
Role-Based Access Control on the Web

JOON S. PARK and RAVI SANDHU
George Mason University
and
GAIL-JOON AHN
University of North Carolina at Charlotte

Current approaches to access control on Web servers do not scale to enterprise-wide systems
because they are mostly based on individual user identities. Hence we were motivated by the
need to manage and enforce the strong and efficient RBAC access control technology in
large-scale Web environments. To satisfy this requirement, we identify two different architec-
tures for RBAC on the Web, called user-pull and server-pull. To demonstrate feasibility, we
implement each architecture by integrating and extending well-known technologies such as
cookies, X.509, SSL, and LDAP, providing compatibility with current Web technologies. We
describe the technologies we use to implement RBAC on the Web in different architectures.
Based on our experience, we also compare the tradeoffs of the different approaches .

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
Access controls; K.6.5 [Management of Computing and Information Systems]: Security
and Protection

General Terms: Design, Experimentation, Security

Additional Key Words and Phrases: Cookies, digital certificates, role-based access control,
WWW security

1. INTRODUCTION
The World Wide Web (WWW) is a critical enabling technology for electronic
commerce on the Internet. Its underlying protocol, HTTP (HyperText
Transfer Protocol [Fielding et al. 1999]), has been widely used to synthesize
diverse technologies and components, to great effect in Web environments.

Authors’ addresses: J. S. Park and R. Sandhu, Laboratory for Information Security Technology
(LIST), Information and Software Engineering Department, George Mason University, Mail
Stop 4A4, Fairfax, VA 22030; email: jpark@itd.nrl.navy.mil; http://www.list.gmu.edu;
sandhu@gmu.edu; http://www.list.gmu.edu; G.-J. Ahn, College of Information Technology,
University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223-
0001; email: gahn@uncc.edu; http://www.coit.uncc.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1094-9224/01/0200–0037 $5.00

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001, Pages 37–71.

Increased integration of Web, operating system, and database system
technologies will lead to continued reliance on Web technology for enter-
prise computing. However, current approaches to access control on Web
servers are mostly based on individual user identity; hence they do not
scale to enterprise-wide systems.

If the roles of individual users are provided securely, Web servers can
trust and use the roles for role-based access control (RBAC [Sandhu et al.
1996; Sandhu 1998]). So a successful marriage of the Web and RBAC has
the potential for making a considerable impact on deployment of effective
enterprise-wide security in large-scale systems.

In this article we present a comprehensive approach to RBAC on the
Web. We identify the user-pull and server-pull architectures and analyze
their advantages and disadvantages. To support these architectures on the
Web, we take relatively mature technologies and extend them for secure
RBAC on the Web. In order to do so, we make use of standard technologies
in use on the Web: cookies, X.509, SSL, and LDAP.

First, we investigate how to secure and use the very popular cookies
technology [Kristol and Montulli 1999; Moore and Freed 1999] for RBAC on
the Web. Cookies were invented to maintain continuity and state on the
Web. Cookies contain strings of text characters encoding relevant informa-
tion about the user, and are sent to the user’s machine via the browser
while the user is visiting a cookie-using Web site. The Web server gets
those cookies back and retrieves the user’s information from the cookies
when the user later returns to the same Web site. The purpose of a cookie is
to acquire information and use it in subsequent communications between
the Web server and the browser, without asking for the same information
again. Cookies can also be used at a different Web server from the one that
issued the cookie. However, it is not safe to store and transmit sensitive
information in cookies because cookies are insecure. Cookies are stored and
transmitted in clear text, which is readable and can be forged easily. One
contribution of this article is to identify and discuss techniques to make
cookies secure, so that they can carry and store sensitive data. We call
these cookies secure cookies. These techniques have varying degrees of
security and convenience for users and system administrators. To demon-
strate the feasibility of these ideas, we implement RBAC on the Web in the
user-pull architecture using secure cookies.

Second, we also use X.509v3 certificates [ITU-T Recommendation X.509
1993; 1997; Housley et al. 1998], an ISO standard, since public-key infra-
structure (PKI) is recognized as a crucial enabling technology for security
in large-scale networks. The basic purpose of X.509 certificates is simply
the binding of users to keys. Even though X.509 can be extended, the
application of the extensions of X.509 for RBAC is not yet precisely defined.
We describe how to extend and use existing X.509 certificates for RBAC on
the Web. We call these extended X.509 certificates smart certificates. Smart
certificates have several sophisticated features: they support short-lived
lifetime and multiple certificate authorities, contain attributes, provide
postdated and renewable certificates, and provide confidentiality. Selection

38 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

of these new features depends on applications. To prove the feasibility of
these ideas, we implement RBAC on the Web in the user-pull architecture
using smart certificates.

Third, we implement RBAC on the Web in the server-pull architecture
using LDAP (Lightweight Directory Access Protocol [Howes et al. 1999])
and SSL (Secure Socket Layer [Wagner and Schneier 1996; Dierks and
Allen 1999]). LDAP is a protocol that enables X.500–based directories to be
read through Internet clients. When an LDAP client needs a specific entry
in an LDAP server, the LDAP client generates an LDAP message contain-
ing a request and sends this message to the LDAP server. The server
retrieves the entry from its database and sends it to the client in an LDAP
message. With this directory services feature, we use LDAP and SSL
between Web servers and the role server to implement RBAC on the Web in
the server-pull architecture.

Secure cookies inherently support the user-pull architecture only—since
cookies are stored in users’ machines they cannot operate in the server-pull
architecture. In contrast, smart certificates and LDAP support both user-
pull and server-pull architectures.

This article is organized as follows. Section 2 introduces an overview of
role-based access control (RBAC). In Section 3, we identify operational
architectures for RBAC services on the Web. Section 4 describes how we
render secure cookies using cryptographic technologies and implement
RBAC on the Web in the user-pull architecture using secure cookies.
Section 5 describes how we extend X.509 certificates with new features and
implement RBAC on the Web in the user-pull architecture using smart
certificates. Section 6 describes how we implement RBAC on the Web in the
server-pull architecture using LDAP and SSL between Web servers and the
role server. In Section 7, we discuss the tradeoffs among the different
technologies we have developed and implemented on the Web. In Section 8,
we compare our approaches with existing RBAC products. Finally, Section
9 gives our conclusions.

2. ROLE-BASED ACCESS CONTROL (RBAC) OVERVIEW

Role-based access control (RBAC) emerged rapidly in the 1990s as a proven
technology for managing and enforcing security in large-scale enterprise-
wide systems. Its basic notion is that permissions are associated with roles,
and users are assigned to appropriate roles. This greatly simplifies security
management. A significant body of research on RBAC models and experi-
mental implementations has developed [Ferraiolo and Kuhn 1992; Fer-
raiolo et al. 1995; Guiri 1995; Guiri and Iglio 1996; Mohammed and Dilts
1994; Hu et al. 1995; Nyanchama and Osborn 1995; Sandhu et al. 1996; von
Solms and van der Merwe 1994; Youman et al. 1997; Sandhu 1998; Ahn
and Sandhu 2000; Osborn et al. 2000].

We were motivated by the need to manage and enforce the strong and
efficient access control technology of RBAC in a large-scale Web environment,

Role-Based Access Control • 39

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

since RBAC is a successful technology that will be a central component of
emerging enterprise security infrastructures.

RBAC is a proven alternative to traditional discretionary and mandatory
access controls; it ensures that only authorized users are given access to
certain data or resources. It also supports three well-known security
principles: information hiding, least-privilege, and separation of duties.

A role is a semantic construct forming the basis of access control policy.
With RBAC, system administrators can create roles, grant permissions to
those roles, and then assign users to the roles on the basis of their specific

 RBAC 0

 RBAC 3

 RBAC 1
 RBAC 2

CONSTRAINTS

PERMISS-

IONS

PU

USERS

PERMISSION

ASSIGNMENT

PA

USER

ASSIGNMENT

UA

.

.

.

SESSIONS

S

user roles

ROLES

R

 RBAC 1

 RBAC 2

 RBAC 3

ROLE

HIERARCHY

RH

(b) RBAC models

(a) Relationship among RBAC models

Fig. 1. A family of RBAC models.

40 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

job responsibilities and policy. In particular, role-permission relationships
can be predefined, making it simple to assign users to the predefined roles.
Without RBAC, it is difficult to determine what permissions have been
authorized for which users.

Access control policy is embodied in RBAC components such as user-role,
role-permission, and role-role relationships. These RBAC components de-
termine if a particular user is allowed access to a specific piece of system
data.

Users create sessions during which they may activate a subset of roles to
which they belong. Each session can be assigned to many roles, but it maps
only one user. The concept of a session corresponds to the traditional notion
of subject in the access control literature.

Role hierarchy in RBAC is a natural way of organizing roles to reflect the
organization’s lines of authority and responsibility. By convention, junior
roles appear at the bottom of the hierarchic role diagrams and senior roles
at the top. The hierarchic diagrams are partial orders, so they are reflexive,
transitive, and antisymmetric. Inheritance is reflexive because a role
inherits its own permissions, transitive because of a natural requirement in
this context, and antisymmetry rules out roles that inherit from one
another, and would therefore be redundant.

Constraints are an effective mechanism to establish higher-level organi-
zational policy. They can apply to any relation and function in an RBAC
model. When applied, constraints are predicates that return a value of
acceptable or not acceptable. A general family of RBAC models was defined
by Sandhu et al. [1996]. Figure 1 shows the most general model in this
family.

