 

1Note that we may have division by 0. When this occurs, 
the rule A =:~ B has minimum support 0, and is thus already 
hidden. 

support is selected and a ? is placed for that  item in 
the transaction with minimum size. The execution 
stops after the support  of the current rule to be hid- 
den goes below the M S T  by SM.  An overview of 
this algorithm is shown in Figure 1 where the gener- 
ating itemsets of all the rules specified to be hidden 
is stored in Lb. After hiding an item from a trans- 
action, the algorithm updates the minimum support 
of the remaining itemsets in Lh together with the list 
of transactions that  support them. The algorithm 
chooses the item with highest minimum support for 
removal with the intention that  an item of high min- 
imum support will have less side effects since it has 
many more transactions that  support it compared to 
an item of low minimum support. The idea behind 
choosing the shortest transaction for removal is that,  
a short transaction will possibly have less side effects 
on the other itemsets than a long transaction. 

INPUT:  a set L of large itemsets, the set Lh of large 
itemsets to hide, the database D, MST, and SM 

O U T P U T :  the database D modified by the deletion 
of the large itemsets in Lh 

Begin 
1. Sort Lh in descending order of size and 

minimum support of the large itemsets 
Foreach Z in Lh { 

2. Sort the transactions in Tz in 
ascending order of transaction size 

3. N_iterations = ITzl - (MST - SM) x IDI 
For k = 1 to N_iterations do { 

4. Place a ? mark for the item with the largest 
minimum support of Z in the next 
transaction in Tz 

5. Update the supports of the affected itemsets 
6. Update the database, D 

} 
} 

End 

Figure 1: Rule Hiding by Support Reduction (Algo- 
rithm GIH) 

5 .2  R u l e  H i d i n g  b y  R e d u c i n g  t h e  
C o n f i d e n c e  

We propose two approaches for rule hiding using con- 
fidence reduction. The first approach is based on re- 
placing ls by ?s, while the second approach replaces 
0s with ?s. 

The first algorithm shown in Figure 2 (CR) hides a 
sensitive rule r by decreasing the support of the gen- 
erating itemset of r. The difference between this and 
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the approach presented in Section 5.1 is tha t  items in 
the consequent of r only, are chosen for hiding. This 
is due to the fact tha t  by placing a ? for the items in 
the antecedent of a rule r will cause the minsup(Ir) 
(l~ is the left hand side of the rule r) to  decrease, lead- 
ing to an increase in the maxconf(r), and this works 
against the rule hiding process tha t  tries to decrease 
confidence values of sensitive rules. The hiding pro- 
cess goes on until the minsup(r) or the minconf(r) 
goes below the MST and MCT thresholds by SM. 
The algorithm first generates the set Tr of transac- 
tions tha t  support  r, and then counts the number 
of items supported by each transaction. Tr is then 
sorted in ascending order of transaction size. To se- 
lect the item in which we are going to place a ?, we 
consider the impact on rules other than those to be 
hidden. As a heuristic, the algorithm places a ? for 
the item with the highest support  in the minimum 
size transaction because of the same reason as we de- 
scribed in Section 5.1. 

INPUT:  a set Rh of rules to hide, the source 
database D, MCT, MST, and SM 

O U T P U T :  the database D transformed so that 
the rules in Rh cannot be mined 

Begin 
Foreach rule r in R~ do { 

1. T~ = {t in DIS fully supports r} 
2. for each t in T~ count the number of items in t 
3. sort the transactions in T~ in ascending order 

of the number of items supported 
R e p e a t  until  (minconf(r) < MOT - SM) { 

4. Choose the first transaction t 6 T~ 
5. Choose the item j in rr with the highest 

individual item minsup 
6. Place a ? for the place of j in t 
7. Recompute the minsup(r) 
8. Recompute the rninconf(r) 
9. Recompute the minconf of other affected rules 
10. remove t from T,. 

