Adaptive Rank-Aware Query Optimization in
Relational Databases

IHAB F. ILYAS
University of Waterloo
and

WALID G. AREF, AHMED K. ELMAGARMID, HICHAM G. ELMONGUI,
RAHUL SHAH, and JEFFREY SCOTT VITTER

Purdue University

Rank-aware query processing has emerged as a key requirement in modern applications. In these
applications, efficient and adaptive evaluation of top-k queries is an integral part of the application
semantics. In this article, we introduce a rank-aware query optimization framework that fully inte-
grates rank-join operators into relational query engines. The framework is based on extending the
System R dynamic programming algorithm in both enumeration and pruning. We define ranking
as an interesting physical property that triggers the generation of rank-aware query plans. Unlike
traditional join operators, optimizing for rank-join operators depends on estimating the input car-
dinality of these operators. We introduce a probabilistic model for estimating the input cardinality,
and hence the cost of a rank-join operator. To our knowledge, this is the first effort in estimating
the needed input size for optimal rank aggregation algorithms. Costing ranking plans is key to the
full integration of rank-join operators in real-world query processing engines.

Since optimal execution strategies picked by static query optimizers lose their optimality due
to estimation errors and unexpected changes in the computing environment, we introduce several
adaptive execution strategies for top-k queries that respond to these unexpected changes and
costing errors. Our reactive reoptimization techniques change the execution plan at runtime to
significantly enhance the performance of running queries. Since top-k query plans are usually
pipelined and maintain a complex ranking state, altering the execution strategy of a running
ranking query is an important and challenging task.

We conduct an extensive experimental study to evaluate the performance of the proposed frame-
work. The experimental results are twofold: (1) we show the effectiveness of our cost-based approach
of integrating ranking plans in dynamic programming cost-based optimizers; and (2) we show a

Authors’ addresses: 1. F. Ilyas, University of Waterloo, 200 University Ave. West, Waterloo, Ontario,
Canada N2L 3G1; email: ilyas@uwaterloo.ca; Aref, A. K. Elmagarmid, H. G. Elmongui, R. Shah,
dJ. S. Vitter. Purdue University, 250 N. University Street, West Lafayette, IN 47907; W. G. Support
for I. F. Ilyas was provided in part by the Natural Sciences and Engineering Research Council
of Canada through Grant 311671-05; W. G. Aref’s research is supported in part by the National
Science Foundation under Grants 11S-0093116 and I1S-0209120; H. G. Elmongui is also affiliated
with Alexandria University, Egypt; Support for R. Shah and J. S. Vitter was provided in part by the
Army Research Office through grant DAAD19-03-1-0321 and by the National Science Foundation
through research grant I11S-0415097.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2006 ACM 0362-5915/06/1200-1257 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006, Pages 1257-1304.

1258 . I. F. llyas et al.

significant speedup (up to 300%) when using our adaptive execution of ranking plans over the
state-of-the-art mid-query reoptimization strategies.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems
General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Advanced query processing, ranking, top-k, adaptive process-
ing, rank-aware optimization

1. INTRODUCTION

Emerging applications that depend on ranking queries warrant efficient sup-
port of ranking in database management systems. Supporting ranking gives
database systems the ability to efficiently answer information retrieval (IR)
queries. For many years, combining the advantages of databases and informa-
tion retrieval systems has been the goal of many researchers. While database
systems provide efficient handling of data with solid integrity and consistency
guarantees, IR provides mechanisms for effective retrieval and fuzzy ranking
that are more appealing to the user.

One approach toward integrating databases and IR is to introduce IR-style
queries as a challenging type of database query. The new challenge requires
several changes that vary from introducing new query language constructs to
augmenting the query processing and optimization engines with new query op-
erators. It may also introduce new indexing techniques and other data manage-
ment challenges. A ranking query (also known as top-k query) is an important
type of query that allows for supporting IR-style applications on top of database
systems. In contrast to traditional join queries, the answer to a top-k join query
is an ordered set of join results that combines the orders of each input, according
to some provided function.

Several application examples exist in which rank-aware query processing
is essential; in the context of the Web, the main applications include build-
ing metasearch engines, combining scoring functions, and selecting documents
based on multiple criteria [Dwork et al. 2001]. Efficient rank aggregation is the
key to a useful search engine. In the context of multimedia and digital libraries,
an important type of query is similarity matching. Users often specify multiple
features to evaluate the similarity between the query media and the stored
media. Each feature may produce a different order of the media objects similar
to the given query, hence the need to combine these rankings, usually, through
joining and aggregating the individual scores to produce a global ranking. Sim-
ilar applications exist in the context of information retrieval, sensor networks,
and data mining.

1.1 Query Model

Most of the aforementioned applications have queries that involve joining mul-
tiple inputs, where users are usually interested in the top-% join results based
on some score function. The answer to a top-%k join query is an ordered set of
join results according to some provided function that combines the orders of
each input.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1259

Hence, we focus on join as an expensive and essential operation in most top-
k queries. However, several efficient algorithms have been proposed to answer
top-k queries on a single table (top-% selection) [Bruno et al. 2002; Chang and
Hwang 2002]. Most of these algorithms are directly applicable as a rank-aware
scan operator. In this article, we focus on rank-aware join operators and on
addressing their impact on query processing and optimization.

Definition 1. Consider a set of relations R, to R,,. Each tuple in R; is
associated with some score that gives it a rank within R;. The top-k join query
joins R; to R,, and produces the results ranked on a total score. The total score
is computed according to some function, say F', that combines individual scores.
Note that the score attached with each relation can be the value of one attribute
or a value computed using a predicate on a subset of its attributes.

A possible SQL-like notation for expressing a top-£ join query is as follows:

SELECT *

FROM Ri, Ro,..., R,

WHERE join_condition(R1, R, ..., Ry,)

ORDER BY F'(R;.score, Rg.score, ..., R, score)
LIMIT k;

where LIMIT limits the number of results reported to the user, join_condition
is a general join condition that associates objects from different relations, and
R; .score is the score of a tuple in Relation R;. Note that score can be a single
attribute or a function on a set of attributes in R;. For simplicity of the presen-
tation, we assume that score is a single attribute since we concentrate on the
processing and optimization of the rank-aware join operators.

1.2 Motivating Examples and Challenges

Following are two real-life examples in which efficient evaluation of ranking
queries is essential. Example 1 illustrates a key-equality top-%£ join scenario,
while Example 2 gives a general top-% join scenario. We also discuss the effect
of changes and fluctuations in the computing environment on the performance
of query evaluation.

Example 1. Consider a video database that contains several extracted fea-
tures, e.g., color histograms, texture, and edge orientation. These features are
extracted for each video frame and are stored in separate tables. Each feature
is indexed by a high-dimensional index for a faster query response. Suppose
that a user is interested in the £ frames most similar to a given image based
on both color and texture. We refer to these type of queries as multifeature or
maulticriteria ranking queries.

To answer single-feature queries (i.e., similarity based on texture or color
individually), a database system supporting approximate matching ranks tu-
ples based on how well they match the query. The challenge in multifeature
queries is to obtain a global ranking of frames based on the color and texture
similarities to the query image. In the case of multicriteria ranking, it is not

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1260 . I. F. llyas et al.

clear how the database system combines the individual rankings of the multiple
criteria.

Example 2. A family is interested in buying a house with a school nearby
with the objective of minimizing the total cost. Consider a simple cost func-
tion that sums the price of the house and 5-year school tuition. Searching the
two Web databases, HOUSES and SCHOOLS, the family issues the following

query:

SELECT *

FROM HOUSES H, SCHOOLS S

WHERE Distance (H.location,S.location) < d
ORDER BY H.price + 5 * S.tuition

LIMIT 10;

Distance is a user-defined function that evaluates how near a school is to a
house. The family is interested only in the top 10 results instead of all possible
join results. The order by clause provides the ranking function of the results.
Note that each of the two external Web sources, HOUSES and SCHOOLS,
may be able to provide a list of records sorted on the price and tuition,
respectively.

In current database systems, the queries in the previous examples are evalu-
ated as follows. First, the input tables are joined according to the join condition.
Then, for each join result, the global score is computed according to the given
function. Finally, the results are sorted on the computed combined score to
produce the top-k results, and the rest of the results are dropped. Two major
expensive operations are involved: joining the individual inputs and sorting the
join results.

A key observation in these examples is that, even if the database system
can efficiently rank the inputs, the query engine cannot use these rankings to
obtain a global rank on the final result. Instead, a sort operation after the join
is the only way to get the final ranked query answers. We call this traditional
approach materialize-then-sort, where a blocking sorting operator on top of the
join is unavoidable. If the inputs are large, the cost of this execution strategy
can be prohibitive.

Rank-aware query processing [Ilyas et al. 2002, 2003; Chang and Hwang
2002; Li et al. 2005] has emerged as an efficient approach to answer top-k
queries. In rank-aware query processing, ranking is treated as a first-class
functionality and is fully supported in the query engine. In Ilyas et al. [2002,
2003], we introduced a set of new logical and physical rank-join operators to
augment current relational query processors with ranking capabilities. Other
rank-aware operators have also been introduced in Chang and Hwang [2002];
Bruno et al. [2002]; Natsev et al. [2001].

With these operators, query engines can generate new rank-aware query
execution plans that avoid the naive materialize-then-sort approach. Instead,
joins progressively generate ranked results, eliminating the blocking sort oper-
ator on top of the plan. Moreover, the query optimizer will have the opportunity
to optimize a ranking query by integrating the new operator in ordinary query

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1261

Top (k) Top (k) Top (k)
| | \
Sort ><]
>
5 ‘j X Soé {L
> L
R S

¢\

B, Ordinary join operator.
><1r: The proposed rank-join operator.

Fig. 1. Alternative execution plans to rank-join three ranked inputs.

10000

9000 - Rankioin Cost ool | Rank-join Cost
—— | 4

4 8000 ank-join Cost 2 —=—Sort Plan Cost
o —=—Sort Plan Cost o
S 7000 3
o J
- 6000 g 8000 - E
s 5000 4
2 3 i
® 4000 - |
£ £ !
2 3000 1 S 4000 - E
W 2000 | d {

1000 "

0 . : . . . 0 . : — : .
0 00002 00004 00006 00008 0001 0.0012 0 50 100 150 200 250 300 350
Join Selectivity k

(a) (b)

Fig. 2. Estimated I/O cost for two ranking plans.

execution plans. Figure 1 gives alternative execution plans to rank-join three
ranked inputs.

However, the absence of a cost model of these novel operators hinders their
integration in a real-world query engine. An observation that motivates the
need for integrating rank-join operators in query optimizers is that a rank-join
operator may not always be the best way to produce the required ranked results.
In fact, depending on many parameters (e.g., the join selectivity, the available
access paths, and the memory size), a traditional join-then-sort plan may be a
better way to produce the ranked results.

Figure 2 gives the estimated I/O cost of two plans: a sort plan and a rank-
join plan. Figure 2(a) compares the two plans for various join selectivities,
while Figure 2(b) compares the two plans for various % (the required num-
ber of results). The sort plan is a traditional plan that joins two inputs and
sorts the results on the given scoring function, while the rank-join plan uses a
rank-join operator that progressively produces the join results ranked on the
scoring function. Figure 2(a) shows that, for low values of the join selectivity,
the traditional sort-plan is cheaper than the rank-join plan. On the other hand,
Figure 2(b) shows the superiority of the rank-join plan for low values of k.
Figure 2 highlights the need to optimize top-%2 queries by integrating rank-join
operators in cost-based query optimization.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1262 . I. F. llyas et al.

However, even with a way to cost ranking operators and generate rank-
aware query plans, Example 2 introduces another important challenge: since
the ranking involves external sources, query execution plans may stall due
to the blocking calls of the GetNext interface when these data sources experi-
ence disconnection or unexpected long delays. Moreover, the optimality of the
execution plan is compromised when certain execution characteristics change
permanently or become inconsistent with the estimated values. For example,
this may happen when a source becomes slower for the rest of the execution
period, or the monitored selectivity shows a large estimation error. Hence, the
overall execution plan becomes suboptimal and may result in a significant per-
formance degradation. The only effective solution in these scenarios is to alter
the execution plan to a more efficient execution strategy. We summarize the
two main challenges addressed in this article as follows.

—Costing and Optimizing Rank-aware Plans. We need to develop cost-based
enumeration and pruning techniques to integrate ranking operators in real-
world query engines. As we show, it is hard to estimate the cost of rank-join
operators because of their early-out feature; whenever the top-k results are
reported, the execution stops without consuming all the inputs.

—Coping with the Fluctuations and changes in the Computing Environment.
As more applications migrate to handheld devices, sensor networks, and the
Internet, many of the assumptions we make about the availability of data
are no longer valid due to unexpected delays and frequent disconnections.
Ranking queries are dominant in these less-stable environments. Providing
an adaptive processing mechanism for ranking queries has a direct effect on
the adaptability and performance of many modern applications.

To the best of our knowledge, there have been no proposals to handle adaptive
execution of ranking queries. However, in recent years, several techniques have
been proposed for adaptive query processing of traditional Boolean queries. Re-
fer to Section 2 for further details on these proposals. As we demonstrate in Sec-
tion 5, applying these techniques in rank-aware query processing is hindered by
the pipelined and incremental nature of rank-aware query processing. We intro-
duce novel mid-query reoptimization techniques that handle the specific nature
of ranking operators and reuse most of the state information of rank-join plans.

1.3 Contributions

We summarize our proposed solution for the aforementioned challenges in the
following contributions.

—Ranking as a physical property. We extend the notion of interesting proper-
ties in query optimization to include interesting rank expressions. The exten-
sion triggers the generation of a space of rank-aware query execution plans.
The new generated plans make use of the proposed rank-join operators and
integrate them with other traditional query operators.