RBAC0 is the base model that specifies the minimum requirement for
any system that fully supports RBAC. RBAC1 and RBAC2 both include
RBAC0, but they also have independent features. RBAC1 adds the concept
of role hierarchies, which imply situations in which roles can inherit
permissions from other roles. RBAC2 adds constraints that impose restric-
tions on components of RBAC. RBAC1 is incomparable with RBAC2, and
vice versa. RBAC3 is the consolidated model that includes RBAC1 and
RBAC2 and, by transitivity, RBAC0. The relationship among the four
RBAC models and the consolidated RBAC3 model is shown in Figure 1.

Details for motivation and discussion on the RBAC family of models
(RBAC0, RBAC1, RBAC2, RBAC3, ARBAC0, ARBAC1, ARBAC2, and AR-
BAC3) are described in Sandhu et al. [1996]; Sandhu [1997]; Sandhu et al.
[1999].

3. OPERATIONAL ARCHITECTURES

Park and Sandhu identified two different approaches for obtaining a user’s
attributes on the Web, especially with respect to user-pull and server-pull
architectures, in which each architecture has user-based and host-based
modes [Park and Sandhu 1999b]. An attribute is a particular property of an
entity, such as a role, access identity, group, or clearance. In this section,

Role-Based Access Control • 41

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

we embody those general approaches for RBAC on the Web with specific
components and relationships. Each approach is implemented and de-
scribed in this article, and we provide an analysis of their relative advan-
tages and disadvantages. Basically, there are three components in both
architectures: client, Web server, and role server. These components are
already being used on the Web. Clients connect to Web servers via HTTP
using browsers. The role server is maintained by an administrator and
assigns users to the roles in the domain [Sandhu and Park 1998]. Detailed
technologies (such as authentication, role transfer and protection, and
verification) to support these architectures depend on the applications that
are used.

3.1 User-Pull Architecture

In user-pull architecture, a user, say Alice, pulls her roles from the role
server and then presents them to the Web servers, as depicted in the UML
(Unified Modeling Language [Booch et al. 1998]) collaborational diagram in
Figure 2. We call this a user-pull architecture, since the user pulls her roles
from the role server where roles are assigned to the users in the domain.
HTTP is employed for user-server interaction with standard Web browsers
and Web servers.

In user-pull-host-based mode, the user needs to download her roles from
the role server and store them in her machine (which has her host-based
authentication information, such as IP numbers).1 Later, when Alice wants

1Address-based authentication is a convenient authentication mechanism because the authen-
tication process is transparent to users, but such a method is not always desirable. For
example, if the user’s IP address is dynamically assigned to her computer whenever she
connects to the Internet, or the user’s domain uses a proxy server, which provides the same IP
numbers to the users in the domain, this is not a proper authentication technique. In addition,
we cannot avoid IP spoofing, which is a technique for gaining unauthorized access by sending
messages to a computer with a trusted IP address.

Server
Web

2.7:
Validation
Result

2.11:
Transaction
Results

2.6:
Validation
Result

2.9:
Request
Transactions

2.10:
Transaction
Results

Client
(Browser)

Request

*Authentication Information can be either user-based or host-based.

Role
Request

2:

Access
Web Server (with
User-based
Auth-Info.)

2.4:

Transactions

2.8:

Server
1.2: Process Result

User

2.1:

Request

2.5: Credentials
(Roles + Auth-Info.*)

Role

Administrator
Role

2.2:
Role
Information

2.3:
Role-
Request
Result

1: Role Assign/Revoke

Role

Fig. 2. Collaborational diagram for the user-pull architecture.

42 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

to access the Web server, which requires proper authentication information
and roles, her machine presents that information to the Web server. After
client authentication and role verification, the Web server uses the roles for
RBAC. However, since this mode is host-based, it cannot support high user
mobility, while it may support a more convenient service than the user-
based mode, which requires the user’s cooperation (e.g., typing in pass-
words).

On the other hand, the user-pull-user-based mode supports high user
mobility. The user can download her roles to her current machine from the
role server. Then, she presents those roles to the Web server along with her
user-based authentication information, such as her passwords. After user
authentication and role verification, the Web server uses the roles for
RBAC. In this mode, the user can use any machine that supports HTTP, as
long as she has the right user-based authentication information (e.g.,
passwords).

In this user-pull architecture, we must support the binding of roles and
identification for each user. For instance, if Alice presents Bob’s roles with
her authentication information to the Web server, she must be rejected. In
Section 5.2 we describe how to solve this problem efficiently by means of
smart certificates between existing Web servers and browsers. General
approaches for binding user attributes and their identities are discussed by
Park and Sandhu [2000a].

3.2 Server-Pull Architecture

In server-pull architecture, each Web server pulls user’s roles from the role
server as needed and uses them for RBAC, as depicted in the UML
collaborational diagram in Figure 3. We call this a server-pull architecture,
since the server pulls the user’s roles from the role server. HTTP is used for
user-server interaction with standard Web browsers and servers. If the role
server provides the user’s roles securely, the Web server can trust those
roles and uses them for RBAC.

Server
Web

Access
Web Server (with
User-based
Auth-Info.)

2:

Client
(Browser)

User

*Authentication Information can be either user-based or host-based.

Request
Transactions

2.4:

2.3:
Authentication
Result

2.7:
Transaction
Results

1: Role Assign/Revoke

1.2: Process Result

2.1: Credentials

2.5:
Request
Transactions

2.2:
Authentication
Result

2.10:
Transaction
Results

2.3a: Role Information

2.2a: Request User RolesRole
Administrator

Role
Server

(Auth-Info.*)

Fig. 3. Collaborational diagram for server-pull architecture.

Role-Based Access Control • 43

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

In this architecture the user does not need access to her roles; she needs
only her authentication information. In server-pull-host-based mode, she
presents host-based authentication information (e.g., IP numbers) to the
Web server. The role-obtaining mechanism is transparent to the user, while
limiting user portability. However, in server-pull-user-based mode, Alice
presents user-based authentication information (e.g., passwords) to the
Web server. This supports high user portability, while it requires the user’s
cooperation (e.g., typing in passwords). After user authentication, the Web
server downloads the user’s roles from the role server and uses them for
RBAC.

4. RBAC ON THE WEB IN USER-PULL ARCHITECTURE USING SECURE
COOKIES

Cookies were invented to maintain continuity and state on the Web [Kristol
and Montulli 1999; Moore and Freed 1999]. The purpose of a cookie is to
acquire information and use it in subsequent communications between the
Web server and the browser without asking for the same information again.
Technically, it is not difficult to make a cookie carry relevant information.
However, because they are insecure it is not safe to store and transmit
sensitive information in cookies. Cookies are stored and transmitted in
clear text, which is readable and easily forged. Hence, we should render
cookies secure in order to carry and store sensitive data in them.

We provide secure cookies with three types of security services: authenti-
cation, integrity, and confidentiality. Authentication services verify the
owner of the cookies. Integrity services protect cookies against the threat
that their contents might be changed by unauthorized modification. Fi-
nally, confidentiality services protect cookies against having their values
revealed to an unauthorized entity. Details for these techniques have
varying degrees of security and convenience for users and system adminis-
trators. Our motivation for using the cookie mechanism is that it is already
widely deployed in existing Web browsers and servers for maintaining state
on the Web. There are other techniques to make Web transactions secure
without using secure cookies. For example, the secure HTTP protocol
(S-HTTP) and HTML security extensions [Rescorla and Schiffman 1998;
Schiffman and Rescorla 1998] can be used for this purpose. Other protocols
and extensions could be devised to operate in conjunction with the SSL
protocol. However, these technologies cannot solve the stateless problem of
HTTP. Furthermore, none of them can prevent end-system threats (de-
scribed in Section 4.2) to cookies.

In this section we describe how we developed secure cookies and imple-
mented RBAC with role hierarchies [Ferraiolo et al. 1995 ; Sandhu et al.
1996] on the Web in user-pull architecture using secure cookies.

4.1 Related Technologies

4.1.1 Cookies. Cookies serve many purposes on the Web, such as select-
ing display mode (for example, frames or text only), maintaining shopping-
cart selections, and storing user identification data.

44 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

All cookies are fundamentally similar. A typical cookie, shown in Figure
4, has several fields. Cookie_Name and Cookie_Value contain information a
Web site would want to keep. For example, in the figure, the values of
Name_Cookie and Role_Cookie are “Alice” and “Manager,” respectively.
Date is the cookie’s valid lifetime. Domain is a host or domain name where
the cookie is valid. Flag specifies whether or not all machines within a
given domain can access the cookie’s information. Path restricts cookie
usage within a site (only pages in the path can read the cookie). If the
Secure flag is on, the cookie will be transmitted over secure communica-
tions channels only, such as SSL. Detailed cookie specifications are avail-
able in Kristol and Montulli [1999] and Moore and Freed [1999].

According to the current HTTP state management mechanism, whenever
a browser requests a URL to a Web server, it sends only the relevant
Cookie_Name and Cookie_Value fields (selected by the Domain and Flag
fields) to the server. Cookies received by the server are used during this
browser-server communication. If the server does not receive any cookies,
however, it either works without using cookies or it creates new ones for
subsequent browser-server communication.

A Web server can update the cookies’ contents whenever the user visits
the server. The cookie issuer is not important for validation; any Web
server can issue cookies for other Web servers.

4.1.2 Pretty Good Privacy (PGP). PGP (Pretty Good Privacy [Zimmer-
mann 1995; Garfinkel 1995]), a popular software package originally devel-
oped by P. Zimmermann, is widely used by the Internet community to
provide cryptographic routines for email, file transfer, and file storage
applications. A proposed Internet standard has been developed [Callas et
al. 1998], specifying use of PGP. It employs existing cryptographic algo-
rithms and protocols and runs on multiple platforms. It provides data
encryption and digital signature functions for basic message protection
services.

