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Abstract

Printer identification based on a printed document has
many desirable forensic applications. In the electropho-
tographic process (EP) quasiperiodic banding artifacts can
be used as an effective intrinsic signature. However, in text
only document analysis, the absence of large midtone ar-
eas makes it difficult to capture suitable signals for banding
detection. Frequency domain analysis based on the pro-
jection signals of individual characters does not provide
enough resolution for proper printer identification. Ad-
vanced pattern recognition techniques and knowledge about
the print mechanism can help us to device an appropriate
method to detect these signatures. We can get reliable in-
trinsic signatures from multiple projections to build a clas-
sifier to identify the printer. Projections from individual
characters can be viewed as a high dimensional data set.
In order to create a highly effective pattern recognition
tool, this high dimensional projection data has to be repre-
sented in a low dimensional space. The dimension reduc-
tion can be performed by some well known pattern recog-
nition techniques. Then a classifier can be built based on
the reduced dimension data set. A popular choice is the
Gaussian Mixture Model where each printer can be rep-
resented by a Gaussian distribution. The distributions of
all the printers help us to determine the mixing coefficient
for the projection from an unknown printer. Finally, the
decision making algorithm can vote for the correct printer.
In this paper we will describe different classification algo-
rithms to identify an unknown printer. We will present the
experiments based on several different EP printers in our
printer bank. The classification results based on different
classifiers will be compared∗.

∗This research is supported by a grant from National Science Founda-
tion, under award number 0219893.

Introduction

In our previous work, we have described the intrinsic and
extrinsic features that can be used for printer identification1.
Our intrinsic feature extraction method is based on fre-
quency domain analysis of the one dimensional projected
signal. If there are a sufficient number of samples in the
projected signal, the Fourier transform gives us the correct
banding frequency. When we work with a text-only doc-
ument, our objective is to get the banding frequency from
the projected signals of individual letters. In this situation,
there are not enough samples per projection to give high
frequency domain resolution. Significant overlap between
spectra from different printers makes it difficult to use it as
an effective classification method. The printer identifica-
tion or classification task is closely related to various pat-
tern identification and pattern recognition techniques. The
intrinsic features are the patterns that are used to recognize
an unknown printer. The basic idea is to create a classi-
fier that can utilize the intrinsic signatures from a docu-
ment to make proper identification. A Gaussian mixture
model(GMM) or the tree based classifier is suitable for the
classification part; but the initial dimension reduction is
performed by principal component analysis.

Principal component analysis (PCA) is often used as
a dimension-reducing technique within some other type of
analysis2. Classical PCA is a linear transform that maps the
data into a lower dimensional space by preserving as much
data variance as possible. In the case of intrinsic feature
extraction, PCA can be used to reduce the dimension of
the projected signal. The proper number of components
can be chosen to discriminate between different printers.
These components are the features that can be used by the
classifier (GMM or tree classifier).

The Gaussian mixture model defines the overall data
set as a combination of several different Gaussian distribu-
tions. The parameters of the model are determined by the
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Figure 1: Steps followed in printer characterization.

training data. Once the parameters are selected, the model
is used to predict the printer, based on projections from the
unknown printer.

Binary tree structured classifiers are formed by repeated
splits of the original data set. Tree classifiers are also suit-
able for the printer identification problem. Properly grown
and pruned tree leaves should represent different printers.

In Fig. 1, the printer identification process is described
briefly with the help of a flowchart. The printed document
is scanned and the scanned image is used to get the one
dimensional projected signal from individual characters1.
PCA provides the lower dimensional feature space. GMM
or tree classifier works on the feature space to correctly
identify the unknown printer.

In the following sections of the paper, dimension re-
duction technique by PCA, classification by GMM, and
tree growing and pruning algorithm by binary tree classi-
fiers are explained. Experimental results related to these
algorithms are also provided.

Principal Component Analysis (PCA)

The theory behind principal component analysis is described
in detail by Jolliffe2, Fukunaga3, and Webb4. In this section
the fundamentals of the PCA are described.

An n dimensional vector X can be represented by the
summation of n linearly independent vectors.

X =
n∑

i=1

yiφi = ΦY, (1)

where yi is the i-th principal component and the φi’s are
the basis vectors obtained from the eigenvectors of the co-
variance matrix of X. Using only m < n of φi’s the vector
X can be approximated as

X̂(m) =
m∑

i=1

yiφi +
n∑

i=m+1

biφi, (2)

where bi’s are constants. The coefficients bi and the vec-
tors φi are to be determined so that X can be best approxi-
mated. If the first m yi’s are calculated, the resulting error
is

∆X(m) = X − X̂(m) =
n∑

i=m+1

(yi − bi)φi. (3)

The set of m eigenvectors of the covariance matrix of
X, which corresponds to the m largest eigenvalues, min-
imizes the error over all choices of m orthonormal basis
vectors. The expansion of a random vector in the eigenvec-
tors of covariance matrix is also called the discrete version
of the Karhunen-Loéve expansion3.