—Cost-based rank-aware optimization. We tackle the challenge of pruning
rank-aware execution plans based on cost. A rank-join plan stops once it

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1263

produces the top-k answers. Thus, the input cardinality of the operators (and
hence the cost) can vary significantly and, in many cases depends on the query
itself. We provide an efficient probabilistic model to estimate the minimum
input size (depth) needed. We use these estimates in pruning the generated
plans.

—Adaptive optimization of ranking plans. We present a novel adaptive execu-
tion framework for ranking queries. We outline general adaptive processing
algorithms based on the types of change in the optimality conditions of the
current executing plan (e.g., cost parameters and fluctuations in the com-
puting environment). We introduce a novel algorithm to alter the current
pipelined ranking plan in runtime and to resume with the new optimal (or
better) execution strategy. The plan alteration mechanism employs an ag-
gressive reuse of the old ranking state from the current plan in building the
state of the new plan.

— Experimental study. We conduct an extensive experimental study to evaluate
all of the aspects of the proposed techniques based on an implementation in
PostgreSQL. The experiments show orders of magnitude performance gain
over current top-k evaluation approaches in database systems and significant
improvement over recent rank-join algorithms proposed in the literature. The
experiments also show the accuracy and effectiveness of the proposed cost
model. In evaluating the adaptive execution framework, the experiments
show significant performance gain (more than 300% speedup and 86% more
results in the case of source disconnection) by changing suboptimal execu-
tion strategies in runtime. The experiments also show significant superiority
over current reoptimization techniques of pipelined query plans based on re-
executing the whole query.

In an earlier work [Ilyas et al. 2004], we proposed the static rank-aware opti-
mization techniques presented in this article. The work in Ilyas et al. [2004] does
not address adaptive optimization of rank-aware query plans when changes in
the computing environment cause the current execution plan to become sub-
optimal. In this article, we propose several new techniques and algorithms for
adaptive optimization of ranking queries, supported by extensive experimental
study to evaluate our approach. We believe that the new contributions are more
than 40% of this article. We summarize the new material as follows.

—In the introduction, we provide motivating examples and new research
challenges to highlight the need for adaptive rank-aware optimization
(Section 1.2).

—We give the necessary background on adaptive query processing in
Section 2.4.

—We enhance the cost analysis in Section 4 by discussing the effects of as-
sumptions violation and by showing how to change the model to relax some
of these assumptions.

—We introduce a new section, Section 5, which covers our proposed adaptive
optimization techniques for ranking query plans by changing the execution
strategy at runtime.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1264 . I. F. llyas et al.

—In the experiments, we introduce a new section on the experimental evalua-
tion of our proposed adaptive optimization techniques (Section 6.3).

1.4 Outline

The remainder of the article is structured as follows. In Section 2, we give
an overview of rank-aggregation and rank-aware query operators; we also give
background information on traditional and adaptive query processing. We show
how to extend traditional query optimization to be rank-aware in Section 3.
Moreover, in Section 3, we show how to treat ranking as an interesting phys-
ical property and its impact on plan enumeration. In Section 4, we introduce
a novel probabilistic model for estimating the input size (depth) of rank-join
operators and hence estimating the cost and space complexity of these oper-
ators. Section 5 describes algorithms to adaptively execute pipelined ranking
queries and describes how to reuse current state information in building new
execution strategies. Section 5 also studies the applicability of eddies and oper-
ator scheduling in the context of ranking queries. We experimentally evaluate
the cost estimation model and the adaptive execution techniques in Section 6.
Section 7 concludes with a summary and final remarks.

2. BACKGROUND AND RELATED WORK

In this section, we highlight the research efforts to introduce efficient al-
gorithms that integrate (aggregate) the ranking of multiple ranked inputs.
Also, we present the necessary background for the new proposed rank-join
algorithms.

2.1 Rank Aggregation

Rank aggregation is an efficient way to produce a global rank from multiple
input rankings, and can be achieved through various techniques. In a nutshell,
rank aggregation algorithms view the database as multiple lists. Each list con-
tains a ranking of some objects; each object in a list is assigned a score that
determines its rank within the list. The goal is to be more efficient than the
naive approach of joining the lists together and then sorting the output list
on the combined score. To get a total ranking, a rank aggregation algorithm
incrementally maintains a temporary state that contains all seen object scores.
The algorithm retrieves objects from the lists (along with their scores) until the
algorithm has enough information to decide on the top-ranked objects and then
terminates. The reader is referred to Fagin [1999], Fagin et al. [2001], Nepal and
Ramakrishna [1999], Glintzer et al. [2000, 2001], Natsev et al. [2001], Bruno
et al. [2002], Ilyas et al. [2003], Hristidis et al. [2003], and Chang and Hwang
[2002] for more details on the various proposed algorithms.

2.2 Rank-Join Query Operators

To support rank aggregation algorithms in a database system, we have the
choice of implementing these algorithms at the application level as user-defined
functions or to implement them as core query operators (rank-join opera-
tors). Although the latter approach requires more effort in changing the core

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1265

implementation of the query engine, it supports ranking as a basic database
functionality. In Ilyas et al. [2002, 2003], we show the benefit of having rank-
aware query operators that can be smoothly integrated with other operators
in query execution plans. In general, rank-join query operators are physical
join operators that, besides joining the inputs, produce the join results ranked
according to a provided scoring function.

Ranking join operators (1) achieve code reusability by pushing ranking from
the application to the core database system; (2) exploit orderings on the inputs to
produce ordered join results unlike current Boolean join operators; and (3) allow
for global optimization of queries that involve other nonranking operations such
as ordinary join and selection. At the same time, rank-join operators require
the following: (1) ranked inputs (or at least one of them) and each input tuple
has an associated score, (2) a GetNext interface on the input to retrieve the next
tuple in descending order of scores, and (3) a monotone scoring function, say F,
that computes a total score of the join result by applying F on the scores of the
tuples from each input.

Rank-join operators are almost non-blocking. The next ranked join result is
usually produced in a pipelined fashion without the need to exhaust all the
inputs. On the other hand, a rank-join operator may need to exhaust part of
the inputs before being able to report the next ranked join result. It has been
proven that rank-join operators can achieve a huge benefit over the traditional
join-then-sort approach to answer top-£ join queries especially for small values
of k [Ilyas et al. 2003].

For clarity of presentation, we give a brief overview of one possible rank-join
implementation, hash rank-join (HRJN): The operator is initialized by spec-
ifying the two inputs, the join condition, and the combining function. HRJN
can be viewed as a variant of the symmetrical hash join algorithm [Hong
and Stonebraker 1993; Wilschut and Apers 1993] or the hash ripple join al-
gorithm [Haas and Hellerstein 1999]. HRJN maintains an internal state that
consists of three structures. The first two structures are two hash tables, that
is, one for each input. The hash tables hold input tuples seen so far and are
used in order to compute the valid join results. The third structure is a pri-
ority queue that holds the valid join combinations ordered on their combined
score. At the core of HRJN is the rank aggregation algorithm. The algorithm
maintains a threshold value that gives an upper-bound of the scores of all join
combinations not yet seen. To compute the threshold, the algorithm remembers
and maintains the two top scores and the two bottom scores (last scores seen)
of its inputs. A join result is reported as the next top-k answer if the join result
has a combined score greater than or equal to the threshold value. Otherwise,
the algorithm continues by reading tuples from the left and right inputs and
performs a symmetric hash join to generate new join results. In each step, the
algorithm decides which input to poll depending on different strategies (e.g.,
depending on the score distribution of each input).

In Li et al. [2005], the authors show how to integrate rank-aware operators
(including rank-join) in query engines through an extended rank-aware rela-
tional algebra. Our proposed cost-model and adaptive optimization techniques
in this article complement the approach introduced in Li et al. [2005].

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1266 . I. F. llyas et al.

2.3 Cost-Based Query Optimization

The optimizer transforms a parsed input query into an efficient query execution
plan. The execution plan is then passed to the runtime engine for evaluation.
To find the best execution plan for a given query, the optimizer examines a large
space of possible execution plans and compares these plans according to their
estimated execution cost.

Plan Enumeration Using Dynamic Programming. Since the join operation
is implemented in most systems as a diadic (2-way) operator, the optimizer
must generate plans that transform an n-way join into a sequence of 2-way
joins using binary join operators. Dynamic programming (DP) was first used
for join enumeration in System R [Selinger et al. 1979]. To avoid generating
redundant plans, DP maintains a memory-resident structure (referred to as
MEMO, following the terminology used in Graefe and McKenna [1993]) for
holding nonpruned plans. Each MEMO entry corresponds to a subset of the ta-
bles (and applicable predicates) in the query. The algorithm runs in a bottom-up
fashion by first generating plans for single tables. Then it enumerates joins of
two tables, then three tables, etc., until all n tables are joined. For each join
it considers, the algorithm generates join plans and incorporates them into
the plan list of the corresponding MEMO entry. Plans with larger table sets
are built from plans with smaller table sets. The algorithm prunes a higher
cost plan if there is a cheaper plan with the same or more general proper-
ties for the same MEMO entry. Finally, the cheapest plan joining n tables is
returned.

Plan Properties. Such properties are extensions of the important concept
of interesting orders [Selinger et al. 1979] introduced in System R. Suppose
that we have two plans generated for table R, one produces results ordered on
R.a (call it P;) and the other does not produce any ordering (call it Ps). Also
suppose that P; is more expensive than Py;. Normally, P; should be pruned
by Ps. However, if table R can later be joined with table S on attribute a, P;
can actually make the sort-merge join between the two tables cheaper than
Ps since P; doesn’t have to sort R. To avoid pruning P;, System R identifies
orders of tuples that are potentially beneficial to subsequent operations for that
query (hence the name interesting orders) and compares two plans only if they
represent the same expression and have the same interesting order.

In Figure 3(a), we show a 3-way join query and the plans kept in the cor-
responding MEMO structure. For each MEMO entry, a list of plans is stored,
each carrying a different order property that is still interesting. We use DC to
represent a “don’t care” property value, which corresponds to “no order”. The
cheapest plan with a DC property value is also stored in each MEMO entry if
this plan is cheaper than any other plan with interesting orders. Modifying the
query to that in Figure 3(b), by adding an orderby clause, increases the num-
ber of interesting order properties that need to be kept in all MEMO entries
containing A. The idea of interesting orders was later generalized to multiple
physical properties in Graefe and DeWitt [1987] and Lohman [1988] and is used
extensively in modern optimizers.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1267

Select A.c2 Select A.c2

From A,B,C From A,B,C

Where A.cl = B.cl Where A.cl = B.cl
and B.c2 = C.c2 ; and B.c2 = C.c2

Order By A.c2 ;

MEMO Structure MEMO Structure

c :
o R SN S
A \

Number of Plans = 12 Number of Plans = 15

Both Queries Have 4 Joins
(a,B) (B,C) (a,BC) (aB,C)

(a) (b)

Fig. 3. Number of joins vs. number of plans.

Optimization of Top-k Queries. Another approach to evaluate top-k queries
is the filter/restart approach [Carey and Kossmann 1997, 1998; Donjerkovic and
Ramakrishnan 1999; Bruno et al. 2002]. Ranking is mapped to a filter condition
with a cutoff parameter. If the filtering produces less than & results, the query
is restarted with a less restrictive condition. The final output results are then
sorted to produce the top k& results. A probabilistic optimization of top-k queries
is introduced in Donjerkovic and Ramakrishnan [1999] to estimate the optimal
value of the cutoff parameter that minimizes the total cost including the risk
of restarts.

In contrast to previous work, we focus on optimizing ranking queries that
involve joins. Moreover, our ranking evaluation encapsulates optimal rank ag-
gregation algorithms. To the best of our knowledge, this is the first work that
tries to estimate the cost of optimal rank aggregation algorithms and incorpo-
rate them in relational query optimization.

2.4 Adaptive Query Processing and Reusing Query Results

In recent years, several techniques have been proposed for adaptive query
processing. One approach is to collect statistics about query subexpressions
during execution and to use the accurate statistics to generate better plans in
the future [Bruno and Chaudhuri 2002; Stillger et al. 2001]. The mid-query
reoptimization technique [Kabra and DeWitt 1998] exploits blocking oper-
ations as materialization points to reoptimize parts of a running query, by
rewriting the query using the materialized subqueries. Scheduling execution

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1268 . I. F. llyas et al.

of query operators [Amsaleg et al. 1996] activates different parts of the query
plan to adapt to high latency incurred by remote data sources. The eddies
architecture and its variants [Avnur and Hellerstein 2000; Raman et al. 2003;
Deshpande and Hellerstein 2004] continually optimize a running query by
routing individual tuples to the different query processing operators, elimi-
nating the traditional query plan altogether. Adaptive query operators such
as ripple joins [Haas and Hellerstein 1999] are proposed to allow for changing
the order of inputs within an operator. The robust progressive optimization
technique (POP) [Markl et al. 2004] allows for reusing intermediate results
in reoptimizing the running query by invoking the query optimizer with the
availability of the materialized intermediate results.

A variant of the CHECK operator in the progressive optimization frame-
work [Markl et al. 2004] allows for the reoptimization of pipelined query plans.
In this variant, a compensation mechanism is used to avoid duplicates by stor-
ing the record identifiers (rids) of the already reported results, however, the
whole query is reexecuted and old computations cannot be reused. Recently,
on-the-fly reoptimization of continuous queries in the context of data streams
has been proposed in Zhu et al. [2004]. The work in Zhu et al. [2004] focuses
on reusing state information of windowed join operations to transform one con-
tinuous query plan to another semantically equivalent one. Although our pro-
posed techniques in Section 5 share the same objective of the state migration
techniques in Zhu et al. [2004], we focus on the particular nature of the state
information in ranking query plans and incorporating the proposed techniques
in real-world relational database engines. Moreover, we study the applicability
of other adaptive processing techniques such as eddies and query scrambling
in the context of ranking queries.