PGP is based on public-key cryptography, and defines its own public-key
pair-management system and public-key certificates. The PGP key-man-
agement system is based on the relationship between key owners, rather
than on a single infrastructure such as X.509. Basically, it uses RSA
[Rivest et al. 1978] for the convenience of the public-key cryptosystem,
message digests (MD5 [Rivest 1992]), and IDEA [Lai and Massey 1991] for
process speed, and Diffie-Hellman [Diffie and Hellman 1997] for key

SecurePathFlagDomain

acme.com TRUE /

acme.com TRUE /

Cookie_Name Cookie_Value

Manager

Alice

Cookie n

Cookie 1 Name_Cookie

Role_Cookie

Date

FALSE 12/31/2001

FALSE 12/31/2001

Fig. 4. An example of cookies on the Web.

Role-Based Access Control • 45

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

exchange. The updated version supports additional cryptographic algo-
rithms.

Although the original purpose of PGP was to protect casual email among
Internet users, we decided in our implementation to use the PGP package
for secure cookies.

4.2 Security Threats to Typical Cookies

We distinguish three types of threats to cookies: network security threats,
end-system threats and cookie-harvesting threats. Cookies transmitted in
clear text on the network are susceptible to snooping (for subsequent
replay) and to modification by network threats. Network threats can be
foiled by using the Secure Sockets Layer (SSL) protocol, which is widely
deployed in servers and browsers. However, SSL can only secure cookies
while they are on the network. Once the cookie is in the browser’s end
system, it resides on the hard disk or memory in clear text. It is trivial to
alter such cookies, and they are easily copied from one computer to another,
with or without the connivance of the user on whose machine the cookies
were originally stored. We call this the end-system threat. The ability to
alter cookies allows users to forge authorization information in cookies and
to impersonate other users. The ability to copy cookies makes such forgery
and impersonation all the easier. Additionally, if an attacker collects
cookies by impersonating a site that accepts cookies from the users (who
believe that they are communicating with a legitimate Web server), the
attacker can later use those harvested cookies for all other sites that accept
them. We call this the cookie-harvesting threat. These attacks are all
relatively easy to carry out, and certainly do not require great hacker
expertise.

4.3 Designing Secure Cookies

In this section we describe how to transform regular cookies—which have
zero security—into secure cookies, which provide the classic security ser-
vices against the three types of threats to cookies (described in Section 4.2).
Details for secure cookies and their applications are described in Park and
Sandhu [2000b].

Basically, secure cookies provide three types of security services: authen-
tication, integrity, and confidentiality services. Selection of the kinds and
contents of secure cookies depends on applications and the given situation.

Figure 5 shows a set of secure cookies that we will create and use for
RBAC on the Web. The Name_Cookie contains the user’s name (e.g., Alice)
and the Role_Cookie holds the user’s role information (e.g., Manager). The
Life_Cookie is used to hold the lifetime of the secure-cookie set in its
Cookie_Value field and enables the Web server to check the integrity of the
lifetime of the secure-cookie set. To protect these cookies from possible
attacks, we use IP_Cookie, Pswd_Cookie, and Seal_Cookie. Authentication
cookies (i.e., IP_Cookie and Pswd_Cookie) verify the owner of the cookies by
comparing the authentication information in the cookies to those coming

46 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

from the users. The IP_Cookie holds the IP number of the user’s machine,
and the Pswd_Cookie holds the user’s encrypted passwords. This confiden-
tiality service protects the values of the cookies from being revealed to any
unauthorized entity. In our implementation, we use the IP_Cookie and
Pswd_Cookie together to show feasibility, but only one of these authentica-
tion cookies can be used to provide the authentication service. The choice of
an authentication cookie depends on the situation.2 Finally, the Seal-
_Cookie—which has the digital signature or MAC (Message Authentication
Code [Bellare et al. 1996]) of the cookie-issuing server on the secure cookie
set—supports integrity service, protecting cookies against the threat that
their contents might be changed by unauthorized modification.

There are basically two cryptographic technologies applicable for secure
cookies: public-key-based and secret-key-based solutions. In our implemen-
tation, we use the public-key-based solution for security services provided
by a PGP package via CGI (Common Gateway Interface) scripts. In the
next section we will describe, in turn, secure cookie creation, verification,
and use of role information in the Role_Cookie for RBAC with role hierar-
chies. A detailed description for this implementation is available in Park et
al. [1999].

2It is also possible for authentication to be based on protocols such as RADIUS [Rigney et al.
1997], Kerberos [Steiner et al. 1988; Neuman 1994], and other, similar protocols. Our focus in
this work is on techniques that make secure cookies self-sufficient, rather than partly reliant
on other security protocols, which is always possible.

SecurePathFlagDomain

acme.com TRUE /

Cookie_Name Cookie_Value

Alice*

acme.com TRUE /Life_Cookie

acme.com TRUE / Manager*Role_Cookie

acme.com TRUE / Pswd_Cookie hashed_password

acme.com TRUE / Key_Cookie

acme.com TRUE / Seal_Cookie

Sealing Cookies

*

Pswd_Cookie

Seal_Cookie

** Seal_of_Cookies can be either MAC or a signed message digest of cookies.
* Sensitive fields are encrypted in the cookies.

Note: Pswd_Cookie can be replaced with one of the other authentication cookies in Figure 2.

Name_Cookie

Date

Name_Cookie

Role_Cookie

Life_Cookie

Key_Cookie

12/31/2001

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

12/31/2001

12/31/2001

12/31/2001

12/31/2001

12/31/2001

12/31/2001

Seal_of_Cookies**

encrypted_key

Fig. 5. A set of secure cookies for RBAC on the Web.

Role-Based Access Control • 47

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

4.4 RBAC Implementation by Secure Cookies

Figure 6 shows a schematic of RBAC on the Web. The role server has URA
(user-role assignment) information for the domain. After a successful user
authentication, the user receives his or her assigned roles in the domain
from the role server. Later, when the user requests access to a Web server
with the assigned roles in the domain, the Web server allows the user to
execute transactions based on the user’s roles instead of his or her identity.
The Web servers may have role hierarchies, PRA (permission-role assign-
ment) information, or constraints based on their policies.

But how can the Web servers trust the role information presented by
users? For instance, a malicious user may have unauthorized access to the
Web servers by using forged role information. So we must protect the role
information from being forged by any possible attacks on the Web as well
as in the end-systems.

There can be many possible ways to support the above requirement. In
this section, as one possible solution, we describe how to protect the role
information from possible threats using secure cookies, and how we imple-
mented RBAC with role hierarchy on the Web. Although we use PGP-based
public-key cryptography, it is always possible to use other cryptographic
technologies with secure cookies. Figure 7 shows how secure cookies
(including a Role_Cookie) for RBAC are created and used on the Web. If a
user, let’s say Alice, wants to execute transactions in the Web servers in a
RBAC-compliant domain, she first connects to the role server in the
beginning of the session. After the role server authenticates Alice, it finds
Alice’s explicitly assigned roles in the URA database and creates a set of
secure cookies. Those secure cookies are then sent to and stored securely in
Alice’s hard drive, so that Alice does not need to go back to the role server
to get her assigned roles until the cookies expire. She can use the roles in

User

Roles Permissions

Role Server 1. Login

2. Request

3. ResponseAuthentication

Web Servers

URA

PRA
Role Hierarchy

Constraints

Fig. 6. A schematic of RBAC on the Web.

48 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

her Role_Cookie securely in the RBAC-compliant domain as long as the
cookies are valid.

When Alice requests access to a Web server—which has PRA informa-
tion—by typing the server URL in her browser, the browser sends the
corresponding set of secure cookies to the Web server. The Web server
authenticates the owner of the cookies by using the authentication cookies,
such as IP_Cookie and Pswd_Cookie, comparing the values in the cookies
with the values from the user. Finally, the Web server checks the integrity
of the cookies by verifying the role server’s digital signature in the
Seal_Cookie using the role server’s public key. If all the cookies are valid
and successfully verified, the Web server trusts the role information in the
Role_Cookie and uses it for RBAC with role hierarchy and permission-role
assignment information in the Web server.

4.4.1 Creating Secure Cookies . Figure 8 is a UML (Unified Modeling
Language) collaborational diagram for secure cookie creation. This diagram
shows how we created a set of secure cookies for our implementation (see
left side of Figure 7).

When a user, Alice, connects to the role server (which supports HTTP) of
the domain with her Web browser, she is prompted by the HTML form to
type in her user ID and passwords for the domain. The “set-cookie.cgi”
program first retrieves the user ID and passwords and the IP number of

Cookie_Issuer
(Role Server)

User-Role Assignment

Authentication
Access

Cookies
Set Secure

.

cookies

IP

Role

Seal

Authentication

Web Server n

Check Integrity

Retrieve Roles

RBAC

Get Cookies

.

cookies

IP

Role

.

cookies

IP

Role

Seal

Get Cookies

Authentication

Web Server 1

Check Integrity

Retrieve Roles

RBAC

Pswd

Pswd

Pswd

(Browser)
Client

Get Cookies

Send Cookies & Requests

Response

Send Cookies & Requests

Response

Verifying Secure Cookies & RBAC

Assigning Roles & Creating Secure Cookies

Seal Name

Name Life

Name Life

Life

Fig. 7. RBAC on the Web by means of secure cookies.

Role-Based Access Control • 49

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

the client machine. The program authenticates the user by comparing the
user ID and passwords with the ones in the authentication database.3 It
then assigns the user to roles by matching the user ID and the correspond-
ing roles from the URA (user-role assignment) database.