} 
11. Remove r from Rh 

} 
End 

Figure 2: Rule Hiding by Confidence Reduction (Al- 
gorithm CR) 

The algorithm CR2, shown in Figure 3 hides a 
rule r by increasing the rnaxsup(l~) via placing ?s 
in the place of the 0 values of items in l~. Increasing 
the maxsup(lr) causes the minconf(r) to  decrease. 
Given a rule r, the algorithm first generates the set 
Tit of transactions that  partially support lr but  tha t  

do not  support  rr  (the right hand side of the rule 
r). Then the number of items in lr contained in each 
transaction is counted. The transaction t tha t  con- 
tains the highest number of items in lr is selected 
for processing, in order to  make the minimum im- 
pact  on the database. The 0 values for the items 
of lr tha t  are not supported by t are replaced by 
?s to increase the maxsup(lr). The confidence of 
the rule is recomputed and the algorithm stops when 
the minconf(r) goes below MCT by SM. In this 
method of rule hiding, we only consider the trans- 
actions tha t  do not fully support  r~. Otherwise, by 
replacing 0 values for the items in l~ in the transac- 
tions tha t  partially support  I. and fully support  r~, 
we will increase the maxsup(r) leading to an unde- 
sirable increase in the rnaxconf(r). We choose the 
transaction that  partially supports  Ir while support-  
ing the maximum number of items in lr. In the best 
case, such a transaction will support  Ilrl - 1 of the 
items in lr and in this situation only one of the 0 val- 
ues will be replaced by a ?, achieving in this way the 
desired increase in the confidence while making the 
minimum change on the rest of the rules. 

I N P U T :  a set Rh of rules to hide, the source 
database D, MCT, MST, and SM 

O U T P U T :  the database D transformed so that the 
rules in Rh cannot be mined 

Begin 
Foreach  rule r in Rh do { 

1. T[. = {t in D/t partially supports l,. and t 
does not fully support r .} 

2. for each transaction of T[, count the number 
of items of I. in it 

3. sort the transactions in T[, in descending order 
of the calculated counts 

R e p e a t  until  (minconf(r) < MCT - SM or 
minsup(r) < MST - SM) { 
4. Choose the first transaction t E T[, 
5. Place a ? in t for the items in I, 

that are not supported by t 
6. Recompute the maxsup(l,.) 
7. Recompute minconf(r) 
8. Recompute the minconf of other affected rules 
9. remove t from T[. 

} 
10. Remove r from Rh 2 

} 
End 

Figure 3: Rule Hiding by Confidence Reduction (Al- 
gori thm CR2) 
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5 .3  C o m p l e x i t y  o f  t h e  R u l e  H i d i n g  A l -  

g o r i t h m s  

All the algorithms first sort a subset of transactions 
in the database with respect to the items they have 
or with respect to the particular items they support. 
Sorting N numbers is O(NlogN) in the general case, 
however in our case the length of the transactions 
has an upper bound that is very small compared to 
the size of the database. In such a case we can sort 
N transactions in O(N). The inner loop of algo- 
rithm GIH executes ITzl- (MST-SM) x IDI times, 
and the operations in the inner loop can be done in 
constant time. The algorithm CR executes its in- 
ner loop ITrl × (minconf(r)- MCT+SM) times in 
order to reduce the minimum confidence of the sen- 
sitive rule r below the MCT by SM. The value of 
(minconf(r)-MCTTSM) is the reduction needed in 
the minimum confidence represented as fraction. And 
this fraction multiplied by the number of the trans- 
actions supporting the rule to be hidden gives the 
actual number of iterations. For the algorithm CR2, 
the inner loop is executed k times until the rninsup(r) 
goes below MCT by SM. The rninconf(r) is ini- 

tially ~ ,  and after k iterations the fraction becomes 

+k that should be smaller than M C T -  SM in 

order for the rule r to be hidden. When we isolate k 
from this fraction, we obtain k < ]Tl~rl - ._._lTzJ__ 

M C T - S M  " 
The operations in the inner loops can be performed 
in constant time with proper hash structures. 

5 . 4  I s  t h i s  E f f e c t i v e ?  

How can we be certain that an adversary would not 
be able to reconstruct the unknowns, or (more criti- 
cally) reconstruct the rules that were hidden? Clearly 
this is a problem if we only use one of the algorithms 
- simply replacing all unknowns by either ls (in the 
case of the first two algorithms) or 0s (in the case of 
the third algorithm) reconstructs the original values. 
However, mixing the algorithms (i.e., choosing a dif- 
ferent algorithm to hide each rule) can make the task 
more difficult. 