Recent work on reusing query results in the context of top-£ processing
[Chakrabarti et al. 2004] focuses on refined ranking queries. The work in
Chakrabarti et al. [2004] is similar to our proposal and to most of other mid-
query reoptimization techniques in the general principle of reusing old accessed
objects to minimize the I/O cost of new queries. However, our proposed approach
is significantly different as (1) we focus on reusing the state of the rank-join
operators (including hash tables and ranking queues) for the same ranking cri-
teria but for different join orders, in response to unexpected delays and source
disconnections; and (2) our technique to reuse the ranking state is completely
different from reusing the cached index nodes in Chakrabarti et al. [2004] and
includes tree comparison, promotion, and demotion operations as we explain
in Section 5. We view the techniques introduced in Chakrabarti et al. [2004]
as orthogonal to our proposal, and it can be used in tandem with the approach
introduced in this article.

3. INTEGRATING RANK-JOIN IN QUERY OPTIMIZERS

In this section, we describe how to extend the traditional query optimization—
one that uses dynamic programming a la Selinger et al. [1979]—to handle the
new rankjoin operators. Integrating the new rank-join operators in the query
optimizer includes two major tasks: (1) enlarging the space of possible plans

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1269

to include those plans that use rank-join operators as a possible join alterna-
tive, and (2) providing a costing mechanism for the new operators to help the
optimizer prune expensive plans in favor of more general cheaper plans.

In this section, we elaborate on the first task, while, in the following section
we provide an efficient costing mechanism for rank-join operators. Enlarging
the plan space is achieved by extending the enumeration algorithm to produce
new execution plans. The extension must conform to the enumeration mecha-
nism of other traditional plans. In this work, we choose the DP enumeration
technique described in Section 2. The DP enumeration is one of the most impor-
tant and widely-used enumeration techniques in commercial database systems.
Current systems use different flavors of the original DP algorithm that involve
heuristics to limit the enumeration space and can vary in the way the algo-
rithm is applied (e.g., bottom-up versus top-down). In this article, we stick to
the bottom-up DP as originally described in Selinger et al. [1979]. Our approach
is equally applicable to other enumeration algorithms.

3.1 Ranking as an Interesting Property

As described in Section 2.3, interesting orders are those orders that can be
beneficial to later operations. Practically, interesting orders are collected from
(1) columns in equality predicates in the join condition, as orders on these
columns make upcoming sort-merge operations much cheaper by avoiding the
sort, (2) columns in the groupby clause to avoid sorting in implementing sort-
based grouping, and (3) columns in the orderby clause since they must be en-
forced on the final answers. Current optimizers usually enforce interesting or-
ders in an eager fashion. In the eager policy, the optimizer generates plans that
produce the interesting order even if they do not exist naturally (e.g., through
the existence of an index).

In the following example, we specify the ranking function in the orderby
clause, in order to describe a top-k query using current SQL constructs.

Q2:

WITH RankedABC as (
SELECT A.cl as x, B.cl as y, C.cl as z, rank() OVER
(ORDER BY (0.3%A.c1+0.3%B.c1+0.3*C.c1)) as rank
FROM A,B,C
WHERE A.c2 = B.cl and B.c2 = C.c2)

SELECT x,y,z,rank

FROM RankedABC

WHERE rank <=5;

where A, B, and C are three relationsand A.c1, A.c2, B.cl, B.c2, C.cil,and
C.c2 are attributes of these relations. Following the concept of interesting or-
ders, the optimizer considers orderson A.c2, B.cl, B.c2andC.c2 as interest-
ing orders (because of the join) and eagerly enforces the existence of plans that
access A, B, and C ordered on A.c2, B.cl, B.c2, and C.c2, respectively. This
enforcement can be done by gluing a sort operator on top of the table scan or
by using an available index that produces the required order. Currently, orders

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1270 . I. F. llyas et al.

Table I. Interesting Order Expressions in Query Q2

Interesting Order Expressions Reason
A.ci Rank-join
A.c2 Join

B.cl Join and Rank-join
B.c2 Join

C.cl Rank-join
C.c2 Join
0.3*%A.c1+0.3*B.c1 Rank-join
0.3%B.c2+0.3*C.c2 Rank-join
0.3*%A.c1+0.3*C.c2 Rank-join
0.3%A.c1+0.3%B.c2+0.3%C.c2 Orderby

on A.clor C.cl are not interesting since they are not beneficial to other opera-
tions such as a sort-merge join or a sort. This is because a sort on the expression
(0.3*A.c1+0.3*B.c1+0.3*C.c1) cannot significantly benefit from ordering the
input on A.c1 or C.c1 individually.

Having the new rank-aware physical join operators, orderings on the indi-
vidual scores (for each input relation) become interesting in themselves. In the
previous example, an ordering on A.cl is interesting because it can serve as
input to a rank-join operator. Hence, we extend the notion of interesting orders
to include those attributes that appear in the ranking function.

Definition 2. An Interesting Order Expression is one that orders the inter-
mediate results on an expression of database columns and that can be beneficial
to later query operations.

In the previous example, we can identify some interesting order expressions
according to the previous definition. We summarize these orders in Table I. Like
an ordinary interesting order, an interesting order expression retires when it
is used by some operation and is no longer useful for later operations. In the
previous example, an order on A. c1 is no longer useful after a rank-join between
table A and B.

3.2 Extending the Enumeration Space

In this section, we show how to extend the enumeration space to generate
rank-aware query execution plans. Rank-aware plans will integrate the rank-
join operators, described in Section 2.2, into general execution plans. The idea
is to devise a set of rules that generate rank-aware join choices at each step
of the DP enumeration algorithm. For example, on the table-access level, since
interesting orders now contain ranking score attributes, the optimizer will en-
force the generation of table and index access paths that satisfy these orders.
In enumerating plans at higher levels (join plans), these ordered access paths
will make it feasible to use rank-join operators as join choices.

For a query with n input relations, 7T to T},, we assume there exists a ranking
function F'(sy, s, ..., S,), where s; is a score expression on relation 7;. For two
sets of input relations, L and R, we extend the space of plans that join L and
R to include rank-join plans by adapting the following.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1271

MEMO Structure MEMO Structure

‘ : @
A aers(pe) A b o)

Number of Plans = 12 Number of Plans = 17

Interesting Order Expression

Q Interesting Order
(@ (&)

Fig. 4. Enumerating rank-aware query plans.

—dJoin Eligibility L and R are rank-join-eligible if all of the following condi-
tions apply:

(1) there is a join condition that relates at least one input relation in L to an
input relation in R;

(2) F can be expressed as F(F1(Fr), Fo(Fr), F3(Sp)), where F1, Fy, and Fs
are three scoring functions, Sy, are the score expressions on the relations
in L, Sy are the score expressions on the relations in R, and S¢ are the
score expressions on the rest of the input relations;

(3) there is at least one plan that accesses L and/or R ordered on Sy, and/or
Sr, respectively.

—doin Choices. Rank-join can have several implementations as physical join
operators, for example, the hash rank-join operators (HRJN) and the nested-
loops rank-join operator (NRJN). For each rank-join between L and R, plans
can be generated for each join implementation. For example, an HRJN plan is
generated if there exist plans that access both L and R sorted on Sy, and Sg,
respectively. On the other hand, an NRJN plan is generated if there exists
at least one plan that accesses L or R sorted on St or Sg, respectively.

—dJoin Order. For symmetric rank-join operators (e.g., HRJN), there is no
distinction between outer and inner relations. For the nested-loops imple-
mentation, a different plan can be generated by switching the inner and the
outer relations. L (R) can serve as inner to an NRJN operator if there exists
a plan that accesses L (R) sorted on Sz, (Sg).

For example, for Query Q2 in Section 3.1, new plans are generated by en-
forcing the interesting order expressions listed in Table I and using all join
choices available including the rank-join operators. As in traditional DP enu-
meration, generated plans are pruned according to their cost and properties.
For each class of properties, the cheapest plan is kept. Figure 4 gives the MEMO

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1272 . I. F. llyas et al.

structure of the retained subplans when optimizing Q2. Each oval in the figure
represents the best plan with a specific order property. Figure 4(a) gives the
MEMO structure for the traditional application of the DP enumeration with-
out the proposed extension. For example, we keep two plans for Table A; the
cheapest plan that does not have any order property (DC) and the cheapest plan
that produces results ordered on A.c2 as an interesting order. Figure 4(b) shows
the newly generated classes of plans that preserve the required ranking. For
each interesting order expression, the cheapest plan that produces that order
is retained. For example, in generating plans that join Tables A and B, we keep
the cheapest plan that produces results ordered on 0.3*A.c1 + 0.3*B.cl.

3.3 Costing and Pruning Ranking Plans

A subplan Pj is pruned in favor of subplan Py if and only if P; has both higher
cost and weaker properties than Ps. In Section 3.2, we discussed extending the
interesting order property to generate rank-aware plans. A key property of top-%
queries is that users are interested only in the first £ results and not in a total
ranking of all query results. This property directly impacts the optimization
of top-k queries by optimizing for the first £ results. Traditionally, most real-
world database systems offer the feature of First-N-Rows-Optimization. Users
can turn on this feature when a fast response time is desirable to receive re-
sults as soon as they are generated. This feature translates into respecting the
pipelining of a plan as a physical plan property. For example, for two plans P;
and P; with the same physical properties, if P; is a pipelined plan (e.g., nested-
loops join plan) and Py is a nonpipelined plan (e.g., sort-merge join plan), P;
cannot be pruned in favor of Py, even if Py is cheaper than P;.

In real-world query optimizers, the cost model for different query operators
is quite complex and depends on many parameters. Parameters include car-
dinality of the inputs, available buffers, type of access paths (e.g., a clustered
index), and many other system parameters. Although cost models can be very
complex, a key ingredient of accurate estimation is the accuracy of estimating
the size of intermediate results.

In traditional join operators, the input cardinalities are independent of the
operator itself and only depend on the input subplan. Moreover, the output car-
dinality depends solely on the size of the inputs and the selectivity of the logical
operation. On the other hand, since a rank-join operator does not consume all
of its inputs, the actual input size depends on the operator itself and how the
operator decides that it has seen enough information from the inputs to gen-
erate the top-£ results. Hence, the input cardinality depends on the number of
ranked join results requested from that operator. Thus, the cost of a rank-join
operator depends on the following.

—The number of required results k and how k is propagated in the pipeline.
For example, Figure 5 gives a real similarity query that uses two rank-join
operators to combine the ranking based on three features, referred to as A,
B, and C. To get 100 requested results (i.e., & = 100), the top operator has
to retrieve 580 tuples from each of its inputs. Thus, the number of required
results from the child operator is 580 in which it has to retrieve 783 tuples

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1273

100

<]

Rank-join
><] c

Rank-join
783
A B
Fig. 5. Example rank-join plan.
k k
SORT I: :I
[><] Rank-join

(a) (b)

Fig. 6. Two enumerated plans.

from its inputs. Notice that, while 2 = 100 in the top rank-join operator,
k = 580 in the child rank-join operator that joins A and B. In other words,
in a pipeline of rank-join operators, the input depth of a rank-join operator
is the required number of ranked results from the child rank-join operator.

—The number of tuples from inputs that contain enough information for the
operator to report the required number of answers, k. In the previous example,
the top operator needs 580 tuples from both inputs to report 100 rankings,
while the child operator needed 783 tuples from both inputs to report the
required 580 partial rankings.

—The selectivity of the join operation. The selectivity of the join affects the
number of tuples propagated from the inputs to higher operators through
the join operation. Hence, the join selectivity affects the number of input
tuples required by the rank-join operator to produce ranked results.

There are two ways to produce plans that join two sets of input relations, L
and R to produce ranked results: (1) by using rank-join operators to join L and
R subplans, or (2) by gluing a sort operator on the cheapest join plan that joins
L and R without preserving the required order. One challenge is in comparing
two plans when one or both of them are rank-join plans. For example, in the two
plans depicted in Figure 6, both plans produce the same order property. Plan (b)
may or may not be pipelined depending on the subplans of L and R. In all cases,
the cost of the two plans need to be compared to decide on pruning. While the
current traditional cost model can give an estimated total cost of Plan (a), it is

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1274 . I. F. llyas et al.

hard to estimate the cost of Plan (b) because of its strong dependency on the
number of required ranked results, k. Thus, to estimate the cost of Plan (b),
we need to estimate the propagation of the value of £ in the pipeline (refer to
Figure 5). In Section 4, we give a probabilistic model to estimate the depths
(dr, and dg in Figure 6(b)) required by a rank-join operator to generate top-k
ranked results. The estimate for the depths is parametrized by 2 and by the
selectivity of the join operation. It is important to note that the cost of Plan (a) is
(almost) independent of the number of output tuples pulled from the plan since
it is a blocking sort plan. In Plan (b), the number of required output tuples
determines how many tuples will be retrieved from the inputs and that greatly
affects the plan cost.

Plan Pruning. According to our enumeration mechanism, at any level, there
will be only one plan similar to Plan (a) of Figure 6 (by gluing a sort on the
cheapest non-ranking plan). At the same time, there may be many plans similar
to Plan (b) of Figure 6 (e.g., by changing the type of the rank-join operator or
the join order).

For all rank-join plans, the cost of the plan depends on £ and the join selectiv-
ity s. Since these two parameters are the same for all plans, the pruning among
these plans follows the same mechanism as in traditional cost-based pruning.
For example, pruning a rank-join plan in favor of another rank-join plan de-
pends on the input cardinality of the relations, the cost of the join method, the
access paths, and the statistics available on the input scores.

We assume the availability of an estimate of the join selectivity, which is the
same for both sort-plans and rank-join plans. A challenging question is how to
compare the cost of a rank-join plan to the cost of a sort plan, for example, Plans
(a) and (b) in Figure 6, when the number of required ranked results is unknown.
Note that the number of results, %, is known only for the final complete plan.
Because subplans are built in a bottom-up fashion, the propagation of the final
k value to a specific subplan depends on the location of that subplan in the
complete evaluation plan.