Subsequently, a subroutine for encryption is called to another CGI
program (encrypt.cgi), which uses PGP to encrypt the passwords by the
cookie-verifying Web server’s public key. These encrypted passwords will
be stored in the Pswd_Cookie by the “set-cookie.cgi” program. The “set-
cookie.cgi” program then creates IP_Cookie, Pswd_Cookie, Name_Cookie,
Life_Cookie, and Role_Cookie, giving each cookie the corresponding value:
IP numbers of the client machine, encrypted passwords, user’s name,
lifetime of the cookie set, and assigned roles.

To support the cookies’ integrity service, the “set-cookie.cgi” program
calls another CGI program (sign.cgi), which uses PGP to sign the cookies
with the role server’s private key. The “set-cookie.cgi” then creates the
Seal_Cookie, which includes the digital signature of the role server on the
contents of the cookies.

Finally, the role server sends the HTTP response header, along with the
set of secure cookies, back to the user’s browser, where the cookies are then
stored until they expire. These secure cookies will be verified and used in
the Web servers as described in Section 4.4.2. Figure 9 is an actual
snapshot of a set of secure cookies from our implementation stored in the
user’s machine after they have been generated by the role server. The
contents of the cookies reflect the ones in Figure 5 exactly.

4.4.2 Secure Cookie Verification. Figure 10 is a UML collaborational
diagram for secure cookie verification. This diagram shows how we verified
(corresponding to the right side of Figure 7) the set of secure cookies that
we generated in Section 4.4.1 for our implementation. When Alice connects
to a Web server (which accepts the secure cookies) in an RBAC-compliant
domain, the connection is redirected to the “index.cgi” program. The related
secure cookies are sent to the Web server and Alice is prompted by the

3If the user already has an authentication cookie in a set of secure cookies, Web servers can
use the authentication cookie for user authentication instead of authentication databases.

Authentication

User-Role Assignment

Database

Database

encrypt.cgi

sign.cgi

set-cookie.cgi
2. User ID, Passwords, IP

3. User ID, Passwords

PGP

8. Encryption Request

13. Signature Result
5. User ID

4. Authentication Results

9. Encryption Result

10. Encrypted Passwords

7. Passwords16. Secure Cookies

15. Secure Cookies

IP
Passwords,

1.User ID,

Browser
(Client)

12. Signature Request

11. Cookies

6. Role Information

14. Role Server’s Signature

Role
Server

Fig. 8. Creating secure cookies.

50 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

HTML form to type in her user ID and passwords. The “index.cgi” program
checks the validity of all the cookies. The two IP addresses, one from the IP
cookie and the other from the environment variable, REMOTE_ADDR, are
compared. If they are identical, then the host-based authentication is
passed and a hidden field4 “status” with the “IP-passed” value is created to
indicate that this stage was passed. However, if the IP numbers are
different, the user is rejected by the server.

When the user submits her user ID and passwords to the server, the Web
server translates the request headers into environment variables, and
another CGI program, “password-ver.cgi,” is executed. The first thing the
“password-ver.cgi” does is to check the hidden field “status” to see if the

4We used a hidden field to check the completion of the previous stage, which is passed on to
the next program. The hidden field protects the pages from being accessed directly (skipping
required verification steps) by a malicious user. For example, without this hidden field, a
malicious user could access the pages directly with forged cookies.

Fig. 9. An example of secure cookies stored in a user’s machine.

password
-ver.cgi

signature
-ver.cgi

PGP

index.cgi rbac.cgi

2. User ID, Passwords, IP

Cookies

3. IP-passed, Passwords

Cookies

4. Decryption
Request

5. Decryption
Result

6. password-passed,

Cookies

7. Signature-verify
Request

8. Signature-verify
Result

Browser
(Client)

Web
Server

Role Information
9. verify-passed,

10. available roles

11. Available Roles

Passwords,
User ID,

1. Cookies,

IP

Fig. 10. Verifying secure cookies.

Role-Based Access Control • 51

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

previous stage was successfully completed. If this is “IP-passed,” the
program decrypts the value of the Pswd_Cookie (encrypted user password)
using the PGP with the Web server’s private key, since it was encrypted
with the Web server’s public key by the role server. The program (pass-
word-ver.cgi) then compares the two passwords: one from the user and the
other decrypted from the Pswd_Cookie. If they are identical, then the
user-based authentication is passed, and a hidden field “status” with the
value of “password-passed” is created to indicate that this stage was
passed. However, if the two passwords are different, the user has to start
again by either retyping the passwords or receiving new cookies from the
role server.

After password verification is completed, another CGI program, “signa-
ture-ver.cgi,” is activated to check the integrity of the cookies. Like the
other programs, it first checks the value of “status” passed on from the
previous program, and proceeds only if it is shown that the user has been
through the password verification stage. If the value is “password-passed,”
then the program verifies the signature in the Seal_Cookie with the role
server’s public key using PGP. If the integrity is verified, it means that the
cookies have not been altered, and a hidden field “status” with the value
“verify-passed” is created to indicate that this stage was passed and
forwarded to the final program, “rbac.cgi.” This program uses the role
information in the Role_Cookie for RBAC in the Web server as described in
Section 4.4.3. However, if the signature verification fails, the user has to
start again by receiving new cookies from the role server.

4.4.3 RBAC in the Web Server. After verifying all the secure cookies,
the Web server allows the user, Alice, to execute transactions based on her
roles, contained in the Role_Cookie, instead of her identity. In other words,
for authorization purposes, the Web server does not care about the user’s
identity. This resolves the scalability problem of identity-based access
control, which is widely used in existing Web servers. Furthermore, the
Web server can also use a role hierarchy, which supports a natural means
for structuring roles to reflect an organization’s lines of authority and
responsibility. Each Web server may have a role hierarchy different from
that in other servers. In our implementation, we used a role hierarchy in
the Web server, depicted in Figure 11.

If the “rbac.cgi” program in Figure 10 receives the value “verify-passed”
from the previous verification step, it means that the cookies have success-
fully passed all the verification stages, such as IP, passwords, and signa-
ture verification. Hence the Web server can trust the role information in
the Role_Cookie and use it for RBAC in the server.

How then can the Web server protect the pages from being accessed by
unauthorized users? Suppose a malicious user, Bob, has the role PE1 but
wishes to access pages that require the PL1 role (see Figure 11). He could
change the value of his Role_Cookie so that it has PL1, or roles senior to
PL1. He would go through the password verification stages, since he would
be able to log in as Bob by using his own passwords. However, a problem

52 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

will arise while his Seal_Cookie is being verified, as the signature verifica-
tion will fail. He will not be allowed to move beyond this stage. On the
other hand, he could try accessing the pages directly by typing the URLs.
This is not allowed, since each page checks to see if he has activated the
required role, PL1, or roles senior to PL1. In other words, Bob is not
allowed to access the pages that require roles senior to his because he
cannot activate the senior roles that are out of his available role range.

As a result, the Web server allows only users who have gone through all
the verification steps with the secure cookies (Name_Cookie, Life_Cookie,
Role_Cookies, IP_Cookie, Pswd_Cookie, Seal_Cookie) to access the pages.
Also, this access is possible only if the users have the required roles and
activate them among their available roles based on the role hierarchy.

4.5 Summary

In this section we describe how we implemented RBAC with role hierar-
chies on the Web using secure cookies in the user-pull architecture. To
protect role information in the cookies, we provided security services such
as authentication, confidentiality, and integrity to the cookies using PGP
and CGI scripts in the Web servers. Although we used PGP-based public-
key cryptography to protect cookies on the Web in this implementation, it is
always possible to use other cryptographic technologies with secure cookies.
The use of secure cookies is a transparent process to users, and is
applicable to existing Web servers and browsers.

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project Lead 1 (PL1)

Engineer 1 (E1)

Project Lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Fig. 11. An example role hierarchy.

Role-Based Access Control • 53

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

5. RBAC ON THE WEB IN USER-PULL ARCHITECTURE USING SMART
CERTIFICATES

Public-key infrastructure (PKI) is recognized as a crucial enabling technol-
ogy for security in large-scale networks. To support PKI, X.509 certificates
have been widely used [Housley et al. 1998 ; ITU-T Recommendation X.509
1993; 1997]. The basic purpose of X.509 certificates is simply the binding of
users to keys. Hence we developed smart certificates by extending X.509
with several sophisticated features for secure attribute services and intro-
duced their possible applications on the Web [Park and Sandhu 1999b].

In this section we give an overview of smart certificates and describe an
implementation of RBAC with role hierarchies on the Web in user-pull
architecture using smart certificates. In this implementation, we used a
Netscape Certificate server to issue smart certificates and a Microsoft IIS
4.0 on a Windows NT platform to support RBAC on the Web. However, this
approach is also possible using other certificate servers or Web servers on
different platforms by proper configuration. To maintain compatibility with
existing technologies, such as SSL, we used a bundled (subject’s identity
and role information) smart certificate [Park and Sandhu 2000a]). A
detailed description of an RBAC implementation using smart certificates in
user-pull architecture is available in Park and Sandhu [1999a]; Ahn et al.
[2000].

5.1 Related Technologies

5.1.1 Public-Key Certificate (X.509). A public-key certificate [Housley et
al. 1998; ITU-T Recommendation X.509 1993; 1997] is digitally signed by a
certificate authority (CA) to confirm that the identity or other information
in the certificate belongs to the holder (subject) of the corresponding
private key. If a message sender wishes to use public-key technology to
encrypt a message to a recipient, the sender needs a copy of the recipient’s
public key. In contrast, when a party wishes to verify a digital signature
generated by another party, the verifying party needs a copy of the public
key of the signing party. Both the encrypting message sender and the
digital signature verifier use the public keys of other parties. Confidential-
ity, which keeps the value of a public key secret, is not important to the
service. However, integrity is critical, as it assures public-key users that
the public key used is the correct one for the other party. For instance, if an
attacker is able to substitute his or her public key for the valid one,
encrypted messages can be disclosed to the attacker and a digital signature
can be forged by the attacker.