Let us start with a weak set of assumptions about 
what is known by the adversary: 

1. The transformed database D'. 

2. That the sanitization process may replace both 
0s, and Is by ?s. 

2To be safe, r can only be removed if it is disjoint with  
rules remaining in R h ,  since its confidence may  be increased 
as a side effect of hiding remaining rules. We present  only the  
simplified case here, and in the  complexity analysis below. 

3. The original database does not contain any un- 
known values. (If it does, then the job of the 
adversary will be harder.) 

We also assume that there is only one sensitive rule 
that is hidden (A ~ B) 

Analysis of different cases: 
The adversary can do the following two trivial 

transformations to the sanitized database: 

1. convert all ?s to ls, and mine the database, 

2. convert all ?s to 0s, and mine the database 

with the intention of extracting sensitive rules. 
Below we look at the effect of converting a ? to 1 or 

0 when an item in A (3 B is replaced in a transaction. 
From the perspective of sensitive rule's support: 
In case 1, if the support hiding algorithm GIH of 

Figure 1 is employed, then the adversary will obtain 
a superset of the large itemsets since all the ls that 
were converted to ?s by the sanitization process are 
converted back to ls. In addition to that, all the 0s 
converted to ?s by the sanitization process are con- 
verted back to ls which will cause extra large item- 
sets to be generated. This way the adversary seems 
to be able to see the large itemsets that can generate 
sensitive rules. However as we will see later on, the 
confidences of the rules will have a different behavior 
than their support. 

In option 2 the adversary will not be able to recover 
the large itemsets that generate the sensitive rules if 
GIH were employed. If the the adversary is smart 
enough, s/he will know that option 1 makes more 
sense. 

From the perspective of sensitive rule confidence, 
things are a bit more complicated: 

In option 1, A ? converted to 1 by the adversary 
may have been a 0 or 1 before the sanitization. If 
it were a 0, this means that it is replaced by a ? to 
hide a sensitive rule A ~ B by the confidence hiding 
method described in Figure 3. In this case, converting 
a ? to a 1 will cause minsup(A) to increase, leading 
to a decrease in maxconf(A =~ B). This can be 
seen from the maxconf formula, which is calculated 
by maxsup(A ~ B)/minsup(A). Remember that 
the algorithm in Figure 3 replaces the items in the 
left hand side of the rule (i,.e., items in A for this 
case) in transactions that contain A but not A t9 B. 
Minconf(A ~ B) will stay the same. This is good 
since the maxconf of the sensitive rule will decrease, 
minconf will stay the same, so the adversary will not 
be able to extract it. 

If the ? were 1, then this means that it is replaced 
with ? by either the confidence or support hiding al- 
gorithms. (Remember "that there were two confidence 
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hiding algorithms, CR2 that  reduces the confidence 
by replacing 0 with ?, described in Figure 3, and CR 
that  replaces 1 with ?, described in Figure 2. So, int 
his case, if the adversary replaces ? back to 1, then 
the minsup and/or maxconf of the rule A =~ B will 
increase which is not desirable. A more naive reason- 
ing would be; the adversary is converting the ? value 
to its original value, i.e., transforming the database 
to the original state where the sensitive rules could 
be recovered. 

In option 2, the situation will be reversed for the 
confidence value, i.e., if the value ? was 0 before the 
sanitization, this means that  the Ct:t2 has converted 
it to ? to reduce the support. Converting ? back to 
0 will cause the confidence of (A ~ B) to increase 
since adversary is reversing the effect of sanitization 
process, if the value ? was 1 before the sanitization, 
then CR or GIH has converted it to ?, and replacing 
the ? with 0 will cause the maxsup(AB) to decrease, 
leading to a decrease in maxconf(A =~ B), which will 
allow the adversary to see the sensitive rule. 