We introduce a mechanism for comparing the two plans in Figure 6 using the
estimated total cost of Plan (a) and the estimated cost of Plan (b), parametrized
by k. Section 4 describes how to obtain the parametrized cost of Plan (b). For
Plan (a), we can safely assume that Cost,(k) = TotalCost,, where Cost,(k) is
the cost to report £ results from Plan (a), and TotalCost, is the cost to report all
join results of Plan (a). This assumption follows directly from Plan (a) being a
blocking sort plan. Let £* be that value of £ at which the cost of the two plans
are equal. Hence, Cost,(k*) = Costy(k*) = TotalCost,. The output cardinality
of Plan (a) (call it n,) can be estimated as the product of the cardinalities of
all inputs multiplied by the estimated join selectivity. Since 2 cannot be more
than n,, we compare k* with n,. Let by, be the minimum value of £ for any
rank-join subplan. A reasonable value for %k, would be the value specified
in the query as the total number of required answers. Consider the following
cases.

—k* > ny. Plan (b) is always cheaper than Plan (a). Hence Plan (a) should be
pruned in favor of Plan (b).

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1275

—Fk* < ng and k* < kyi,. Since for any subplan, & > kpin, we know that we will
require more than £* output results from Plan (b). In that case, Plan (a) is
cheaper. Depending on the nature of Plan (b) we decide on pruning:

(1) if Plan (b)is a pipelined plan (e.g., a left-deep tree of rank-join operators),
then we cannot prune Plan (b) in favor of Plan (a) since it has more
properties, that is, the pipelining property;

(i1) if Plan (b) is not a pipelined tree, then Plan (b) is pruned in favor of
Plan (a).

—Fk* < ng and kB* > knin. We keep both plans since, depending on %, Plan (a)

may be cheaper than Plan (b) and hence cannot be pruned.

As an example, we show how the value of £ affects the cost of rank-join plans
and hence the plan pruning decisions. We compare two plans that produce
ranked join results of two inputs. The first plan is a sort plan similar to that
in Figure 6(a), while the second plan is a rank-join plan similar to that in
Figure 6(b). The sort plan sorts the join results of an index nested-loops join
operator, while the rank-join plan uses HRJN as its rank-join operator. The
estimated cost formula for the sort plan uses the traditional cost formulas for
external sorting and index nested-loops join, while the estimated cost of the
rank-join plan is based on our model to estimate the input cardinality (as will be
shown in Section 4). Both cost estimates use the same values of input relations
cardinalities, total memory size, buffer size, and input tuple sizes. While the
sort plan cost can be estimated to be independent of &, the cost of the rank-join
plan increases with the increasing value of 2. Figure 2(b) compares the estimate
of the costs of the two plans for different values of k. In this example, £* = 176.

4. ESTIMATING INPUT CARDINALITY OF RANK-JOIN OPERATORS

In this section, we give a probabilistic model to estimate the input cardinality
(depth) of rank-join operators. The estimate is parametrized with &, the number
of required answers from the (sub)plan, and s, the selectivity of the join opera-
tion. We describe the main idea of the estimation procedure by first considering
the simple case of two ranked relations. Then, we generalize to the case of a
hierarchy of rank-join operators.

Let L and R be two ranked inputs to a rank-join operator. Our objective is
to get an estimate of depths d;, and d (see Figure 8) such that it is sufficient
to retrieve only up to dz and dr tuples from L and R, respectively, to produce
the top-£ join results. We denote the top i tuples of L and R as L(i) and R(i),
respectively. We outline our approach to estimate d;, and dg in Figure 7.

In the following sections, we elaborate on the steps of the outline in Figure 7.
Algorithm 1 gives Procedure Propagate used by the query optimizer to compute
the values of d; and dy at all levels in a rank-join plan. We set & to the value
specified in the query when we call the algorithm for the final plan.

4.1 Model Assumptions

We make the following assumptions on the input scores, scoring function, join
selectivity and distributions. The reason for most of these assumptions are

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1276 . I. F. llyas et al.

Outline EstimateTop-kDepth
INPUT: Two ranked relations L and R
The number of required ranked results, k
The join selectivity, s
Any-k Depths
1. Compute the possible values of ¢;, and cr, where
cr, is the depth in L and cg is the depth in R such that,
3 k valid join results between L(cr) and R(cr).

Top-k Depths
2. Compute the value of dr, and dr, where
dy, is the depth in L and dg is the depth in R such that,
3 k top-scored join results between L(dyr).
and R(dg). dr and dg are expressed in terms of ¢z, and cg.

Minimize Top-k Depths

3. Compute the values of c¢;, and cr to minimize dr, and dg.
cL, Cr, dr, and dr are parametrized by k.

Fig. 7. Outline of the estimation technique.

/%’:T
panil]

L
Q
0~
j{ Score = Sg(cg)

/o/

™~ F(Sx(dg). S,(1))=F(Sx(Cr): Sr(ca)

F(Sy(dy). Sr(1))=F(Sg(Cr). Sr(Cr))

Fig. 8. Depth estimation of rank-join operators.

Algorithm 1. Propagating the value of &.

PROPAGATE (P: root of a subplan, k: number of results)

1 Letd; and dgi be the depths of inputs to the operator rooted at P to get k results
2 Compute dz and dg according to the formulas in Section 4.3

3 Call Propagate(left subplan of P, d;)

4 Call Propagate(right subplan of P, dg)

(1) analytical convenience: the assumptions facilitate smooth symbolic com-
putation needed to quickly estimate the input cardinalities and hence the join
costs; and (2) statistics cost: relaxing these assumptions require complex statis-
tics collection that can be prohibitively expensive or unavailable.

As in the case of traditional cost estimation, these assumptions may not hold
in practical scenarios, and hence will affect the accuracy of our estimates. We
relax some of these assumptions and comment on the effect of their violation
in the subsequent sections.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1277

For two ranked relations L and R, let L; and R; be the ith tuple and the
Jjth tuple from L and R, respectively, and let |L| and |R| be the total number
of tuples in L and R, respectively.

—doin Independence. We assume that the probability for a pair of tuples being
a valid join result is independent of the fact that some other pair of tuples
was chosen or rejected to join. Although not true in general, this assumption
is always made in current optimization cost models. Also, we assume that
these probabilities are independent of the tuple ranking. This can be violated
when there is correlation between input rankings. We elaborate on this case
in Section 4.5.

—doin Uniformity. We assume that a tuple from L is equally likely to join with
any tuple from R. Formally, Vi, jProb(L; X R ;) = s. This assumption can be
violated in practice, for example, when the rankings of the two relations are
correlated. Consider the case when L and R are results from two different
search engines using the same search query. In the case of positive corre-
lation, tuples ranked high in L are more likely to join with tuples ranked
high in R, violating the join uniformity assumption. Join uniformity is usu-
ally assumed in current cost-based optimizers as it simplifies the analysis
significantly, and it is usually hard to capture the general nonuniform join
distribution in a cheap and scalable way. We assume join uniformity in our
proposed cost model, however in Section 4.5, we show how to relax this as-
sumption for simple rank correlation models.

—Score Distribution. We assume that scores of each input relations are from
some standard symbolic distributions like uniform, Gaussian, or Poisson
and that the parameters are known. We use the parameters for deriving
the resultant score distribution and also to estimate the rank of a tuple
with score x and the score of the ith ranked tuple. We use uniform distri-
bution for demonstration purposes. When distributions are not standard,
we may approximate them by histograms. As long as we can manipulate
the histograms for resulting distributions with relatively low cost compared
to the join operation, histograms can serve as a useful estimation tool for
the optimizer. We assume uniformity when the score distribution is not
available.

—Monotonic Score Aggregation Function. The proposed rank-join algorithms
assume monotone scoring function for effective pruning.

Under join uniformity and independence assumptions, we can view a join as
|L| x |R| independent Bernoulli trials. In each trial, the probability of success (a
tuple from L joins a tuple from R) is s, where s in this case is the join selectivity.
In the following sections, we rely on these assumptions to derive estimate of
depths d; and dg in L and R, respectively, to produce the top-% join results.

When these assumptions are violated, we may tend to underestimate or
overestimate d;, and dg. Asin the case of traditional query processing, statistics
on score distributions and rank correlation significantly enhance the accuracy
of the estimate and can be easily incorporated in our model as we discuss in
the following sections.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1278 . I. F. llyas et al.

4.2 Estimating Any-k Depths

In the first step of the outline in Figure 7, we estimate the depths ¢z, and cg in
L and R, respectively, required to get any & join results. Any % join results are
valid join results, but not necessarily among the top-k answers.

TaEOREM 1. Under join uniformity and independence assumptions, the ex-
pected number of join combinations that need to be evaluated to produce k valid
Jjoin results is k/s. Hence, cr,, cg should be chosen such that their product cycp
is > k /s to produce k valid join results.

Proor. Under the assumptions in Section 4.1, each join combination is a
Bernoulli trial with a probability of success s. Let X, be a random variable that
represents the number of join combinations we need to check to produce % valid
join results. The expected value E(X}) is the expected number of Bernoulli
trials to get & successes = % In joining ¢z, tuples from L and cg tuples from
R, the number of trials (possible join combinations) is ¢ cg. We can allow any
combination cr,, cg that satisfies c.cg > %k /s as the estimates to produce any &
valid results. Note that X, follows a negative binomial distribution whose mean
is £ /s and deviation is k(1 — s)/s. This distribution is tight about its mean as
% increases. Chernoff bounds analysis indicates that, if we take (¢ + 3.1vk)/s
trials, we can be 99% sure there are at least k£ outcomes. O

Note that if the join uniformity assumption is violated, the constraint in The-
orem 1 will not be accurate. We show the effect of relaxing the join uniformity
assumption on Theorem 1 in Section 4.5.

4.3 Estimating Top-k Depths

In the second step in the outline given in Figure 7, we aim to obtain good esti-
mates ford;, and dg, where d;, and d g are the depths into L and R, respectively,
needed to produce the top-£ join results. The estimation procedure is inspired
by the rank-join algorithm.

Assuming a monotone score aggregation function F', let Sz (i) and Sg(i) be
the scores of the tuples at depth i in L and R, respectively.

TuEOREM 2. If there are k valid join results between L(cy) and R(cr), and
if d, and dg are chosen such that F(S(dy), Sr(1)) < F(Sy(cr), Sr(cr)) and
F(SL(1),Sgr(dRr)) < F(Si(cL), Sr(cr)), then the top-k join results can be ob-
tained by joining L(dr) and R(dg).

Proor. Refer to Figure 8 for illustration. Since there are % join tuples
between L(cy) and R(cg), the final score of each of the join results is >
F(Sg(cp), Sg(cr)). Consequently, the scores of all of the top-% join results are
> F(Sr(cy), Sr(cr)). Assume that one of the top-£ join results, say </, joins a
tuple ¢ at depth d in L with some tuple in R such that S;(d) < Si(d1) G.e.,
d > d1). The highest possible score of J is F'(S.(d), Sg(1)). Since F is mono-
tone, the highest possible score of J is < F(Sy(dL), Sg(1)). Since we chose d,
such that F(Sp(dyz), Sr(1)) < F(S(cL), Sg(cr)), hence there are at least % join
results with scores > the highest possible score of J. By contradiction, Tuple

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1279

t cannot participate in any of the top-%£ join results. Hence, any tuple in L
(similarly R) that is at a depth > d;, (dg) cannot participate in the top-% join
results. O

Step (3) of the outline in Figure 7 chooses the values of ¢; and cp that
minimize the values of d;, and di. Note that both d; and dr are minimized
when F(Sr(cy), Sr(cr)) is maximized subject to the constraint in Theorem 1
(scpcg > k). The rationale behind this minimization is that an optimal rank
aggregation algorithm does not need to retrieve more than the minimum dj,
and dr tuples from L and R, respectively, to generate the top-% join results.

Obtaining closed-form formulas for the estimated value of ¢z, cg, dr, and dg
depends on the score distribution and the aggregation function. In Section 4.4,
we give an example estimation by specifying these parameters.

4.4 Example Estimation of d; and dg

In this section, we study an example implementation of the estimation frame-
work described in Figure 7. To have a closed-form formula for the minimum
dr, and dg, we assume that (1) the rank aggregation function is the sum of
scores; and (2) the rank scores in L and R are from some uniform distribution.
Let x be the average decrement slab of L (i.e., the average difference between
the scores of two consecutively ranked objects in L), and let y be the average
decrement slab for R. Hence, the expected value of Sp(cz) is S;(1) — xcz and
the expected value of Sg(cg)is Sg(1)— ycg. To maximize F (S (cr.), Sr(cr)), we
maximize (S7,(1)+ Sg(1)) — (xcr, + ycr), that is, we minimize xcz, + ycg, subject
to scrcg > k. The minimization is achieved by setting ¢;, = /(yk)/(xs) and
cr = /(xk)/(ys). Applying Theorem 2, Sp(1) + Sp(dL) = Sr(cr) + Sr(cL) and
Sr.(1) + Sr(dr) = Sr(cr) + Srlcr). In this case, dr. = ¢ + (y/x)cgr and dp =
cr+(x/y)ecr. In a simplistic case, both the relations come from the same uniform
distribution, that is, x = y, thenc; =cg = k/sand dy =dgr = 2/k/s.

4.5 The Effect of the Join Uniformity Assumption with Rank Correlation

In the previous sections, we assume the independence of the join from the input
rankings, and we assume the uniformity of the join (Section 4.1). In practical
scenarios, the rank scores between two joining relations can be correlated. For
example, the highly-ranked tuples from one relation are more likely to join with
highly-ranked tuples in the other relation (positive correlation). Another exam-
ple is when there is a trade-off between the two ranking criteria, for example,
ranking houses on price and location (negative correlation).