Method of Canonical Variates

In the printer identification problem, we have additional
information about the class label from the training data.
We can get training samples from different known print-
ers. The class label will represent different printer mod-
els. This additional class label information provides the
optimal linear discrimination between classes with a lin-
ear projection of the data. This is known as the method
of canonical variates5. Here the basis vectors are obtained
from the between class and within class covariance ma-
trices. Due to singularity in the covariance matrix, this
method has to be implemented with the help of simultane-
ous digonalization6. This version of PCA is described in
detail by Webb4. We have to diagonalize two symmetric
matrices SW and SB simultaneously:

1. The within class covariance matrix SW is whitened.
The same transformation is applied to the between
class covariance matrix SB . Let us denote by S

′
B

the transformed SB .

2. The orthonormal transformation is applied to diago-
nalize S

′
B .

The complete mathematical formulation can be found in
Webb4 and Fukunaga6.
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Experimental Results

To perform the experiments, we have used the printers in
our printer bank1. The experimental procedure is depicted
in Fig. 2.

The test page has the letter ‘I’ in 10pt., 12pt. and 14pt.
size in Arial font. Each test page has 40-100 letters. From
each letter, a one dimensional projected signal is extracted.
The projected signals are mean subtracted and normalized.
This step is done to remove variability due to long term
trends, such as cartridge depletion and printer wear, and
other factors which are not stable intrinsic features. The
projected signals from different printers are concatenated
into a large data matrix. The Canonical Variates method is
applied to this data matrix to get the principal components.

The PCA using five different printer models is shown
in Fig. 3. Each projection has 168 samples. The high
dimensional data is represented only by the first two prin-
cipal components. The classes (different printers) are well
separated. A sixth printer is added as a ‘test’ printer. The
sixth printer is an HP Laserjet 4050 and the projections
from this printer(�) overlap with those of the other Laser-
jet 4050(◦). The projections from the Laserjet 1000(×)
and Laserjet 1200( ) overlap because of the similarities in
their banding characteristics1. It should be noted that the
Samsung ML-1450(+) and the Okipage 14e(♦) show well
separated classes.

Gaussian Mixture Model for Classification

The dimension of the projected signal is reduced by PCA.
The next step is to classify the printers using the features.
The Gaussian mixture model (GMM) is a generative model.
The posterior probability of a data point can be determined
using Bayes’ theorem. A model with m components is
given by

p(x) =
m∑

j=1

P (j)p(x|j). (4)
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Figure 3: Representation of the projected signal by the first two
principal components.

The parameter P (j) is called the mixing coefficients.
The component density function p(x|j) is Gaussian with
spherical covariance matrix and data dimension d.

p(x|j) =
1

(2πσ2
j )

d
2

exp

{
−

∥∥x − µj

∥∥2

2σ2
j

}
. (5)

Suppose that the data set contains projections from dif-
ferent printers A1, ...., Ak. The classification can be done
by using the posterior probabilities of class membership
P (Ak|x)7. The density model for class At is built by train-
ing the model only on data from that class. This gives an
estimate of p(x|At). Then by using the Bayes’ theorem,

P (At|x) =
p(x|At)P (At)

p(x)
. (6)

The prior probabilities P (At) are determined by the
fraction of samples class At in the training set.

Parameter Estimation

The parameters of a Gaussian mixture are determined from
a data set by maximizing the data likelihood. The most
widely used method is the expectation-maximization (EM)
algorithm8, 9. The EM algorithm works by using the log
likelihood expression of the complete data set. The maxi-
mization is repeatedly performed over the modified likeli-
hood. Basically, the EM algorithm iteratively modifies the
GMM parameters to decrease the negative log likelihood
of the data set7. The source or class of each data point xi

is known during the training process. The maximization



steps are explained in detail by Render10. The resulting
equations are

P k+1(j) =
1
N

N∑
i=1

P k(j|xi), (7)

where P (k+1)(j) is the mixing coefficient at the (k +1)-th
iteration. N is the total number of samples, and P k(j|xi)
is the posterior probability from class i at the k-th itera-
tion. The mean and the variance are updated by using the
following relations

µk+1
j =

N∑
i=1

P k(j|xi)xi

N∑
i=1

P k(j|xi)
. (8)

(σk+1
j )2 =

1
d

N∑
i=1

P k(j|xi)‖xi − µk+1
j ‖2

N∑
i=1

P k(j|xi)
. (9)

The initialization of the model is performed by the k-
means algorithm. First, a rough clustering is done; and the
number of clusters is determined by the number of printer
models in the training set. Then each data point is assumed
to belong to the closest cluster center. Initial prior proba-
bility, mean, and variances are calculated from these clus-
ters. After that, the iterative part of the algorithm starts by
using Eqs.(7)-(9).