So what we need to do is to employ Cl:t and Cl:t2 
in an interleaved fashion to ensure that  the sensitive 
rule can not be recovered by the adversary. Assume 
that  to hide A =~ B, we need to iterate the Cl:t N2 
times, and the CI:tA N3 times. Then in order to have 
a transformation that  is not recoverable by adversary, 
we should run CR on rule A ~ B with N2 iterations, 
followed by CR2 with N3 iterations. This way when 
the adversary replaces all the ?s by ls, then the effect 
of CR will be nullified while the effect of CR2 is still 
there. Similarly, when adversary replaces all ?s by 0 
then the effect of CR2 is nullified while the effect of 
CR is still there, which will make the recovery of the 
sensitive rule impossible. 

Now let us relax our assumption that  only a single 
rule is hidden, but assume that the sensitive rules 
are disjoint. This situation is really not different than 
dealing with only a single sensitive rule, since hiding 
of a rule has no side effect on other rules provided 
that  they are disjoint. 

Given more knowledge, some other options are 
open to the adversary. Assume that the adversary 
also knows: 

• The algorithms of Sections 5.1 and 5.2. 

• The minimum support and confidence thresholds 
M S T  and MCT, and 

• The safety margin SM, and 

What  can the adversary do to reconstruct the original 
values, enabling discovery of the rules in Rh? 

One approach would be to at tempt  to reconstruct 
values on a per-transaction basis. If we take a trans- 

action, can we guess if the unknowns are l ' s  or O's for 
that  transaction? The at tempts  by algorithms the 
first two algorithms to minimize their impact gives a 
couple of heuristics: 

1. Algorithms GIH, and CR starts with the smallest 
transactions supporting a rule, and replaces l ' s  
with ?s for the highest support items supporting 
the rule. 

2. Algorithm CR2 starts with transactions contain- 
ing the most items supporting the left hand side 
of the rule,, and changes the O's not supporting 
the left hand side to ?s. 

Could we use this to say that  small transactions likely 
have l ' s  for unknowns, particularly if the unknown 
items have high support in other transactions? There 
are two flaws with this heuristic. First, the notion of 
"small" is relative: If a rule is large, any transaction 
supporting the rule will also be large. Thus the notion 
of smell and large is relative to the size of the rule 
that was hidden. Second, a single transaction may 
have had unknowns created to hide different rules, so 
some of the unknowns may be O's and others l ' s  in 
the same transaction. 

This leads to an interesting observation - and are 
for future study. This technique is more effective 
when the same transaction is affected by algorithm 
CR2 as well as one of the others, in hiding separate 
rules. Currently, this is not taken into account in 
the algorithms. What  is the probability that  this will 
happen using the current algorithms? Can the algo- 
rithms be used in a way to increase this probability 
without significantly increasing the side effects? 

Another approach the adversary may take is to 
try to reconstruct the rules directly. If the hidden 
rules are disjoint, all of the hidden rules have either 
mincon] just under MCT-SM, or support just under 
MST-SM. If we assume the adversary knows MST, 
MCT, and SM, it would be straightforward to search 
for rules with support over M S T  and confidence just 
under M C T - S M ,  or support just under M S T - S M  
and confidence over M C T -  SM. Then the adversary 
could search for transactions containing unknowns 
that  could be modified (either by changing all of the 
relevant ?s to O's, or to l 's)  to raise support and con- 
fidence above MST and MCT. There are two things 
that  could prevent this: 

1. The number of potential rules with the right lev- 
els of support and confidence could greatly ex- 
ceed the number of hidden rules, giving too many 
possibilities for reconstructing the unknown val- 
ues, and thus ambiguity in knowing which are 
the "real" rules. 
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Table 3: Rules Selected for Hiding 

ru le  conf idence  
18 79 ~ 31 76% 
2 168 ~ 4 79% 
9 1 0 5 7 ~ 3 3  83% 
4 1 9 3 9 ~ 2 7  77% 
9 18 47 =~ 19 35 53% 

2. The same transaction could be modified in dif- 
ferent ways to support different hidden rules - 
leading to discovery of hidden rules with too high 
support and confidence, and failure to discover 
others. This is even more likely if the rules are 
not disjoint. 

How likely are these conditions in practice? Again, 
this is an area for future study. 

Perhaps the best way to combat this approach is 
to ensure that  MST, MCT, and SM are not known 
to the adversary. As M S T  and MCT are likely fixed 
by the problem, the real key is to keep SM secret. 

Another way to combat rule/value reconstruction 
is to ensure that  transactions have multiple unknowns 
corresponding to different real values, as discussed 
above. 