In general, it may be hard to capture the nature of this correlation between
the ranks of two lists. The correlation may exist between highly-ranked tuples
only and does not exist in the rest of the two relations. Input cardinality esti-
mates can be significantly different when such correlations are strong. In the
context of Theorem 1, we can no longer assume that L(cz,) X L(cg) can produce
k output tuples by just ensuring that czcg > k/s. Hence, we need to change the
constraint for maximization. That is, we maximize F (St (cr), Sr(cg)) subject to
the constraint that L(cy) 4 L(cg) produces & join tuples.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1280 . I. F. llyas et al.

We calculate the error in estimating d;, and d g assuming join uniformity in
the two worst case scenarios: Let s = 1/n, then in a perfect positive correlation
scenario, an object with rank i in L will have a rank i in R as well. In this case,
it is not hard to see that the rank-join algorithm retrieves only % objects from
L and R to produce the top-% objects. In this case, we overestimate dz, and dg
with a factor of zkﬂ = 2./n/k. In the other worst case scenario, only the last
k objects from L and R join to get the top-%k objects. In this case, the rank-join
algorithm may need to retrieve up to n objects from both relations. In this case,
we underestimate d;, and dr by a factor of 5 ;E = (/n/k)/2. The error factors
increase (slowly) as n increases, and they can cause the optimizer to choose a
suboptimal execution plan.

Toillustrate the effect of relaxing the join uniformity and rank-independence,
we assume the following simple rank correlation model: Consider two relations
L and R with n tuples each and with scores uniformly distributed [0, n]. Assume
that the join probability between the ith ranked tuple in L and the jth ranked
tuple in R is prob(R; x S;) = 1/0 if i — j| < 6/2 and 0 otherwise. Therefore,
each ranked tuple has a window of similarly ranked tuples in the other relation
with which it can join. Note that the expected value of the join selectivity is still
approximately 1/n, however, the join is not uniformly distributed. We can show
that ¢z, and cg can be estimated by £ +60/4, and hence d;, = dr = 2k +60/2 (see
Appendix A.1). Note that with this simple model of correlation our estimate
of d;, and dg has decreased from 2./k/s to 2k + 6 to reflect the effect of rank
correlation. Similar analysis can be obtained for other simple forms of rank
correlation.

4.6 Tighter Bounds in a Join Hierarchy

Algorithm 1 gives an outline of how to propagate the estimate of d; and dg in
a hierarchy of joins. For simplicity of presentation, we assume a sum scoring
function and uniformly distributed scores for base relations.

In a join hierarchy, the score distributions of the second-level joins are no
longer uniform. The output scores of a rank-join with two uniformly distributed
inputs follow a triangular distribution. As we go higher up in the join hierarchy,
the distribution tends to be normal (a bell-shaped curve) by the Central Limit
Theorem.

Let u, be the sum of p distributions, each is a uniform distribution on [0, n].
Let L be the output of rank-joining / ranked relations, and let R be the output
of rank-joining r ranked relations. For simplicity, assume that each of L and R
has n tuples and follows u; and u,, respectively. Let £ be the number of output
ranked results required from the subplan, and s be the join selectivity. We can
show that maximizing Sy (cz) + Sr(cg) (according to Theorem 2) amounts to
minimizing (lezn!~HY! + (rlegn’ 1)1 (see Appendix A.2). The minimization
yields:

il (r!)lklnr—llrl
L - Sl(l!)rrrl

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

(D

Adaptive Rank-Aware Query Optimization in Relational Databases . 1281

o (“)rkrnl—rr,rl

Cl_gL = W (2)
szcL[l—i-r/l]l 3)
dr =crll+1/rT 4

Note that d;, and dr are upper-bounds assuming expected values of czcg.
Although the estimates might be accurate for a small number of joins, the error
propagation becomes more significant as we proceed through the hierarchy. We
introduce an alternative framework for tighter bounds in estimating d; and
dr based on estimating the score distribution of the join results.

Let T be the output joinrelation T = L X R, S,,;(i) be the score of the ith tuple
in Relation rel, and rank,.;(x) be the rank of the first tuple (in decreasing order
of scores) with score < x in Relation rel. that is, rank,.;(x) = min;|S,;(i) < x.
According to the rank-join algorithm, we can estimate:

dr =rankr(St(k) — Sg(1)) 6))

dr =rankr(St(k) — Sr(1)) (6)

In general, the ability to manipulate the score distributions to produce S,.;(i)
and rank,.;(x) allows us to estimate d;, and dr in a join hierarchy. We give an
example estimation of these quantities in the case of uniform score distributions
for the base relations.

Assume that L follows a u; distribution and R follows a u, distribution with
each having n tuples. The join of L and R produces the relation 7' with a
u;4, distribution and sn? tuples. Using Equation (7) from Appendix A.2, by
setting j = +r and m = sn?, the score of the top-kth tuple in 7T is Sy(k) =
(I +r)n — (I +r)knttr=2/5)1/04) Hence, we need to check in L up to a tuple
that joins with R to produce Sr(k). Using Equations (5) and (6), we can show
that on average, d;, and dg can be computed as follows:

(@ +r))eint (@ +rYEkrnl—"
(l!)”’sl (r[)lJrrSr

Similarly, bounds for other distributions like Gaussian and Poisson can be
symbolically computed under a weighted sum scoring function. We can apply
the formulas recursively in a rank-join plan, as shown in the Algorithm 1, by
replacing k of the left and right subplans by d;, and dr, respectively. The value
of & for the top operator is the value specified by the user in the query.

l+r _ l+r _
d;i" = and dg" =

5. ADAPTIVE EXECUTION OF RANKING QUERIES

Since adaptive execution of ranking plans depends heavily on the state main-
tained by these plans, we briefly summarize the state information of a ranking
plan. We concentrate on the hash rank-join implementation.

HRJN maintains an internal state that consists of the following components.

—Input Hashes. For each input, we maintain a hash table that stores objects
seen so far from that input. We can view this state as half the state of a
symmetric hash-join operator.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1282 . I. F. llyas et al.

omoO>rw
AN WA

A [10 B |5

B |4 c|a

c |3 E |3 S

D |2 A |2

E |1 D |1
R T

Fig. 9. An initial plan for Example 3.

—Threshold. The rank-join threshold is an upper-bound ranking score of all
uncomputed (partial) join results.

—Operator Rank-Queue. Each rank-join operator buffers intermediate join re-
sults that have not qualified yet as top-k results. A join result qualifies as
an output if its score (partial score in the case of an intermediate result) is
greater than the threshold maintained by the operator.

We use the following example to further describe these components of the
ranking state information.

Example 3. Assume that we are interested in the top-£ results of joining
three inputs R, S, and T'. Each input provides objects along with their scores
ordered in descending order of their scores. For simplicity, let the join condition
be on the object id , and the ranking function be the sum of the individual scores.
Assume that based on statistics, the plan in Figure 9 is chosen to be the best
execution plan.

Figure 10(a) gives the state information of the execution plan in Figure 9 at
some point during the execution. The marker arrows on the inputs show the
objects retrieved from each input. At this point in the execution, the input hash
tables Hr and Hp have the objects A, B and B, C, respectively. There is a match
(a valid join result) (B, B) with a combined score of 9. Since the threshold at
this point in time is computed as 14, this valid join result is not guaranteed to
be in the top-£ answers. Hence (B, B) is kept in the operator rank-queue, Q@ rr.
The rank-queue of Operator RT'S and its input hashes are empty at this point
in time. Now assume that changes in the computing environment result in Plan
P,;; being suboptimal. After updating the statistics and system parameters, the
optimizer chooses a new plan, say P,.,. Figure 10(b) gives the new plan, P,,,
along with its new state information. In this article, we show how to transform
the state between these two plans at runtime without reexecuting the query.

Applying current adaptive query processing techniques (discussed in Sec-
tion 2.4) in rank-aware query processing is hindered by the following problems.

—Nonstandard execution models. Techniques that require drastic changes in
the database engine such as query scrambling [Amsaleg et al. 1996] or

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1283

Hs Hrr Qgrs

Threshold g5 = N/A

Hr Hg
. g BB:9 - =T
c A |4
K
i L E |2
Alw] [B[s]| |D]1
_JBqa | _Jc|4
R E |3 s
"""" D |2 Al2
Threshold ;=14 E | D1
R T
(a) The initial plan P4
Hr Hrs Qger
Threshold g1 = N/A
B
C

OrmOm
—NWwhO

mo oW > |,
omoO>»w
- NW A=

Threshold 5 = N/A

R S
(b) The new plan Prew
Fig. 10. Ranking state information of two execution plans for Example 3.
eddies [Avnur and Hellerstein 2000] (eliminating the query plan altogether)
may experience high runtime overhead and integrating them in practical
query engines is still an open question. However, both operator scheduling

and eddies architectures can be used in adaptive rank-aware query process-
ing. We briefly show how to modify these techniques in our context.

—The pipelined and incremental nature of ranking queries. Techniques that
allow for mid-query reoptimization, such as the pioneering work in Kabra and

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1284 . I. F. llyas et al.

DeWitt [1998], depend on the existence of materialization points. The main
goal in rank-aware query processing is to avoid blocking sort operators and
to use incremental and pipelined join operators such as ripple-join. Hence,
techniques that depend on materialization points cannot be applied.

—Ranking state information. In contrast to traditional pipelined join operators,
ranking operators maintain a computation state. Changing the execution
plan at runtime has to deal with this state and then reuse it in computing
the state of the new plan.

5.1 Altering and Reusing Ranking Plans

In this section, we introduce an adaptive query processing technique for rank-
ing queries, which allows for altering the query execution plan in runtime to
cope with unexpected changes and fluctuations in the underlying computing
environment.

Handling the state information is the main challenge in runtime reopti-
mization of query execution plans. The core idea of the proposed technique is
to transform the ranking state information of the current plan, say P4, to an-
other state that can fit in the new execution plan, say P,.,. The objective of the
transformation is to produce a new ranking state that reflects the scenario as if
Py, were chosen from the beginning of the execution. The proposed technique
assumes the ability of accessing the state information of the inputs and the
operators using simple primitives. For example, we assume that we can store
objects in the input hash tables, probe the input hash tables for matches, and
retrieve objects from the operators’ rank-queue. In this section, we limit our
focus to plans with rank-join operators only. The proposed state transforma-
tion algorithm in this section will be used in the reoptimization frameworks in
Section 5.2.

For clarity, we show the state transformation mechanism by a simple appli-
cation on Example 3. In Example 3, let the initial execution plan, say P,;4, be
the plan depicted in Figure 9, and let Figure 10(a) reflect the state information
after executing P,;; for some time. Now assume that changes in the computing
environment result in Plan P,; being suboptimal. After feeding the optimizer
with the updated statistics and system parameters, the optimizer chooses a
new plan, say P,.,. For simplicity, let P,., be the same rank-join plan as P,y
except for switching the two inputs 7' and S. The state transformation should
result in a new state that realizes the scenario as if P,,, were the initial plan.
Figure 10(b) gives the new plan, P,.,, along with its new state information.
Before showing how to transform the state between these two plans, we make
the following observations:

— by switching the two inputs, T' and S, the operator RT has disappeared and
is replaced by the operator RS. Hence, the rank-queue @ g1 should no longer
exist in the new plan;

—since the new operator RS is created in the new plan, the state information
associated with that operator needs to be created, that is, a new rank-queue,
Qrs, and a new threshold;

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1285

Algorithm 2. Building the new state information of the newly constructed plan.

REGAIN STATE(Py : The New Plan)

Identify all common subplans in both plans.

Collapse common subplans in both plans.

Copy state information of all common subplans (including all leaf nodes).

Reset InputHash and RankQueue of all non-leaf nodes in Py
CALL JoinAndPromote(Py . Root)

QUi WO N

JOINANDPROMOTE (X: Plan Node)
1 if X is aleaf
2 return
3 CALL JoinAndPromote(LeftChild(X))
4 CALL JoinAndPromote(RightChild(X))
5 if 3 a node in P,; with same leaves of X
6 Let the node in P,y be X ;4
7 Copy X ;4 state to X.InputHash
8 return
9 JOIN LeftChild(X).InputHash and RightChild(X).InputHash
10 for each join result j

11 do

12 if X is root

13 if j.score < X .Threshold

14 Put j in X RankQueue
15 else

16 Put j in X .InputHash

—the threshold values can always be computed for the newly created operators
since they depend only on the joined relations; and

—the main objective of the transformation is to continue the execution of P,
without having to redo most of the work of P,;. This objective, however,
does not guarantee that repeating some work already done by P,y will be
eliminated.

We identify two major steps in our proposed state transformation mecha-
nism: (1) merging the old state by removing the effect of the old input, and
deleting the state information that has no equivalent in the new plan, and
(2) creating a new state that is unique to the new plan. Merging the old state
has the effect of losing some of the work done in the old plan. New state creation
may involve accessing the old state to fill the new state with all information
that can be reused from the old plan. In Algorithm 2, we give the generalized
algorithm for reusing the state information in the current suboptimal plan,
P,14, to build the state of an arbitrary new ranking execution plan, P,,.

Procedure RegainState in Algorithm 2 takes as input two rank-join plan
structures, P,., and P,y. The algorithm first reduces the two input plans by
“collapsing” all common subplans (subtrees). A common subplan is the one that
appears in both P,,., and P,4, possibly in different locations. Figure 11 gives
an example of this step by collapsing the common subplan that joins inputs E
and F'. The state information of common subplans are copied as is into the new
generated plan. The algorithm proceeds by initializing all ranking-queues and
hash tables of the nonleaf nodes in P,,,,. Building the new state of P,,, is carried

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1286 . I. F. llyas et al.

A C

Fig. 11. Collapsing common subplans.

out by calling the Procedure JoinAndPromote. The reuse of old information in
Procedure RegainState is limited to identifying common subplans in P,., and
P,;;. A more aggressive state reuse is carried out in Procedure JoinAndPromote
by exploiting the commutativity and symmetry of rank-join operators.