ITU (International Telecommunication Union) and ISO (International
Organization for Standardization) published the X.509 standard in 1988,
which has been adopted by IETF (International Engineering Task Force).
X.509 is the most widely used data format for public-key certificates today,
and is based on the use of designated certificate authorities (CAs) that
verify that the entity is the holder of a certain public key by signing
public-key certificates. An X.509 certificate has been used to bind a public

54 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

key to a particular individual or entity, and it is digitally signed by the
issuer of the certificate (certificate authority) that has confirmed the
binding between the public key and the holder (subject) of the certificate.
An X.509 certificate consists of the following (see Figure 12):

—Version of a certificate format:

—certificate serial number;

—subject’s X.500 name (assigned by a naming authority);

—subject’s public key and algorithm information;

—validity period (beginning and end dates);

—issuer’s X.500 name (certificate authority);

—optional fields to provide unique identifiers for subject and issuer (Ver-
sion 2);

—extensions (Version 3);

—digital signature of the certificate authority.

In the event the same name over time has been reassigned to different
entities, the optional fields are available from Version 2 to make the subject

Fig. 12. An example of X.509.

Role-Based Access Control • 55

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

name or the issuing certificate authority name unambiguous. Version 3
provides the extension field for incorporating any number of additional
fields into the certificate. These extensions make X.509v3 a truly open-
ended standard, with room to support diverse needs. It is possible for
interested certificate issuers to define their own extension types and use
them to satisfy their own particular needs.

5.1.2 Attribute Certificate. The US financial industry through the ANSI
X9 Committee developed attribute certificates [Farrell 1998a; 1998b],
which have now been incorporated into both the ANSI X9.57 standard and
X.509. An attribute certificate binds attribute information to the certifi-
cate’s subject. Anyone can define and register attribute types and use them
for his or her purposes. The certificate is digitally signed and issued by an
attribute authority. Furthermore, an attribute certificate is managed in the
same way as an X.509 certificate. However, an attribute certificate does not
contain a public key. Therefore, an attribute certificate needs to be used in
conjunction with authentication services, such as another certificate
(X.509) and SSL, to verify the subject of the attribute. However, as we
discussed in Section 5.2, our smart certificates have the ability to build
attribute information into X.509v3 extensions, without losing effective
maintenance, rather than putting this information into separate certifi-
cates.

5.1.3 SPKI (Simple Public Key Infrastructure). The SPKI Working
Group in IETF [Ellison et al. 1999] developed a standard form for digital
certificates, focusing on authorization rather than authentication. A SPKI
certificate grants specific authorization to a public key, without necessarily
requiring identity of the holder of the corresponding private key. The public
key can be used as a unique identifier for the key holder. Furthermore, a
collision-free hash of the public key can also be used as a unique identifier
for the key holder. SPKI provides simplicity, using a less rich data-
encoding scheme than the ASN.1 notation used in X.509.

5.1.4 Secure Socket Layer (SSL). SSL was introduced with the Netscape
Navigator browser in 1994, and rapidly became the predominant security
protocol on the Web [Wagner and Schneier 1996; Dierks and Allen 1999].
Since the protocol operates at the transport layer, any program that uses
TCP (Transmission Control Protocol) is ready to use SSL connections. The
SSL protocol provides a secure means for establishing an encrypted com-
munication between Web servers and browsers. SSL also supports the
authentication service between Web servers and browsers.

SSL uses X.509 certificates. Server certificates provide a way for users to
authenticate the identity of a Web server. The Web browser uses the
server’s public key to negotiate a secure TCP connection with the Web
server. Optionally, the Web server can authenticate users by verifying the
contents of their client certificates.

Even though SSL provides secure communications between Web servers
and browsers on the Web, it cannot protect against end-system threats (see

56 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

Section 4.2). For instance, if a user receives attributes from the server over
a secure channel, it does not mean that we can trust the user. In other
words, once the user, Alice, receives some attributes from the server over
the secure channel, she is able to change the attributes or give them to
other people, since SSL does not support the integrity service in the user’s
end system. Then, Alice (or the person impersonating Alice) can access the
servers—which accept the attributes—using the forged attributes. How-
ever, as we will see later in this section, SSL can be used as part of our
solution to protect information on the Web.

5.2 Smart Certificates Overview

To satisfy their own particular needs, it is technically possible for certifi-
cate authorities to simply issue a certificate that includes the subject’s
identity (e.g., public-key information) and attributes (e.g., roles) in the
same certificate.

However, the lifetime of the identity (public key) in the certificate may be
different from that of other attributes (roles) in it. Furthermore, an
organizational policy usually requires different authorities for maintaining
attributes and public keys. Since the current X.509 certificate cannot
satisfy all the above requirements, we were motivated to design smart
certificates, which support secure attribute services on the Web with
several sophisticated features, without losing compatibility with X.509.

If we use the extension fields in an X.509 certificate effectively, as
depicted in Figure 13, we can separate the authority for attribute-issuing
from public-key-issuing. In other words, after a public-key authority (basic CA)
issues an X.509 basic certificate for a user, Alice, an attribute authority (for

Basic CA’s
Digital Signature

Signed by
Basic CA

Att_n_CA’s
Digital Signature

Att_1_CA’s
Digital Signature

attribute_1_info.*

attribute_n_info.*

Basic Certificate

Smart Certificate

* attribute info.: attributes, attribute issuer, validity period of attributes, etc.

version
serial number
issuer
subject
validity period
public-key info.
optionall fields (v2)

Signed by
Att_n_CA

Signed by
Att_1_CA

Extensions

Fig. 13. Attributes signed by multiple CAs in a smart certificate.

Role-Based Access Control • 57

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

instance, Att_1_CA) adds attributes for Alice to an extension field of the
basic certificate (which contains public-key information). Consequently, the
attribute authority (Att_1_CA) signs on the basic certificate and the
attributes the authority added and puts the signature to another extension
field in the basic certificate. This can happen multiple times on a basic
certificate by different attribute authorities (denoted Att_n_CA in the
figure). Later, identity verification should precede attribute verification.
For instance, another party, say Bob, verifies Alice’s identity first by the
basic CA’s signature in the smart certificate. If the authentication is
successful, Bob verifies Alice’s attributes by the corresponding attribute
authority’s signature in the extension field. If the attributes are valid, then
Bob uses those attributes for his purposes. The contents of the attribute
information in a smart certificate depend on applications.

The public key and the attributes can be maintained independently. For
instance, even though Alice’s attributes issued by her school-attribute
authority expired (were revoked) in the certificate, the rest of the at-
tributes, such as those issued by her company-attribute authority and
public-key information in her basic certificate, are still valid. Each at-
tribute authority has independent control over the attributes it issued. In
other words, the school-attribute authority for Alice can change, revoke, or
reissue the school attributes in Alice’s certificate. Intuitively, if her basic
certificate expired (was revoked), then all the attributes become meaning-
less. Although a smart certificate can support independent management for
the public-key information and attributes, system management becomes
simpler if there is only one authority controlling both sets of information.

Additionally, smart certificates are able to provide short-lived, lifetime,
postdated, renewable, and confidentiality services in PKI. According to
application requirements, some of these new features can be used selec-
tively in conjunction with currently existing technologies. Note that a
smart certificate is compatible with an X.509, since it keeps the same data
format as an X.509. Details for motivation and techniques about smart
certificates are described in Park and Sandhu [1999b].

Smart certificates support both user-pull and server-pull architectures
(see Section 3). A bundled (identity and attributes) smart certificate is
useful for the user-pull architecture, since Web servers require both iden-
tity and attribute information from each user in the architecture. In
contrast, the bundled certificate is not a good solution for the server-pull
architecture, since identity and attribute come from different places in the
architecture. In the server-pull architecture, an additional channel is
required for attribute transfer between the attribute server (e.g., role
server) and Web servers. A detailed dscription of this implementation is
available in Park et al. [20001]

5.3 RBAC Implementation by Smart Certificates

In this section we describe how we implemented RBAC with role hierarchy
on the Web in the user-pull architecture using smart certificates. In this

58 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

implementation, we used a bundled (subject’s identity and roles) smart
certificate, maintaining compatibility with existing technologies such as
SSL, without requiring an additional channel for role information transfer
on the Web. We use a Netscape Certificate server and a Microsoft IIS 4.0 in
the Windows NT platform for our implementation. However, this approach
is also possible using other certificate servers or Web servers in different
platforms.

5.3.1 Obtaining and Presenting Assigned Roles on the Web. Figure 14
shows how a bundled smart certificate is issued and used for RBAC on the
Web. If a user, Alice, wants to execute transactions in the Web servers in
an RBAC-compliant domain, she first connects to the role server at the
beginning of the session. After the role server authenticates Alice, it finds
her explicitly assigned roles in the URA (user-role assignment) database
and creates a smart certificate (which holds her explicitly assigned roles).
Then, the smart certificate is sent to and stored in Alice’s machine—which
has Alice’s private key corresponding to the smart certificate—so that Alice
does not need to go back to the role server to obtain her assigned roles until
the certificate expires. Consequently, she can use the roles in her smart
certificate in the RBAC-compliant domain as long as the certificate is valid.
In this particular implementation, we used the OU (organization unit) field
in X.509 certificates to store each subject’s role information, and both
identity and roles are signed by a single certificate authority. However, if a

(Role Server)

User-Role Assignment

Authentication
Access

Authentication

Web Server n

Verify Attributes

Retrieve Roles

RBAC

Get Smart Cert.