A challenge for the adversary we haven't  discussed 
is the computational complexity of reconstructing 
values. The first strategies (replace all ?s by ls, then 
by 0s) are little more complex than finding rules with- 
out unknowns. The per-transaction heuristics are 
similar - compute support of all items, and one pass 
through the transactions with unknowns. The sec- 
ond approach is more complex. First, rules with low 
support and confidence must be discovered. Then, 
for each rule, all transactions have to be tested with 
either l ' s  or O's to see the potential support and con- 
fidence. This is O([D[) per rule. However, a sim- 
ple change would greatly increase the complexity - 
instead of processing a rule with a single algorithm, 
interleave the algorithms between transactions in hid- 
ing a single rule (ensuring that  CK2 is used as well 
as CR or GIH). Thus the adversary couldn't just test 
by replacing all transactions with l ' s  or O's - all pos- 
sible combinations would need to be tried. This now 
becomes a 0 (2  [O[) problem. However, the potential 
side effects of such a strategy still need to be deter- 
mined. 

6 Experiments 

We used the anonymous Web data from 
www.microsoft.com created by Jack S. Breese, 
David Heckerman, and Carl M. Kadie from Mi- 
crosoft. The data was created by sampling and 
processing the www.microsoft.com logs and donated 
to the Machine Learning Data Repository stored at 
University of California at Irvine Web site [8]. The 
Web log data keeps track of the use of Microsoft 
Web site by 38000 anonymous, randomly-selected 
users. For each user, the data records list all the 
areas of the Web sites that  the user visited in a one 
week time frame. We used the training set only 
which has 32711 instances. Each instance represents 
an anonymous, randomly selected user of the Web 
site and corresponds to the transactions in market 
basket data. The number of attributes is 294 where 
each attribute is an area of the www.microsoft.com 
Web site and each attribute corresponds to an item 
in the store in the context of market basket data. We 
cleaned the data by removing the instances with less 
than or equal to non-zero attribute values and the 
resulting data set contained about 22k transactions. 

We have implemented the support reduction (GIH) 
and the first algorithm for confidence reduction (CR), 
using the Perl programming language. We have also 
implemented a naive Cyclic Hide (CH) algorithm that  
hides a rule by selecting the next transaction that  
supports the rule (in no particular order), and ran- 
domly replacing a 1 by a ? so the transaction no 
longer supports the item. The naive algorithm is used 
as a base for comparison with the rule and support 
reduction algorithms. 

As a first step, we run an Apriori based mining 
algorithm on the data with support 0.1%. We then 
obtained the rules out of the resulting large itemsets 
with 50% minimum confidence. The minimum con- 
fidence and support values are chosen with regard 
to typical minimum confidence and support thresh- 
olds from the literature. We then randomly selected 
5 different (not necessarily disjoint) rules to test the 
hiding strategies. The selected rule set to be hidden 
is provided in Table 3. To assess the performance of 
the hiding strategies, we performed experiments on 
a 500MHz Pentium III  PC with 512 MB of memory 
running the Linux operating system. 

In this exploratory study, we measured the CPU 
time requirement of the hiding strategies for different 
confidence values as depicted in Figure 4. As can be 
seen from the figure, all the hiding strategies hide the 
given rule set successfully in less than a second. That  
is considerably less than the time for mining of 57 sec- 
onds for 0.1% support. For various confidence values 
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the GIH method (generating itemset support reduc- 
tion algorithm Shown in Figure 1) and CH (Cyclic 
Hide) perform similarly while the CR (confidence re- 
duction algorithm shown in Figure 2) hides the rules 
faster. However our main performance criterion of 
the different algorithms is the side effects they incur 
on the database. We measure the side effects by sum- 
ming up the number of rules hidden unintentionally 
and the number of newly introduced rules. The per- 
formance of the hiding strategies in terms of the side 
effects are depicted in Figure 5. As can be observed 
from the figure, the CR causes the least number of 
side effects followed by GIR. CR and GIR outperform 
CH for all confidence values. 