Procedure JoinAndPromote in Algorithm 2 builds the new state information
by reusing useful old state information and by performing all the remaining
joins. Duplicate results are prevented by the check in Step 14, making use of
the invariant that no rank-join result has been reported with a score less than
the global threshold (maintained by the root of the rank-join tree).!

The novelty of the algorithm is in reusing the state of nonleaf nodes by
identifying those nonleaf nodes with the same set of leaf nodes (inputs) even if
they are joined in a different join order. This approach is more elaborate than
mid-query reoptimization techniques that identify only materialization points.
For example, consider the plans in Figure 11. Since the nodes ABC and ACB
have the same set of leaf nodes, {A, B, C}, the state information stored in node
ABC in P,;; can be reused in node ACB in P,,,.

The state migration in Algorithm 2 can be modified to handle the state of
other rank-join implementations (e.g., nested-loops rank-join). We omit the de-
tails of the modifications for space limitation.

1For ties in global score, the algorithm as described may miss results with the last reported score.
One solution is to buffer all the reported results in a root InputHash and compare the reported
results against the buffered reported results.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1287

5.2 Adaptive Execution Frameworks

As mentioned in Section 1.2, interoperator adaptability (altering the execution
plan in runtime) depends on the optimizer being able to produce a new plan
in response to the detected changes. The success of the proposed technique re-
lies on our ability to monitor the query execution and the changes in critical
parameters such as source delays, source availability, and selectivity. In query
monitoring, we build on the work introduced in Kabra and DeWitt [1998] and
in the POP framework [Markl et al. 2004] (progressive optimization in query
processing) to monitor and to check the optimality of the currently executing
plan. The CHECK operator detects unexpected execution behavior such as sig-
nificant errors in selectivity estimation. It can also be extended to detect large
source delays.

Upon detecting changes in optimizer-sensitive parameters (e.g., selectivity
estimates), we introduce a mid-query reoptimization framework that uses the
optimizer during execution to generate a new optimal execution strategy. We
handle the special characteristics of ranking query plans to reuse the old execu-
tion state to build the state of the new plan. Section 5.2.1 presents our solution
for this case.

Upon encountering changes in optimizer-insensitive parameters (e.g., unex-
pected delays), the optimizer cannot reflect these changes in a new query ex-
ecution plan. In Section 5.2.2, we introduce a heuristic algorithm to enhance
the performance of the currently executing query or resolve blocking situations,
where otherwise, no progress can be achieved using the current plan.

Note that adaptive processing techniques can suffer from thrashing if we
spend most of the time adapting the plan to changes in the environment. Min-
imizing thrashing can be achieved through several techniques, for example, by
limiting the number of times reoptimization can be invoked [Markl et al. 2004],
or by setting a minimum number of tuples to be processed (or a time interval)
between two consecutive reoptimizations [Deshpande and Hellerstein 2004].

5.2.1 Optimizer-Based Plan Altering. We describe a framework for pro-
gressive optimization of pipelined ranking queries that adapts to changes
in optimizer-sensitive parameters. We summarize the general technique as
follows.

(1) Continually check the running plan P,;; for unexpected changes or fluctu-
ations in cost parameters.
(2) Stop the plan execution.

(3) For all blocking subtrees, materialize the results and make them available
for reoptimization.

(4) Reinvoke the optimizer to reoptimize the query, taking into account the
adjusted statistics to produce a new execution plan P,,,.

(5) Produce the rank-join plans from both plans (plans with rank-join operators
only), R P, and R Py, from P,y and Py, respectively.

(6) Build the state information of R P,., by reusing old state information in
R P,;4 according to the algorithms in Section 5.1.

(7) Resume execution using P, from where P, stopped.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1288 . I. F. llyas et al.

Re-invoke
Query Optimizer

Build State of
New Plan Reusable Compare
Reusing State Information Plans
Old State State Information

Executer
New To Resume
Execution Plan Processing
with Up-to-date State

Fig. 12. Mid-query reoptimization framework for ranking queries.

In Step (3), we use the same framework in POP [Markl et al. 2004] or in
mid-query reoptimization [Kabra and DeWitt 1998], taking advantage of the
available materialization points in the query plan, should one exist. We note
that most ranking plans are pipelined plans with ranking state information
as discussed in Section 5.1. In Step (5), we limit our attention to the rank-join
operators where the ranking state information is maintained. All rank-join
operators use the adaptive implementation of Section 2. Step (6) invokes the
state transformation algorithms in Section 5.1 to build the state information
of the new query plan. A sketch of the mid-query reoptimization framework is
given in Figure 12.

5.2.2 Heuristic Plan Altering Strategy for Unexpected Delays. The current
execution plan may become suboptimal because of changes in the environment
conditions that do not affect the optimizer’s objective function. In this case,
reoptimizing the query according to the algorithm in Section 5.2.1 will not pro-
duce a new, more efficient execution strategy. Rather, heuristic techniques are
usually applied to generate a more efficient execution strategy. One example of
a heuristic to deal with unexpected delays and source disconnections is the Pair
strategy in query scrambling [Amsaleg et al. 1996]. The heuristic is designed
to delay the execution of stalled sources and generate useful subplans to mask
these delays. Another heuristic for optimizing rank-join operations is to take
score correlations into account [Ilyas et al. 2003]. The idea is to greedily cluster
similar score distributions (based on the foot-rule similarity metric) together
in the execution plan.

For example, consider the three-way rank-join plan depicted in Figure 13.
The RJ; nodes are pipelined rank-join operators, and A, B, and C are three
ranked inputs from external sources. For simplicity, we place monitoring
points [Kabra and DeWitt 1998; Markl et al. 2004] (e.g., CHECK operators)
on every edge in the query plan. Now assume that Source B experiences long

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1289

| cHECK || CHECK |

5.

| CHECK || CHECK |

sﬁ-———

Fig. 13. A simple reoptimization example.

delays. The rank-join operator that joins A and B (R<J) tries to deal with the
unexpected delays by pulling more records from A than B. If the delays persist
and more progress can be achieved by rank-joining B with C first, the reopti-
mization logic will change the execution strategy through a number of steps:
(1) stop the execution of the current plan; (2) swap the two inputs B and C;
and (3) compute the computation state of the new plan using the old state in-
formation. Note that after the shuffling of B and C, the state information of
RJ; becomes invalid and needs to be rebuilt. The goal of reusing the old state
information is to simulate the scenario as if the new plan were the original
execution strategy.

The heuristic used in the previous example pushes the delayed data sources
up in the tree as close as possible to the root join operator. The problem in
the proposed heuristic occurs when dealing with source availability. Assume
that Source B becomes unavailable for a long period of time. Without assuming
any nonstandard operator scheduling mechanism (e.g., as the one proposed in
Amsaleg et al. [1996]), the plan will still block even after pushing B up in the
plan tree. Fortunately, the intraoperator adaptability of the rank-join operators
will deal with this problem as described in Section 1.2. Effectively, the rank-
join operator with a delayed or nonresponding input will cut this input from
the currently executing plan. Whenever the input can be accessed, it joins the
current execution plan.

The following steps give the general framework to alter a running exe-
cution plan that stalls or experiences large unexpected delays. For simplic-
ity, we assume that we monitor the execution of the plan by fixing monitor-
ing points (e.g., CHECK operators) on top of every data source and rank-join
operator.

(1) Identify the subtree with the maximum experienced delay greater than a
threshold TGeiqy. The threshold is set to allow the rank-join operators to
adapt to short, nonpersistent delays experienced by remote sources and is
an application-dependent parameter.

(2) Stop the current execution and perform one swapping step to swap the
subtree with a child of the top rank-join operator.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1290 . I. F. llyas et al.

(8) Transform the computation state of the current query evaluation plan to
reflect the new generated plan according to the algorithms in Section 5.1.

(4) Resume execution using the new generated execution plan.

The rationale behind the heuristic is to maximize the amount of work carried
out assuming the unavailability of the problematic part of the plan. In Section 6,
we experimentally evaluate the effect of this heuristic on performance.

5.3 Nontraditional Adaptive Techniques

In the literature, there have been several proposals for adaptive query pro-
cessing that do not follow the traditional optimizer design. We identify two of
these techniques, namely, query scrambling and eddies. In query scrambling
[Amsaleg et al. 1996; Urhan et al. 1998], scheduling the execution of query
operators activates different parts of the query plan to adapt to the high la-
tency incurred by remote data sources in a wide-area network. The eddies
architecture and its variants [Avnur and Hellerstein 2000; Raman et al. 2003;
Deshpande and Hellerstein 2004] continually optimize a running query by rout-
ing tuples to various query processing operators, eliminating the traditional
query plan altogether. In this section, we show how to extend these techniques
to adaptively process ranking and top-k queries.

Scrambling of Ranking Queries. In general, the query scrambling frame-
work consists of two phases, a scheduling phase and an operator synthesis
phase. The scheduling phase does not change the query plan structure rather
it allows for different operators to be executed independently in their own ex-
ecution threads. Communication among operators is through queues that hold
intermediate results. If an operator cannot proceed or experiences long delays,
other operators in the plan are scheduled to execute. The scheduling policy
can be set to maximize the amount of work that can be carried out before the
plan completely stalls. In the second phase, new operators are formed when the
original plan structure cannot produce any useful work. The authors in Urhan
et al. [1998] introduced several techniques to alter the stalled execution plan
depending on the type of the underlying optimizer.

The first phase of query scrambling is directly applicable to rank-aware query
processing and can be combined with our intraoperator adaptability. Our pro-
posed plan alteration technique can be considered as one approach toimplement
the second phase in query scrambling.

Ranking Eddies. Adaptive rank-aware query processing can be achieved by
implementing rank-join as an eddy. We show how to implement rank-join using
eddies state modules (STEMS) [Raman et al. 2003]. In contrast to rank query
processing in traditional database engines, all the ranking information is stored
in the eddy; no local rankings are kept among inputs. Effectively, an eddy can be
viewed as a multiway rank-join operator with adaptive capabilities. All recently
proposed enhancements [Raman et al. 2003; Deshpande and Hellerstein 2004]
can be applied to minimize the runtime overhead of tuple routing.

For presentation clarity, we give an implementation of the rank-join algo-
rithm [Ilyas et al. 2003] to join ranked inputs with arbitrary join conditions.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1291

Algorithm 3. Rank-join implementation in an eddy.

EDDYRANKJOIN. GETNEXT()

1 let I be a set of ranked inputs
2 Initialize the ranking queue @ to be empty
3 Initialize ranking threshold T to a large number
4 if @ is not empty
5 let top be the top of @
6 if Score(top) > T
7 Remove from @ and Return top
8 while true
9 do Retrieve next ranked tuples from inputs and insert them in corresponding
STEMs
10 Adjust T with the input scores
11 Route input tuples and intermediate results according to the routing strategy
12 let j be a valid join result
13 Compute the score of j according to F
14 Insert j in @
15 if @ is not empty
16 let top be the top of @
17 if Score(top) > T
18 break

19 Remove top from @
20 return top

The rank-join algorithm joins these inputs to produce the top-Z join results.
The total score is computed according to some monotone functions that aggre-
gate the object scores from the input lists. We list the modifications to the eddy
internal state to support ranking the results according to a monotone function
F as follows:

—a global ranking threshold T, which is an upper-bound of the final ranking
score of all unseen join results. The threshold can be computed according to
the rank aggregation algorithms in Fagin et al. [2001] and Ilyas et al. [2003].

—a ranking queue @, which is a priority queue of all seen join results with
scores less than the threshold, and hence cannot be reported as top-k answers.

Algorithm 3 gives a GetNext implementation of a rank-aware eddy. An ex-
ample execution is depicted in Figure 14 where we rank-join the three ranked
inputs of Example 3. Instead of forming a rank-join query plan, we construct an
eddy to retrieve the ranked inputs, route the inputs and intermediate results
among the STEMS, and produce the output in the order of the ranking func-
tion (in this example, the sum of individual scores). The STEMs are just hash
tables on the join attribute with insert and probe interfaces. At this point in
the execution, the eddy has retrieved the first two tuples from each input and
the threshold is computed to be 14.2 There is only one completed join result so
far (B, B, B) with a total score of 14 > T'. Hence, the result can be reported as
a top-k result.

2We apply the algorithm in Ilyas et al. [2003] for threshold computations.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1292 . I. F. llyas et al.

Stem T
Stem R Stem S
A B AT
B c iB i
P
P
rs1| | RUST i_ i
\ﬁRST ’ stre A7
RS,ST ST,RST
Q (B,B,B): (14) T=14
A |5 B ||5 B
B || 4 C |4 A
C |3 E ||[3 c
D ||2 A |2 E
E 1 D |1 D
R T]

Fig. 14. Rank-join in eddies.

|Te><1.ure| |Co1 orLayoutl | |Co1 orHist | |Edge<3 |

Fig. 15. Example rank-join plan.

6. PERFORMANCE EVALUATION

In this section, we conduct two sets of experiments. In the first set, we exper-
imentally verify the accuracy of our model for estimating the depths (input
size) of rank-join operators and estimating an upper bound of the buffer size
maintained by these operators. Estimating the input size and the space re-
quirements of a rank-join operator makes it easy to estimate the total cost of
a rank-join plan according to any practical cost model. In the second set of ex-
periments, we evaluate the effect of the proposed adaptive techniques on top-&
query performance.

6.1 Implementation Issues and Setup

We implemented the rank join operators in Ilyas et al. [2003] into PostgreSQL
7.4.3 running Linux with 4 XEON 2GHz processors and 4 GB of memory.

For the first set of experiments, Figure 15 gives a ranking plan (termed Plan
P) that joins 4 sorted inputs. d; labels on the edges represent the number of
ranked tuples flowing from the children of the rank-join operator. We compare

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1293

the actual (monitored) values of d; to the estimated values according to our cost
model.

For the second set of experiments, we implemented the following simple
monitors.

—Delay Monitors. Delay monitors are placed on top of all input relations. The
monitors report the time to retrieve one input record. If the monitored delay
exceeds a specified threshold value, we raise a need-to-reoptimize flag.