Get Smart Cert.

Authentication

Web Server 1

Verify Attributes

Retrieve Roles

RBAC(Browser)
Client Response

Response

Certificate_Issuer

Assigning Roles & Creating Smart Certificate

Verifying Smart Certificate & RBAC

Set
Smart Certificate Identity Info.

Role Info.

.

Identity Info.

Role Info.

Present Smart Certificate & Requests

Identity Info.

Role Info.

Present Smart Certificate & Requests

Get Smart Certificate

Fig. 14. RBAC on the Web by means of smart certificate.

Role-Based Access Control • 59

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

smart certificate has different kinds of attributes (which need to be signed
by different CAs), or obtains detailed attribute information, such as valid-
ity for each attribute or attribute issuer, we can use the extension fields of
X.509, as we described in Section 5.2. Alternatively, separate certificates
for identity and roles are also possible, especially in the server-pull
architecture.

Alice may have many smart certificates in her machine. When Alice
requests access to a Web server—which requires clients’ certificates and
has PRA (permission-role assignment) information—by typing the server’s
URL in her browser, the browser and Web server authenticate each other
over SSL. After the browser receives and verifies the server’s X.509
certificate, Alice needs to select a proper smart certificate—which has her
role information—and send it to the Web server. The Web server authenti-
cates Alice by verifying the smart certificate. If the smart certificate is
valid and successfully verified, the Web server trusts the role information
in the certificate and uses it for RBAC with a role hierarchy and PRA
information in the Web server, as described in Section 5.3.2.

5.3.2 RBAC in the Web Server. The Internet information server (IIS)
depends on Windows NT file system (NTFS) permissions for securing
individual files and directories from unauthorized access. NTFS permis-
sions can be precisely defined with regard to the users who can access the
contents of the server and which permissions are allowed to the users,
while Web server permissions are applied coarsely to the users accessing
the Web server.5 NTFS permissions only apply to a specific user or group of
users with a valid Windows NT account.

In a Windows NT environment, we can control user access to the contents
in a Web server by properly configuring the Windows NT file system and
the security features of the Web server. When the user attempts to access
the Web server, the server executes several access control processes to
verify the user and determine the allowed level of access based on its
policy.

To support RBAC with the role hierarchy depicted in Figure 11, we
configure an IIS 4.0 with two creative ideas: role accounts and PAA
(permission-account assignment) in the Web server. These ideas are de-
scribed below.

Mapping Roles to Role Accounts. Since the Web server uses roles—
denoted in the client smart certificates—for its access control mechanism,
regular user accounts are not necessary in the server.6

Instead, we created the role accounts (e.g., Director, Project_Lead1,
Project_Lead2, Project_Engineer1, Quality_Engineer1, and so on) in the
Windows NT server, where the Web server (IIS 4.0) is installed. Then, by
configuring the Web server’s certificate mapping feature, we mapped each

5For instance, Web server permissions can control whether users visiting the Web site are
allowed to view a particular page, run scripts, or upload information to the site.
6The Web server may need administrator accounts for its maintenance.

60 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

role in the role hierarchy in Figure 11 to the corresponding role account in
the Windows NT server. For example, we mapped the role DIR to the role
account Director in the server. After a user (subject), Alice, authenticates to
a Web server over SSL by sending her client smart certificate—which has
the role “DIR”—to the server, she is mapped to the role account “Director”
in the Windows NT server. As a result, even though Alice does not have an
account in the server, she acquires the Director’s permission in the server,
since she is assigned to the role “Director,” denoted in her smart certificate.
The permission of each role account depends on the policy of the Web
server.

Providing Role Hierarchy. How then can the Web server support the
role hierarchy? Figure 15 shows how we used a built-in access control
mechanism in the Windows NT server to support the role hierarchy
depicted in Figure 11. Reflecting the roles in the hierarchy, we created role
accounts such as Director, Project_Lead1, Project_Lead2, Project_Engi-
neer1, Quality_Engineer1, and others. We also created directories in the
Windows NT file system, where each directory has files to be accessed by a
specific role in the role hierarchy. Subsequently, we configured the Win-
dows NT file system to assign each role account specific access rights to the
directories based on the role hierarchy. For instance, the role account
Project_Lead1 is assigned access rights to the Project_Lead1’s directory—
which has resources for the role Project_Lead1—and the directories that
require the roles junior to the Project_Lead1 role in the role hierarchy. In
other words, if Alice is mapped to the role account Project_Lead1, she
obtains permissions assigned to the role account Project_Lead1, thereby
acquiring access rights to the directories for Project_Lead1, Project_Engi-
neer1, Quality_Engineer1, Engineer1, Engineering Department, and Em-
ployee.

As a result, after verifying the smart certificate, the Web server allows
the user, Alice, to execute transactions based on her roles—contained in
the OU field of the certificate—instead of her identity. In other words, the
Web server does not care about the user’s identity. This resolves the
scalability problem of identity-based access control, which is used primarily
in existing Web servers. Furthermore, since the Web server also uses a role
hierarchy, it supports a natural means for structuring roles to reflect an
organization’s lines of authority and responsibility. Each Web server may
have a role hierarchy different from that in other servers. The location of
RBAC-compliant Web servers is geographically free from that of the role
server, since smart certificates (which include the subjects’ role informa-
tion) can be issued by one certificate server for use by other Web servers,
regardless of their physical location.

5.4 Summary

In this section we have described how we implemented RBAC with role
hierarchies on the Web in user-pull architecture using smart certificates.
The certificate authority issues a smart certificate, including a subject’s

Role-Based Access Control • 61

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

identity and role information, and Web servers use the role information for
RBAC with role hierarchies after verification. This access control mecha-
nism solves the scalability problem of existing Web servers. The implemen-
tation is transparent to users and applicable to existing Web servers and
browsers.

6. RBAC ON THE WEB IN SERVER-PULL ARCHITECTURE USING LDAP

Directory services will be the foundation for e-commerce and extranet
applications that put business processes in the network. Directories will
allow people to collaborate and share information both internally and
externally. With the directory services feature, we use LDAP (Lightweight
Directory Access Protocol [Howes et al. 1999]) server and client for our
RBAC implementation.

6.1 Lightweight Directory Access Protocol (LDAP)

User information is often fragmented across the enterprise, leading to data
that is redundant, inconsistent, and expensive to manage. Directories are
viewed as one of the best mechanisms to make enterprise information
available to multiple different systems within an organization. Directories

Project_Lead1

Project_Lead2

Project_Engineer1

Quality_Engineer1

Project_Engineer2

Quality_Engineer2

Director

Engineering_Department

Employee

Engineer1

Engineer2

[Role Accounts] [Permissions]

Director’s Directory

Project_Lead1’s Directory

Project_Lead2’s Directory

Project_Engineer1’s Directory

Quality_Engineer1’s Directory

Project_Engineer2’s Directory

Quality_Engineer2’s Directory

Engineer1’s Directory

Engineer2’s Directory

Engineer’s Directory

Employee’s Directory

Fig. 15. Permission-account assignment (PAA).

62 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

also make it possible for organizations to access information over the
Internet. The most common information stored in a directory service is
about users on a network; this can include user id, passwords, assigned
groups, and a user’s network access rights. In order to retrieve the
information, a directory access protocol is used to convey the entries from a
directory-oriented server. The trend towards directories has been acceler-
ated by the recent growth of LDAP.

LDAP is a protocol that enables X.500–based directories to be read
through Internet clients. It was developed by the University of Michigan
and the Internet Engineering Task Force (IETF) as a set of network
services to provide object management and access over TCP/IP networks.
LDAP is a message-oriented protocol. When an LDAP client needs a
specific entry in an LDAP server, it generates an LDAP message containing
a request and sends this message to the LDAP server. The server retrieves
the entry from its database and sends it to the client in an LDAP message.
It also returns a result code to the client in a separate LDAP message to
terminate the session. Figure 16 shows this interaction between the LDAP
server and client.

Although we use LDAP between Web servers and role server for RBAC in
server-pull architecture, it is also possible to use LDAP for user-pull
architecture, where clients can retrieve their roles from the role server via
LDAP and present them to Web servers. A detailed description of this
implementation is available in Park et al. [2001].

6.2 Implementing RBAC on the Web in Server-Pull Architecture

We use LDAP to communicate between the directory-oriented role server
and the Web servers. In our implementation we use Netscape Directory
Server as an LDAP-supporting role server and its group objects as users’
role attributes. This directory-oriented role server contains users’ role
information to be used for access control by Web servers.

The basic scenario of our implementation is that a client presents her
authentication information to a Web server and then, after a successful
authentication process, the Web server gets the client’s role information
from the role server via LDAP to use those roles for RBAC services in the
Web server.

For this purpose, we set up a computing environment based on the
server-pull architecture (see Section 3, Figure 3). Figure 18 shows the

LDAP Server

LDAP Client

1. Search request from client

2. Returned entry from server

3. Result code message

Fig. 16. LDAP operation.

Role-Based Access Control • 63

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

transaction procedures of our experiment. We have three major compo-
nents: Web server, role server, and client. The role server keeps URA
(user-role assignment) information. The Web server contains resources that
require particular roles to be accessed. The Web server also contains a PRA
(permission-role assignment) table, which specifies the required roles for
particular resources in the Web server. This table is referenced to check if
the user has proper roles to access particular resources in the Web server.
Clients use Web browsers to connect Web servers over HTTP or HTTPS.