CPU Time For Different Hiding Strategies 
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Figure 5: Side-effect Results 

7 R e l a t e d  W o r k  

The problem addressed in this paper is closely re- 
lated to the inference problem in "databases and 
the privacy preservation problem in data mining. 
Chang and Moskowitz [4] consider a solution of the 
database inference problem by using a new paradigm 
where decision tree analysis is combined with parsi- 
monious downgrading. In their scheme, Chang and 
Moskowitz, propose that High decides what not to 

downgrade based upon the rules that it thinks Low 
can infer (i.e., by using decision tree analysis) and 
upon the importance of the information that Low 
should receive. Their objective then in developing 
this paradigm is to assign a penalty function to the 
parsimonious downgrading in order to minimize the 
amount of information that is not downgraded and to 
compare the penalty costs to the extra confidentiality 
that is obtained. 

Clifton [5] investigates the techniques to address 
the basic problem of using non-sensitive data to in- 
fer sensitive data in the context of data mining. His 
goal is to accomplish privacy by ensuring that the 
data available to the adversary is only a sample of 
the data on which the adversary would like the rules 
to hold. In addition, Clifton shows that for classifi- 
cation purposes, the security officer is able to draw 
a relationship between the sample size and the likeli- 
hood that the rules are correct. 

Agrawal and Srikant [2] investigate the develop- 
ment of a data mining technique that incorporates 
privacy concerns. In particular, they consider the 
concrete case of building a decision tree classifier from 
training data in that the values of individual records 
have been perturbed. Their goal is to use the per- 
turbed data (acquired either by a discretization or 
by a value distortion technique) in order to accurately 
estimate the original distribution of the data values. 
By doing this, they are able to build classifiers whose 
accuracy is comparable to the accuracy of classifiers 
built with the original data. 

Agrawal and Aggarwal [1] improve on the distri- 
bution reconstruction technique presented in [2] by 
using the Expectation Maximization (EM) method. 
The authors claim that EM is more effective than the 
currently available technique in terms of the level of 
information loss. They also prove that EM converges 
to the maximum likelihood estimate of the original 
distribution based on the perturbed data and that it 
provides robust estimates of the original distribution. 
Finally, they propose novel metrics for the quantifi- 
cation and measurement of privacy-preserving data 
mining algorithms. 

A new class of privacy preserving techniques is in- 
troduced in [3, 9, 6]. In particular Atallah et. al 
[3], Dasseni et. al. [6] and Verykios et. al. [9] have 
considered the problem of privacy preserving mining 
of association rules. The authors have demonstrated 
how certain sensitive rules can be hidden by some 
data modification techniques and they have proposed 
efficient heuristics for solving this problem since Atal- 
lah et. al. [3] proved that the problem is NP-Hard. In 
the current work we are considering the same prob- 
lem but instead of allowing random data modifica- 
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tion, we have restricted ourselves to introducing ? 
a special symbol that indicates that information is 
missing. Some changes to the original association rule 
discovery program are necessary for the introduction 
of heuristics based on this idea. 

8 C o n c l u s i o n s  

Sharing of data is often beneficial, but is often pre- 
vented because of privacy and security concerns. We 
have presented a technique to obscure a specific set 
of association rules, while minimizing the effect on 
the usefulness of the data for purposes other than 
learning those rules. 

This work is a first step. Although we have argued 
that the rules are truly safe from an attack by an 
adversary, we have yet to formally prove that safety. 
Our initial results indicate that deterministic algo- 
rithms for privacy preserving association rules are a 
promising framework for controlling disclosure of sen- 
sitive data and knowledge. In the near future, we will 
investigate how probabilistic and information theo- 
retic techniques can also be applied to this problem. 

There are several areas in this field calling out for 
additional research. A few examples are: 

• More complete analysis of the effectiveness of 
these rule obscuring techniques, and formal 
study of the problem. 

• Other approaches to obscuring rules. 

• What happens with interest measures other than 
support and confidence? Is it possible that the 
sensitive rules are still likely to show up using, 
for example, a X 2 test? 

• Comparable work on other types of data mining. 
For example, what if the goal is to prevent the 
adversary from identifying clusters in the data? 
Being able to learn to classify data (or to classify 
specific subsets of items)? 

The grand goal should be to encourage the beneficial 
sharing of data, by ensuring that the shared data does 
not contain hidden "secrets". 
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