—Score Correlation Monitors. A correlation monitor is placed in each rank-
join operator in the query plan. The monitor computes the number of tuples
retrieved from each input to report one top-% result. If the number of tuples re-
trieved from the operator inputs exceeds the expected input cardinality (com-
puted according to the cost estimation model), we raise a need-to-reoptimize
flag.

We avoid thrashing by limiting the number of reoptimizations during query
execution. In this set of experiments, the user query joins 3 to 10 ranked in-
puts and asks for the top-£ join results with respect to a monotone aggregat-
ing function. We use the sum of the tuples’ scores as the aggregate function.
The data is generated synthetically to simulate Web site popularity search. In
this real scenario, a highly-ranked object in one input (relation), is likely to
be highly-ranked in other inputs as well. We simulate this scenario by picking
the difference between the rank of an object in one relation and the rank of
the same object in another relation from a Zipfian distribution (¢ = 0.9). Each
input provides a ranked list of objects with several attributes, for instance, (id,
JoinAttribute, score). The difference between the positions of an object in two
lists is randomly drawn from a Zipfian distribution. Each input can be accessed
only through a sorted access path (a GetNext() interface), that is, no random
access or indexes are allowed on the inputs. Hence, our inputs act as external
ranking sources. In the following sections, we elaborate on a representative
sample of the conducted experiments.

6.2 Experiments Set 1: Verifying Input Cardinality Estimation

In this experiment, we evaluate the accuracy of the depth estimates of rank-
join operators. The results shown here represent the estimates for Plan P in
Figure 15. We use HRJN as the implementation of the rank-join operator. %
ranked results are required from the top rank-join operator in the plan.

Varying the Number of Required Answers (k). For different values of &,
Figure 16(a) compares the actual values of d; and ds (refer to Figure 15) with
two estimates: (1) any-k estimate, the estimated values for d; and ds to get any
k join results (not necessary the top k), and (2) top-k estimate, the estimated
values for d; and ds to get the top-%£ join results. any-k estimate and top-k
estimate are computed as in Section 4. The actual values of d; and dy are
obtained by running the query and counting the number of retrieved input
tuples by each operator. Figure 16(b) gives similar results for comparing the
actual values of d5 and dg to the same estimates. The figures show that the
estimation error is less than 25% of the actual depth values. For all conducted

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1294 . I. F. llyas et al.

18000 5000
—e—Actual d5

16000 4500 1| o Actual do
E 14000 g 4000 4 | —#— Any-k Estimate
% g. 3500 J —&—Top-k Estimate
2 12000 4 =
s 2000 ‘S 3000
= 1 i pul
]]
2 2 2500 4
€ 5000 4 —— Actual d1 €
g —&— Actual d2 2 2000 4
s o e |2 o]
& 4000 & om0 | o
a]

2000 A 500 4

0 . . . : 0 . - - :
0 50 100 150 200 250 0 50 100 150 200 250
k k
(a) (b)
Fig. 16. Estimating the input cardinality for different values of .

14000 2500

12000 | —o—Actud d1 —— Actual d5
- - Actual d2 - | = Actual db
] —£— Any-k Estimate g 20w
S 10000 T V'k e s —— Any-k Estimate

1 et —o—Top-k Estimate

2 E P E] —s—Top-k Estimate
L) Y
5]
° gom o 1500
]]
£ £

6000 A
= = 4
2 g 1o
£ 4000 £
& & s
9 oo o

0 ‘ 0 . ‘ = .=

0.00001 0.0001 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1
Join Selectivity Join Selectivity

(a) (b)

Fig. 17. Estimating the input cardinality for different values of join selectivity.

experiments, this estimation error is less than 30% of the actual depth values.
Note that the measured values of d; and dg lie between the any-k estimate and
the top-k estimate. The any-k estimate can be considered a lower bound on the
depths required by a rank-join operator.

Varying the Join Selectivity. Figure 17 compares the actual and estimated
values for the depths of Plan P in Figure 15 for various join selectivities. For
low selectivity values, the required depths increase as the rank aggregation
algorithm needs to retrieve more tuples from each input to produce the top
ranked join results. The maximum estimation error is less than 30% of the
actual depth values.

Estimating the Maximum Buffer Size. Rank-join operators usually main-
tain a buffer of all join results produced and cannot yet be reported as the top-%
results. Estimating the maximum buffer size is important in estimating the to-
tal cost of a rank-join operator. In this experiment, we use Plan P in Figure 15.
The left child rank-join operator in Plan P needs d; and dg tuples from its left

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1295

8000 1 | ——Measured Buffer Size

7000 4 | ~=—Estimated Upper Bound

—— Actual Upper Bound
6000 A

5000 A

4000

3000 4

Buffer Size {tuples)

2000 4

1000 4

Fig. 18. Estimating the buffer size of rank-join.

and right inputs, respectively, before producing the top-£ results. The worst
case (maximum) buffer size occurs when the rank-join operator cannot report
any join result before retrieving all the d; and ds tuples. Hence, an upper bound
on the buffer size can be estimated by d1dss, where s is the join selectivity. We
use our estimates for top-k depths, d; and dg, to estimate the upper bound of
the buffer size. We compare the actual (measured) buffer size to the following
two estimates: (1) actual upper bound, the upper bound computed using the
measured depths d; and ds, and (2) estimated upper bound, the upper bound
computed using our estimation of top-£ depths.

Figure 18 shows that the estimated upper bound has an estimation error
less than 40% of the actual upper-bound (computed using the measured values
of d1 and d3). Figure 18 also shows that the actual buffer size is less than the
upper-bound estimates. The reason is that, in the average case, the operator
progressively reports ranked join results from the buffer before completing the
join between the d; and ds tuples. The gap between the actual buffer size and
the upper-bound estimates increases with & as the probability of the worst case
scenario decreases.

The Effect of Rank Correlation. We conduct a simple experiment on a real
data set to show the effect of rank correlation on our estimation model. We
used data generated from a multimedia database system that ranks objects
based on feature similarity to a given query image. We used two correlated
features (color histogram and color layout). We apply the rank-join algorithm
to get the top-% objects with respect to both features (using sum of ranks as the
aggregation function). Let d; and d be the depths in the two ranked inputs,
respectively. Figure 19 gives the actual monitored values f d; and ds, varying
the number of required results k. Note that in this simple rank-join scenario
d1 = ds. Figure 19 also shows our estimated value of the depths using two
estimation models: (1) assuming join uniformity; and (2) assuming a simple

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1296 . I. F. llyas et al.

3500
)
2L 3000 A
=%
2 2500 4
[
=]
; 2000 4
=] == Actual d1, d2
£ 1500) .
= —a&— Estimate (uniform)
c)
= 1000 A —e—Estimate (theta = 50)
g
& 500
a
D A T T T T
0 a0 100 150 200 250
k

Fig. 19. The effect of rank correlation.

rank correlation following the model described in Section 4.5, with 6 = 50.
Because of the strong positive correlation, we tend to overestimate the depths
if we assume the uniformity of the join; however, much better estimates can be
obtained applying our simple rank correlation model.

6.3 Experiments Set 2: Adaptive Mid-Query Reoptimization

In this section, we conduct a set of experiments to evaluate two issues. First,
we examine the overhead of the proposed mid-query reoptimization algo-
rithm. We would like to answer the question: “When is it beneficial to re-
optimize a running query upon discovering a change in the optimality con-
dition?” Second, we evaluate the efficiency of our mid-query plan alteration
algorithms.

Overhead of Mid-Query Reoptimization. In this experiment, we start ex-
ecution using a default suboptimal plan (e.g., because of faulty estimates).
Figure 20 compares the performance speedup achieved by reoptimizing the
running ranking query during execution using (1) our adaptive plan alteration
strategy to switch to a new plan (Plan B) in runtime; and (2) by restarting the
query using the new plan (Plan B). We assume that we can restart the exe-
cution of a running pipelined query although this may not always be possible
(e.g., in the case of input streams). The speedup is computed as the ratio of
execution time of the original plan to that of the new plan. The cost of plan
alteration is included in the execution time of our adaptive strategy. Several
experiments with different data sets showed the same behavior in Figure 20.
Figure 20 shows that

—our adaptive execution strategy can achieve significant speedup over reex-
ecuting the query using the new evaluation plan. This superiority is due to
the aggressive reuse of internal state information to minimize the amount of
the repeated work.

—the benefit of reoptimizing the query diminishes as execution progresses
due to the overhead of state migration in our adaptive strategy, or due to

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1297

400%

350% - =¥ Our Adaptive Strategy

—-&— Restarting Using Plan B

300% -

Enhancement

—_ —_ N N

[4)] [=] [4)] [=] (4]

LI 22

- SR - SO - N
1 | 1 1 1

Degradation

Speedup in Execution Time

0% T T T T T T T T T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Query Progress

Fig. 20. Mid-query reoptimization overhead.

repeating work in the reexecution strategy. In fact, as the query gets closer
to completion, reexecuting the query can result in a significant performance
degradation. Our aggressive reuse of old state information significantly lim-
its the performance degradation with query progress. These results suggest
adopting cost-based mid-query reoptimization. For example, the following
costs can be estimated: (1) costa, the cost to complete execution using the
current plan (after updating the statistics); (2) costp, the cost to resume ex-
ecution using the new generated plan; and (3) costsqs., the cost to transform
the state between plans according to the algorithms in Section 5.1. costsqe
can be easily computed since accurate cardinality information is available.
A simple cost-based decision is to reoptimize whenever cost 4 is significantly
greater that costp + costggge.

Mid-Query Plan Alteration. PostgreSQL query optimizer is not sensitive
to correlations among input scores, and is not sensitive to source delays and
disconnections. Since the focus of this article is to provide a mid-query reopti-
mization algorithm for ranking queries, the evaluation is independent from the
source of generating the new execution plan (by reinvoking the optimizer or by
using an optimization heuristic). In this section, we conduct two experiments:
The first experiment introduces delays and disconnections in the data sources;
when the Delay Monitors trigger the need to reoptimize the query, we apply the
heuristic in Section 5.2.2 by pushing the delayed (disconnected) source as close
as possible to the root of the rank-join tree. In the second experiment, we start
executing the query following a default join order (this is not uncommon in the
absence of statistics information in traditional optimizers). Upon discovering a
bad execution strategy using the Score Correlation Monitors, we use the rank-
join order heuristic in Ilyas et al. [2004] to form a new plan strategy that takes
into account the statistics on score similarities that are now available on the
inputs.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1298 . I. F. llyas et al.

50%
45% A
40% A
35% A
30% A
25% -
20% A
15% A
10% A
5% -
0% -

Execution Time Improvement

0 9 8 7 6 5 4 3
Distance of New Position from Root

Fig. 21. Heuristic for dealing with source delays.

In both experiments, our plan transformation algorithm (described in Sec-
tion 5.1) transforms the internal state of the old execution plan to a valid state
of the new plan, allowing the executor to resume query evaluation with the new
strategy.

Figure 21 gives an evaluation of the heuristic proposed in Section 5.2.2. The
plan used in Figure 21 is a left-deep tree with 10 ranked inputs. A large delay is
introduced in the farthest input from the root. The performance improvement
is evaluated for every possible swapping of the delayed input with other inputs.
The figure shows that better performance can be achieved by pushing delayed
or disconnected inputs as close as possible to the root in the rank-join plan.

Figure 22 compares the performance of two ranking queries in three different
scenarios: (1) using Plan A, the default plan that is used when we do not have
prior knowledge about source delays or availability; (2) using Plan B, the plan
that takes delay information into account by pushing the slowest source near
the root; and (3) by Changing Plan A to Plan B, which is our proposed strategy
to start execution using Plan A and to progressively switch to Plan B upon
detecting large source delays. Figures 22(a) and (b) give the execution time of
two ranking queries (normalized by dividing the execution time by the total
query time) with respect to the three different scenarios. The transition was
decided around the point where 5 top results have already been reported to
the user. After the transition, we closely follow the performance of Plan B.
The execution time includes the overhead of performing the state transition.
Notice that in Figure 22(b), the total execution time according to our strategy
is even less than starting execution using Plan B. Although this is not always
guaranteed (see Figure 22(a)), the reason can be explained as follows. During
a reuse of the state information to transform the execution strategy to Plan
B, we may be able to report many valid top-£ results depending on how many
inputs we have already read from all inputs, which may exceed the number
of results that can be reported if we use Plan B to retrieve inputs from the
beginning of the execution. After the transition, the time to report each of the
next top-k results using our strategy is the same as that of Plan B. To further
illustrate this transition, Figure 23 gives the difference in the execution time
per reported result between our strategy and both Plan A and Plan B. Similar
results are observed in the second experiment where we reoptimize the query

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Normalized Execution Time

0.8

0.6

0.4

0.2

Adaptive Rank-Aware Query Optimization in Relational Databases .

—~<—Plan A
-=-Plan B
—=— Adaptive Strategy

o
£
'_
< 0.8
2
5
806
3
1L
el
‘g 0.4
—-—Plan A ©
--Plan B §0.2
—=— Adaptive Strategy| | =
T T T T T T T T T T T T T T T T T T 1T T T T T T17T 0 rTTT T T T T T T T T TTT
0 15 30 45 60 75 0 15 30
K K
(a) (b)
12000
%o | | S Bong
(0] i -=-Plan
3 10000 -=— Adaptive Strategy
& 8000 -
(2
ko)
£ 6000 -
'_
S 4000
[0
o]
€ 2000 -
=z
0 rrrrrrrrrrrrrrrr 111111 11T
0 15 30 45 60 75
K

Normalized Difference
(Execution Time per Result)

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

-0.25

(c)

Fig. 22. Mid-query alteration of execution plan.

45 60 75

Following Plan A

—-— Deviation from Plan A
—— Deviation from Plan B

K

Fig. 23. Transiting between plans.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1300 . I. F. llyas et al.