The detailed transaction procedures are as follows. A client presents her
authentication information to a Web server. We can use username/pass-
words, IP numbers, client certificates,7or other authentication techniques
for this purpose. The Web server authenticates the user using a proper
authentication mechanism. Once a user is successfully authenticated by
the Web server (otherwise the user gets an error message), the Web server
triggers the CGI (common gateway interface) scripts that call the LDAP
client software. The LDAP software sends a search query to the LDAP
server, which retrieves the user’s roles from the directory server through
SSL. The retrieved roles are sent back to the LDAP client in the Web server
during the same SSL session. When the user requests an access to the

7To use client certificates, which is an optional operation of SSL, we need to configure the Web
server to accept and understand particular client certificates. Note that this SSL channel is
optional and independent of the SSL connection between Web servers and the role server.

Fig. 17. Directory server: Enabling SSL.

64 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

resources that require particular roles to be accessed, the Web server
compares the user’s roles (which it pulled from the role server) with the
ones in its PRA table by clicking the corresponding link in the initial page.
If the user has corresponding roles in the table, the Web server allows the
user to access the resources.

Figure 17 is a snapshot that shows the directory server (role server in our
case) configuration. This directory server runs a process called slapd
(LDAP server daemon) to allow requests from LDAP clients. We configure
this server to have two network ports: one is for regular port and the other
is for secure communications. For secure communications, we need to
establish SSL between the LDAP client (installed in the Web server in our
implementation) and the directory server, more specifically the LDAP
server. Figure 17 also shows the configuration of SSL that installs a server
certificate issued by a certificate authority.

Once a user is authenticated by the Web server, the Web server triggers
CGI scripts that call LDAP client software. The LDAP client software sends
a search query to the LDAP server, which retrieves the user’s roles from
the directory server. The retrieved roles are sent back to the LDAP client in
the Web server. The Web server receives those roles and uses them for
RBAC.

6.3 Summary

In this section we described how we implemented RBAC on the Web using
LDAP and SSL in the server-pull architecture. The user presents her

Role Server
(Directory

Server: DS)
Web Server

client

1 Authenticate client (using password or client certificate)
2 Display the initial page
3 Request resources by clicking a link
4 Establish SSL between DS and Web server
5 LDAP over SSL; Request client’s role information to DS
6 LDAP over SSL; Return client’s role information to Web server
7 Display appropriate resources after authorization check

based on client’s roles

1
2
3
7

4
5
6

Fig. 18. Transaction procedures for RBAC in server-pull architecture.

Role-Based Access Control • 65

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

authentication information to a Web server and then, after a successful
authentication process, the Web server gets the user’s role information
from the role server through LDAP to use those roles for the access control
services in the Web server. We used SSL between the role server and Web
servers to protect their communication on the Web.

7. DISCUSSIONS

In this section we discuss the tradeoffs between the user-pull (implemented
and described in Sections 4 and 5) and the server-pull (implemented and
described in Section 6) architectures using different technologies for RBAC
on the Web. In the user-pull architecture, the user pulls her roles from the
role server and then presents the role information to the Web servers along
with her authentication information. In the server-pull architecture, the
user presents her authentication information to the Web servers, which
pull the user’s role information from the role server for RBAC after
successful authentication.

The user-pull architecture requires a user’s cooperation to obtain her
roles, but it enhances Web server performance. Once the user obtains her
roles, she can use them in many different sessions, and even in different
Web servers, until the roles expire. This increases reusability. With this
feature the user-pull architecture is a good solution for applications,
especially where the users’ convenience is required for maintaining and
using their roles frequently in diverse Web sites. However, the longevity of
the roles decreases their freshness. For instance, if the user already pulled
her roles, the updated version in the role server would not become effective
instantly. Consequently, an additional synchronization process is required.
Hence the role server should push the status change in user roles, such as
role revocation, to the Web server for updated information.

The server-pull architecture requires the Web server’s cooperation for
obtaining the user’s role information—which decreases Web server perfor-
mance—from the role server. In this architecture, the Web server retrieves
the user’s role information from the role server for each session. This
increases the freshness of the roles, so the information update (e.g., role
revocation) is more efficient than user-pull architecture, since all the roles
are stored in the role server and pulled by the Web servers on demand.
With this feature, the server-pull architecture is a good solution for
applications, especially where dynamic role update is critical. However, it
decreases reusability and increases the single-point failure vulnerability

Table I. A Comparison of User-Pull and Server-Pull Architectures

User-Pull Architecture Server-Pull Architecture

User’s convenience Low High
Performance High Low
Reusability High Low
Role freshness Low High
Single-point failure Low High

66 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

because every session requires an access to the role server. We summarize
the comparison of user-pull and server pull architectures in Table I.

Secure cookies inherently support the user-pull architecture only— be-
cause cookies are stored in users’ machines, they cannot operate in the
server-pull architecture. When the user connects to a Web server, the
relevant secure cookies are selected and presented to the server by the
browser and expired cookies are deleted from the user’s machine automat-
ically. In contrast, smart certificates support both user-pull and server-pull
architectures. A bundled (identity and roles) smart certificate is useful for
the user-pull architecture. To use smart certificates, user cooperation is
required. Whenever the user connects to a Web server, which requires a
smart certificate from the client, the user needs to select a proper certifi-
cate among her available certificates, and present it to the server. Once
Web servers install a CA certificate as an acceptable certificate under some
policy, a client certificate can be used in many Web servers (even in
different domains). For instance, Alice’s smart certificate—which has her
credit card information—can be used in many Web sites in different
domains for electronic commerce on the Web.

The technologies that we introduced in this article are compatible with
existing technologies; HTTP can support the secure cookie mechanism as it
does for regular cookies; SSL can support smart certificates as it does for
X.509 certificates; and LDAP can be easily integrated with existing Web
components.

8. RELATED WORK

8.1 getAccess

enCommerce has released getAccess [enCommerce 2000] to implement a
hierarchical RBAC for the organization online. Each role defines a specific
access privilege to one or more resources. The roles can be grouped into
macro roles, and macro roles can also have other macro roles. There are
four main software modules in this product: registry server, access server,
administration application, and integration tools. The access server is
located in a company’s Intranet or Extranet, while the registry server is
always located in the Intranet. A user always connects to the access server
first via browsers. The access server then connects the registry server to
obtain the user’s identification and roles through a secure connection.
Subsequently, the registry server authenticates the user and returns the
user’s encrypted role information through cookies. These cookies are tem-
porarily stored in RAM on the user’s machine while the browser is open.
When the user connects to a Web server in the Intranet, the browser sends
the cookies to the Web server. The Web server then decrypts and uses the
encrypted role information in the cookies for RBAC in the server.

The getAccess mechanism uses encrypted cookies, but there is substantial
difference between this approach and our secure cookies. Their encrypted
cookies are not stored in the user’s machine after the session. In other

Role-Based Access Control • 67

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

words, if a session is ended by closing the browser, the encrypted cookies
disappear. This means that whenever a user, Alice, needs to connect to a
Web server with her roles, she must connect to the registry server through
the access server first. On the contrary, secure cookies—which obtain the
user’s role information—can be stored in the user’s machine securely after
the session, even when the power of the user’s machine is off. This is
possible because the secure cookies can be provided with integrity and
authentication services as well as encryption. Therefore, once Alice obtains
her secure cookies, she can use her roles until the cookies expire, without
having to connect to the cookie issuer.

8.2 TrustedWeb

Siemens Nixdorf has released TrustedWeb [Siemens Nixdorf 2000], which
supports RBAC for Web contents and applications, as well as security
services such as mutual authentication, integrity, and confidentiality for
Intranets. The system, combining elements from both Sieman’s SESAME
[Parker and Pinkas 1995] and Kerberos [Neuman 1994], provides a single
list of users on its central domain security server and assigns roles to the
users. Hence access to individual Web servers in the Intranet is controlled
on the basis of the role rather than the identity of the user. However, to use
TrustedWeb, the client’s browser needs specific software installed in the
client’s machine to communicate with the TrustedWeb servers in the
Intranet, while our techniques do not require any specific software on the
client side.

9. CONCLUSIONS

In this article we have identified the user-pull and server-pull architec-
tures for RBAC services on the Web. In the user-pull architecture, a user
pulls her roles from the role server and then presents them to the Web
servers. In the server-pull architecture, each Web server pulls the user’s
roles from the role server as needed. Each architecture can be made to
work—and we provide an analysis of their relative advantages and disad-
vantages.

We also developed secure cookies and smart certificates to support the
architectures on the Web. Secure cookies are constructed by cryptographic
technologies to support authentication, integrity, and confidentiality ser-
vices. Smart certificates have new features, but they are still compatible
with X.509 certificates. They are able to support short-lived lifetime and
multiple CAs without losing effective maintenance, contain attributes,
provide postdated and renewable certificates, and provide confidentiality.
Which of these new techniques is selected depends on the applications.

To show the feasibility of our new ideas, we have implemented each
architecture by integrating and extending well-known technologies, such as
cookies, X.509, SSL, and LDAP, which provide compatibility with current
Web technologies. We described how we implemented RBAC on the Web in
different architectures using different technologies. We also compared the

68 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

tradeoffs of the various approaches on the basis of our our hands-on
experiences.

We believe that our contribution is an important step towards offering
strong and efficient security management based on users’ roles on the Web.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foundation and
the National Security Agency.

REFERENCES

AHN, G.-J. AND SANDHU, R. S. 2000. Role-based authorization constraints specification. ACM
Trans. Inf. Syst. Secur. 3, 4 (Nov.).

AHN, G.-J., SANDHU, R. S., KANG, M., AND PARK, J. 2000. Injecting RBAC to secure a
Web-based workflow system. In Proceedings of 5th ACM Workshop on Role-Based Access
Control (RBAC ’00, Berlin, Germany, July 26 - 27). ACM, New York, NY.