1.2 1 State transformation —+—Plan Pf
° Resuming Executjon —&—Adaptive Strategy
E , |UsingPlan B
[=
S . results reported
5 0.8 A by switching to Plan B
8 1
5 P | Plan A stalls |Plan B stalls
w g6 - [A= e
T i
(3 i
2 Source S
© 0.4 -
E
o
Z 02
R S R U
0
0 10 20 30 40 50 60 70
Plan A Plan B «
(a) (b)

Fig. 24. Mid-query alteration for source disconnections.

on detecting errors in deciding the rank-join order. For space limitation, we only
show a comparison of the total number of retrieved tuples in Figure 22(c).

To test the effectiveness of our adaptive strategy in handling source discon-
nections and plan stalls, we conduct the following experiment. In a ranking
query with 4 ranked inputs shown in Figure 24(a) as Plan A, we disconnect
source S during the execution of Plan A which causes the plan to stall. Upon
discovering the plan stall, we alter the execution plan to Plan B as shown in
Figure 24(a). In Figure 24(b), we show the number of reported top-%& results.
Plan alteration gives the opportunity for more useful work to be done by reusing
the old state information and by retrieving tuples from other inputs. As a re-
sult, 26 more top-k results are reported, an 86% increase. The ranking plans
in this experiment use the adaptive implementation of the rank-join operator
described in Section 5.1.

7. CONCLUSION

We introduced a framework for integrating rank-aware operators in real-world
query optimizers. Our framework was based on three key aspects. First, we
extended the enumeration phase of the optimizer to generate rank-aware plans.
The extension was achieved by providing rank-join operators as possible join
choices, and by defining ranking expressions as a new physical plan property.
The new property triggered the generation of a new space of ranking plans for
efficient top-k processing.

Second, we provided a probabilistic technique to estimate the minimum re-
quired input cardinalities by rank-join operators to produce top-£ join results.
Unlike traditional join operators, rank-join operators do not need to consume
all their inputs. Hence, estimating the cost of rank-join operators depends on
estimating the number of tuples required from the input.

Third, we addressed adaptive processing of ranking queries in modern ubig-
uitous computing environments. We proposed several techniques and progres-
sive optimization algorithms for ranking query plans. We also outlined general
adaptive processing frameworks based on the type of changes in the optimality

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1301

conditions of the current executing plan. We distinguished between two types
of changes: (1) changes and errors in the optimizer cost parameters (optimizer-
sensitive changes) that require reinvoking the query optimizer during execu-
tion to produce a new optimal ranking plan; and (2) changes and fluctuations in
the computing environments that are not factored in the optimizer cost model
(optimizer-insensitive changes), where heuristic techniques may be used to pro-
duce a better execution strategy. In the core of these frameworks, we introduce
a novel algorithm to alter the current pipelined ranking plan in runtime and
to resume with the new optimal (or better) execution strategy. The plan alter-
ation mechanism employs an aggressive reuse of old ranking state from the
current plan in building the state of the new plan. We have also studied the
application of other nontraditional adaptive query processing techniques such
as query scrambling and eddies in the context of ranking queries.

We conducted an extensive experimental study and we showed that our pro-
posed estimation model captured the early-out property with estimation error
less than 30% of the actually measured input cardinality under some reason-
able assumptions on the score distributions. We also estimated the space needed
by rank-join operators with an estimation error of less than 40%. The experi-
ments also showed significant performance gain by changing suboptimal exe-
cution strategies in runtime (more than 300% speedup and 86% more results
in the case of source disconnection). The experiments demonstrated the sig-
nificant superiority over current reoptimization techniques of pipelined query
plans based on reexecuting the whole query.

APPENDIXES
A. DERIVATIONS OF USED FORMULAS

A.1 Estimating Any-k Depth with Rank Correlation

Since we have not relaxed the join independence assumption, we still can view
the join with window rank correlation (described in Section 4.5) as a set of
independent Bernoulli trials. However, the probability of success is not s, rather
it is % within the window and 0 elsewhere.

For simplicity, assume that ¢;, = cg = ¢. We can visualize the process by
plotting depth in L along x axis and depth in R along y axis. Let Area A be the
area that falls between the lines y =x+6/2,y =x—0/2,x =c,and y = c. The
area of A represents the number of possible join combinations (trials) between
cr. =candcg =c.

We apply our analysis in Section 4.2 on Area A. The probability of success (a
valid join) = % Hence, area(A) has to be greater that k6. For 6 < 2¢, area(A) =
ch — %, therefore, to get k valid join results, ¢ has to be > & +6/4. This analysis
changes when 6 grows bigger than 2c and approaches the case of uniform join
discussed in Theorem 1.

A.2 Estimating d; and dg in a Join Hierarchy

Let u, be the sum of p distributions, each is a uniform distribution on [0, n].
Let X;’s,fori =1, ..., j, be identical and independent random variables from

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1302 . I. F. llyas et al.

u1. Then, X = Z{ X, is a random variable from u;, which ranges from [0, jn].
LetY, =n—X;andY =] Y; = jn— X. By symmetry, the score decrement
random variable Y follows the same distribution of X. If we select m items
from u; and select the ith highest-score item, then score decrement of i, §(i) =
jn — S(@7) satisfies the following property: prob(Y < §(i)) =i/m. The left-hand
term prob(Y1+Ys +--- +7Y;) < @) is actually the ratio of volume of simplex
Yi+Yy+---+Y; <8@G), 81 < n tothe volume of hypercube with length 7.
The volume of the simplex is 8(i)7 /j!, thus, (6G)’ /j!)/n’/ =i/m. This implies

SG) = jn—(jlin//m)¥”, wheni <m/j! (7

Using the described distribution scores, we estimate the values of ¢z, and cg
that give the minimum values of d;, and dy for the general rank-join plan in
Figure 6(b). Let L be the output of rank-joining / ranked relations and let R be
the output of rank-joining r ranked relations. For simplicity, assume that each
of L and R has n tuples. Let £ be the number of output ranked results required
from the subplan, and s be the join selectivity. Using Equation (7), we set j =1,
m =n, and i = ¢, to get Sy(cy). Similarly, we set j =r, m =n,and i = cg to
get Sr(cr). Maximizing Sy(cr) + Sgr(cr) (according to Theorem 2) amounts to

minimizing (lczn!~HY! 4 (rlcgn”~1)1/". The minimization yields:
il (r!)lklnrfllrl il (l!)rkrnl—rrrl
Lo slqyyert 7 "R sr(rl)I

dr =cr[14+7r/lY, dr =crll1+1/rT

REFERENCES

AwmSsALEG, L., FrankuN, M. J., Tomasic, A., aND UrnaAN, T. 1996. Scrambling query plans to cope
with unexpected delays. Distrib. Parall. Datab. Syst. 208—219.

AVNUR, R. AND HELLERSTEIN, J. M. 2000. Eddies: Continuously adaptive query processing. In Pro-
ceedings of ACM SIGMOD International Conference on Management of Data. 261-272.
Bruno, N. anp CHAUDHURI, S. 2002. Exploiting statistics on query expressions for optimization.
In Proceedings of ACM SIGMOD International Conference on Management of Data. 263—-274.
Bruno, N., CHAUDHURI, S., AND GRavaNo, L. 2002. Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM Trans. Datab. Sys. 27, 2, 369-380.
Bruno, N., Gravano, L., anp Marian, A. 2002. Evaluating top-k queries over web-accessible
databases. In Proceedings of the 18th International Conference on Data Engineering. 153—187.
Carey, M. J. anp Kossmann, D. 1997. On saying “Enough already!” in SQL. In Proceedings of ACM
SIGMOD International Conference on Management of Data. 219—-230.

Carey, M. J. anp Kossmann, D. 1998. Reducing the braking distance of an SQL query engine. In
Proceedings of the 24th International Conference on Very Large Data Bases. 158-169.

CHAKRABARTI, K., ORTEGA-BINDERBERGER, M., MEHROTRA, S., AND PorkaEW, K. 2004. Evaluating re-
fined queries in top-k retrieval systems. IEEE Trans. Knowl. Data Engin. 16, 2, 256-270.

CHang, K. C.-C. aND HwaNg, S.-W. 2002. Minimal probing: Supporting expensive predicates for
top-k queries. In Proceedings of ACM SIGMOD International Conference on Management of Data.
346-357.

DESHPANDE, A. AND HELLERSTEIN, J. M. 2004. Lifting the burden of history from adaptive query
processing. In Proceedings of the 30 International Conference on Very Large Data Bases. 948—959.

DonJgeRrkovic, D. AND RAMAKRISHNAN, R. 1999. Probabilistic optimization of top N queries. In Pro-
ceedings of the 25th International Conference on Very Large Data Bases.

Dwogrkg, C., KuMar, S. R., Naor, M., aAND StvakUMAR, D. 2001. Rank aggregation methods for the
web. In Proceedings of the 10th International World Wide Web Conference. 613—622.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Adaptive Rank-Aware Query Optimization in Relational Databases . 1303

Facmy, R. 1999. Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58, 1
(Feb.), 216-226.

Facmy, R., Lotem, A., AND Naor, M. 2001. Optimal aggregation algorithms for middleware. In
Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. 102-113.

GRAEFE, G. AND DEWITT, D. J. 1987. The EXODUS optimizer generator. In Proceedings of ACM
SIGMOD International Conference on Management of Data.

GRAEFE, G. AND McKENNA, W.J. 1993. The volcano optimizer generator: Extensibility and efficient
search. In Proceedings of the 9th International Conference on Data Engineering. 209-218.

GUNTZER, U., BaLKE, W.-T., AND KiefSLiNG, W. 2000. Optimizing multi-feature queries for image
databases. In Proceedings of the 26th International Conference on Very Large Data Bases. 419—
428.

GUNTzER, U., Balke, W.-T., anp KiefliLing, W. 2001. Towards efficient multi-feature queries in
heterogeneous environments. In International Symposium on Information Technology (ITCC).
622-628.

Haas, P. J. aND HELLERSTEIN, J. M. 1999. Ripple joins for online aggregation. In Proceedings of
ACM SIGMOD International Conference on Management of Data. 287-298.

Hong, W. AND STONEBRAKER, M. 1993. Optimization of parallel query execution plans in XPRS.
Distribut. Parall. Datab. Syst. 1, 1 (Jan.), 9-32.

Hristipis, V., GRAVANO, L., AND PapAKONSTANTINOU, Y. 2003. Efficient IR-style keyword search over
relational databases. In Proceedings of the 29th International Conference on Very Large Data
Bases.

Irvas, I. F., Arer, W. G., aND ELmacarmip, A. K. 2002. Joining ranked inputs in practice. In Pro-
ceedings of the 28th International Conference on Very Large Data Bases. 950-961.

Irvas, I. F., ARer, W. G., anD ErLmacarmi, A. K. 2003. Supporting top-k join queries in relational
databases. In Proceedings of the 29th International Conference on Very Large Data Bases. 754—
765.

Iivas, 1. F., Arer, W. G., AND ELMAGARMID, A. K. 2004. Supporting top-k join queries in relational
databases. VLDB J. 13, 3, 207-221.

Irvas, 1. F., SuaH, R., ARer, W. G., VITTER, J. S., AND ELMAcARMID, A. K. 2004. Rank-aware query
optimization. In Proceedings of ACM SIGMOD International Conference on Management of Data.
203-214.

KaBra, N. anp DEWITT, D. J. 1998. Efficient mid-query re-optimization of suboptimal query exe-
cution plans. In Proceedings of ACM SIGMOD International Conference on Management of Data.
106-117.

L1, C., CHANG, K. C.-C., Iyas, I F., AND Song, S. 2005. Query algebra and optimization for relational
top-k queries. In Proceedings of ACM SIGMOD International Conference on Management of Data.

Lonman, G. M. 1988. Grammar-like functional rules for representing query optimization alter-
natives. In Proceedings of ACM SIGMOD International Conference on Management of Data.

MaRkL, V., Raman, V., SimMmEN, D. E., LoaMaN, G. M., aND PiranesH, H. 2004. Robust query process-
ing through progressive optimization. In Proceedings of ACM SIGMOD International Conference
on Management of Data. 659—670.

Natsgey, A., CHANG, Y.-C., SmitH, dJ. R., L1, C.-S., AND VITTER, J. S. 2001. Supporting incremental
join queries on ranked inputs. In Proceedings of the 27th International Conference on Very Large
Data Bases. 281-290.

NEpAL, S. AND RAMAKRISHNA, M. V. 1999. Query processing issues inimage (multimedia) databases.
In Proceedings of the 15th International Conference on Data Engineering. 22—29.

RamaN, V., DESHPANDE, A., AND HELLERSTEIN, J. M. 2003. Using state modules for adaptive query
processing. In Proceedings of the 19th International Conference on Data Engineering. 353—387.

SELINGER, P. G., AstrRaHAN, M. M., CHAMBERLIN, D. D., LoriE, R. A., AND Pricg, T. G. 1979. Access
path selection in a relational database management system. In Proceedings of ACM SIGMOD
International Conference on Management of Data.

STILLGER, M., LoumaN, G. M., MagRkL, V., AND KanpiL, M. 2001. LEO—DB2’s learning optimizer.
In Proceedings of the 27th International Conference on Very Large Data Bases. 19-28.

UrHAN, T., FRANKLIN, M. J., AND AMsaLEG, L. 1998. Cost-based query scrambling for initial delays.
In Proceedings of ACM SIGMOD International Conference on Management of Data. 130-141.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1304 . I. F. llyas et al.

WiLscHuT, A. N. AND ApERrs, P. M. G. 1993. Dataflow query execution in a parallel main-memory
environment. Distribut. Parall. Datab. Syst. 1,1, 68-77.

Zuu, Y., RUNDENSTEINER, E. A., aND HEINEMAN, G. T. 2004. Dynamic plan migration for continu-
ous queries over data streams. In Proceedings of ACM SIGMOD International Conference on
Management of Data.

Received October 2005; revised April 2006; accepted July 2006

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