BELLARE, M., CANETTI, R., AND KRAWCZYK, H. 1996. Keying hashing functions for message
authentication. In Proceedings of the Conference on Advances in Cryptography (CRYPTO
’96). Springer-Verlag, New York, NY.

BOOCH, G., RUMBAUGH, J., AND JACOBSON, I. 1999. The Unified Modeling Language User
Guide. Addison-Wesley Publishing Co., Inc., Redwood City, CA.

CALLAS, J., DONNERHACKE, L., FINNEY, H., AND THAYER, R. 1998. OpenPGP message
format. RFC 2440.

DIERKS, T. AND ALLEN, C. 1999. The TLS (Transport Layer Security) Protocol. RFC 246.
DIFFIE, W. AND HELLMAN, M. 1997. ANSI X9.42: Establishment of symmetric algorithm keys

using Diffie-Hellman. ANSI, New York, NY.
ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND YLONEN, T. 1999. SPKI

(simple public key infrastructure). RFC 2693.
ENCOMMERCE. 2000. getAccess. http://www.encommerce.com/products.
FARRELL, S. 1998a. An Internet AttributeCertificate profile for Authorization. Draft.

draft-ietf-tls-ac509prof-00.txt.
FARRELL, S. 1998b. TLS extensions for AttributeCertificate based authorization. Draft.

draft-ietf-tls-attr-cert-00.txt.
FERRAIOLO, D., CUGINI, J., AND KUHN, R. 1995. Role-based access control (RBAC): Features

and motivations. In Proceedings of the 11th Annual Conference on Computer Security
Applications (New Orleans, LA, Dec. 11-15). 241–248.

FERRAIOLO, D. AND KUHN, D. R. 1992. Role based access control. In Proceedings of the 15th
Annual Conference on National Computer Security. National Institute of Standards and
Technology, Gaithersburg, MD, 554–563.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-LEE, T.
1999. Hypertext Transfer Protocol—HTTP/1.1. RFC 2616. ftp://ftp.isi.edu/in-notes/rfc2616.txt.

GARFINKEL, S. 1995. Pretty Good Privacy. O’Reilly Associates.
GUIRI, L. 1995. A new model for role-based access control. In Proceedings of the 11th Annual

Conference on Computer Security Applications (New Orleans, LA, Dec.). IEEE Computer
Society Press, Los Alamitos, CA, 249–255.

GIURI, L. AND IGLIO, P. 1996. A formal model for role-based access control with constraints. In
Proceedings of 9th IEEE Workshop on Computer Security Foundations (Kenmare, Ireland,
June). IEEE Press, Piscataway, NJ, 136–145.

HOUSLEY, R., FORD, W., POLK, W., AND SOLO, D. 1998. Internet X.509 public key infrastructure
certificate and CRL profile. Draft. draft-ietf-pkix-ipki-part1-11.txt.

HOWES, T., SMITH, M., AND GOOD, G. 1999. Understanding and Deploying LDAP Directory
Services. Macmillan Publishing Co., Inc., Indianapolis, IN.

HU, M.-Y., DEMURJIAN, S., AND TING, T. 1995. User-role based security in the ADAM
object-oriented design and analyses environment. In Database Security VIII: Status and

Role-Based Access Control • 69

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

Prospects, J. Biskup, M. Morgernstern, and C. Landwehr, Eds. Elsevier North-Holland,
Inc., Amsterdam, The Netherlands.

ITU-T. 1993. Information technology—Open systems Interconnection—The Directory: Au-
thentication framework. ITU-T Recommendation X.509. ISO/IEC 9594-8:1993.

ITU-T. 1997. Information technology—Open systems interconnection—The directory: Au-
thentication framework. Recommendation X.509.

KRISTOL, D. M. AND MONTULLI, L. 1999. HTTP state management mechanism.
draft-ietf-http-state-man-mec-12.txt.

LAI, X. AND MASSEY, J. L. 1991. A proposal for a new block encryption standard. In
Proceedings of the Workshop on Advances in Cryptology (EUROCRYPT ’90, Aarhus, Den-
mark, May 21–24), I. B. Damgård, Ed. Springer Lecture Notes in Computer
Science. Springer-Verlag, New York, NY, 389–404.

MOHAMMED, I. AND DILTS, D. M. 1994. Design for dynamic user-role-based security. Comput.
Security 13, 8, 661–671.

MOORE, K. AND FREED, N. 1999. Use of HTTP state management. Draft.
draft-ietf-http-state-man-mec-12.txt.

NEUMAN, C. 1994. Using Kerberos for authentication on computer networks. IEEE Commun.
Mag. 32, 9.

NIXDORF, S. 2000. TrustedWeb. http://www.sse.ie/TrustedWeb.
NYANCHAMA, M. AND OSBORN, S. L. 1994. Access rights administration in role-based security

systems. In Proceedings of the IFIP Working Group 11.3 Working Conference on Database
Security. Elsevier North-Holland, Inc., Amsterdam, The Netherlands, 37–56.

OSBORN, S., SANDHU, R. S., AND MUNAWER, Q. 2000. Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Trans. Inf. Syst. Security
3, 2 (May).

PARK, J. S., AHN, G. -J., AND SANDHU, R. S. 2001. RBAC on the Web using LDAP. In
Proceedings of the 15th IFIP WG 11.3 Working Conference on Database and Application
Security (Ont., Canada, July 15–18). IFIP.

PARK, J. S. AND SANDHU, R. S. 2000a. Binding identities and attributes using digitally signed
certificates. In Proceedings of 16th Annual Conference on Computer Security Application
(New Orleans, LA, Dec. 11-15).

PARK, J. S. AND SANDHU, R. S. 2000b. Secure cookies on the Web. IEEE Internet Comput. 4, 4
(July-Aug.), 36–44.

PARK, J. S. AND SANDHU, R. S. 1999a. RBAC on the Web by smart certificates. In Proceedings
of 4th ACM Workshop on Role-Based Access Control (RBAC ’99, Fairfax, VA, Oct.
28-29). ACM, New York, NY.

PARK, J. S. AND SANDHU, R. S. 1999b. Smart certificates: Extending X.509 for secure attribute
services on the Web. In Proceedings of 22nd National Conference on Information Systems
Security (Crystal City, VA, Oct.).

PARK, J. S., SANDHU, R. S., AND GHANTA, S. 1999. RBAC on the Web by secure cookies. In
Proceedings of the IFIP WG11.3 Workshop on Database Security (July). Chapman & Hall,
London, UK.

PARKER, T. AND PINKAS, D. 1995. SESAME V4—OVERVIEW: Version 4. SESAME Techno-
logy.

RESCORLA, E. AND SCHIFFMAN, A. 1998. Security extensions For HTML. Draft.
draft-ietf-wts-shtml-05.txt.

RIGNEY, C., RUBENS, A., SIMPSON, W. A., AND WILLENS, S. 1997. Remote authentication dial In
user service RADIUS. RFC 2138.

RIVEST, R. 1992. The MD5 message digest algorithm. RFC 1321.
RIVEST, R., SHAMIR, A., AND ADELMAN, L. 1978. A method for obtaining digital signatures and

public-key cryptosystems. Commun. ACM 21, 2 (Feb.), 120–126.
SANDHU, R. S. 1995. Rationale for the RBAC96 family of access control models. In

Proceedings of the First ACM Workshop on Role-Based Access Control (RBAC ’95, Gaithers-
burg, MD, Nov. 30,–Dec. 1), C. E. Youman, R. S. Sandhu, and E. J. Coyne, Eds. ACM Press,
New York, NY.

70 • J. S. Park et al.

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1994. Role-based access
control: A multi-dimensional view. In Proceedings of the 10th Conference on Computer
Security Applications (Dec.). IEEE Computer Society Press, Los Alamitos, CA, 54–62.

SANDHU, R. S., BHAMIDIPATI, V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-based
administration of roles. ACM Trans. Inf. Syst. Secur. 1, 2 (Feb.), 105–135.

SANDHU, R. S. AND PARK, J. S. 1998. Decentralized user-role assignment for Web-based
intranets. In Proceedings of the Third ACM Workshop on Role-Based Access Control (RBAC
’98, Fairfax, VA, Oct. 22–23), C. Youman and T. Jaeger, Chairs. ACM Press, New York, NY,
1–12.

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access
control models. IEEE Computer 29, 2 (Feb.), 38–47.

SCHIFFMAN, A. AND RESCORLA, E. 1998. The secure HyperText transfer protocol. Draft.
draft-ietf-wts-shttp-06.txt.

STEINER, J., NEUMAN, C., AND SCHILLER, J. 1988. Kerberos: An authentication service for open
network systems. In Proceedings on USENIX Winter Conference. USENIX Assoc., Berkeley,
CA.

VON SOLMS, S. H. AND VAN DER MERWE, I. 1994. The management of computer security profiles
using a role-oriented approach. Comput. Security 13, 8, 673–680.

WAGNER, D. AND SCHNEIER, B. 1996. Analysis of the SSL 3.0 protocol. In Proceedings of the
USENIX Conference on Electronic Commerce. USENIX Assoc., Berkeley, CA, 29–40.

YOUMAN, C., COYNE, E., AND SANDHU, R. S., EDS. 1997. Proceedings of the Second ACM
Workshop on Role-Based Access Control. (RBAC ’97, Fairfax, VA, Nov. 6–7). ACM Press,
New York, NY.

ZIMMERMANN, P. R. 1995. The Official PGP User’s Guide. MIT Press, Cambridge, MA.

Received: May 2000; revised: November 2000; accepted: February 2001

Role-Based Access Control • 71

ACM Transactions on Information and System Security, Vol. 4, No. 1, February 2001.