Experimental Results

The feature space is obtained by PCA as described in the
previous section. The model is based on only the first two
principal components (d=2). Model initialization is per-
formed by seven iterations of the k-means algorithm. The
initial parameters are used by the iterative EM algorithm to
get the means and variances of the different classes. The
EM algorithm is terminated by either the number of itera-
tions or by a threshold depending on the amount of change
in the parameters between successive iterations. The clas-
sification is done by majority vote. For each projection
from the unknown printer, the posterior probabilities of all
the classes are determined. The unknown projection be-
longs to the class with highest probability. This operation
is performed with all the projections from the unknown
printer. The class with highest number of votes represents
the model of the unknown printer.

In Table 1, the classification result for five different
printer models is presented. In the printer bank, we have
two printers for each model1. One printer is used for train-
ing; and the other printer is used for testing. The initial
training data set is created by forty projections from each

Table 1: Classification of Five Printers using GMM∗

Class LJ4050 LJ1200 LJ1000 Oki SS CCR
Test (%)

LJ4050 40 0 0 0 0 100
LJ1200 0 25 15 0 0 62.5
LJ1000 0 35 5 0 0 12.5
Oki 0 0 0 40 0 100
SS1450 0 0 0 0 40 100
∗LJ=Laserjet, Oki=Okipage 14e, SS= Samsung ML-1450, and

CCR= Correct Classification Rate

different printer model. Then the sixth printer is added
as an unknown printer to check the performance of the
classifier. Forty projections from each printer are used
for the experiment during training and testing. For ex-
ample, when Laserjet 4050 is tested, the classifier pre-
dicts that all the 40 projections are from the Laserjet 4050
class, i.e. the classification is 100% correct. The Sam-
sung ML-1450 and Okipage 14e are also identified cor-
rectly. Due to the close banding characteristics between
the Laserjet 1200 and Laserjet 1000, the correct classifi-
cation rate is decreased. This result confirms the outcome
from the banding analysis1 and PCA.

Classification and Regression Tree (CART)

A classification tree is a multistage decision process that
uses subsets of features at different levels of the tree. The
construction of the tree involves three steps:

1. Splitting rule selection for each internal node.

2. Terminal node determination.

3. Class label assignment to terminal nodes.

The approach we have used in our experiments is based
on CART11. The Gini criterion is used as the splitting
rule. The terminal nodes are determined when there is
pure class membership. In the printer identification prob-
lem, the class labels of the training printers are known; and
the unknown printer can be given a temporary label. After
the classification process, the class label of the unknown
printer can be determined.

Experimental Results

The CART algorithm also works in the reduced dimension
feature space generated by PCA. At each node the impu-
rity function is defined by the Gini criterion. The algorithm
tries to minimize the node impurity by selecting the opti-
mum splitting. When the node impurity is zero; a terminal
node is reached. When the complete tree is grown in this
manner, it is overfitted. So the tree is pruned by the cross-
validation method.
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Figure 4: Splitting of the projected signal in the principal com-
ponent domain by Gini criterion.

The experimental setup is similar to that for the GMM
classification. Five different printer models are used for
training; and a sixth printer is added as a test printer. Fig-
ure 4 shows the first two splitting on the data set. The first
splitting is done at the value of -0.8473 of the second prin-
cipal component. This split separates the Laserjet 1000
and Laserjet 1200 from the other printers. Similarly a sec-
ond split at -1.15 of the first principal component separates
the Laserjet 4050 from the Okipage 14e and Samsung ML-
1450.

Figure 5 shows the complete grown and pruned tree.
Each terminal node represents an individual printer. The
Laserjet 1000 and Laserjet 1200 have the same parent node
because of the similarities in the banding characteristics.
The training and the test Laserjet 4050 have the same par-
ent. So, the unknown Laserjet 4050 is identified prop-
erly by the tree classifier. The Samsung ML-1450 and the
Okipage 14e are represented by separate terminal nodes.

Conclusion

Printer identification from the text-only document requires
sophisticated techniques based on feature extraction and
pattern recognition. In our work, we presented a method
for reducing the dimension of the data set. This reduced
dimension data set functions as a feature space for the clas-
sifier. We developed two different classifiers based on the
Gaussian mixture model and binary tree. If there is dis-
tinction in the feature space, both classifiers can identify
the unknown printer properly.
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Figure 5: Binary tree structure for classifying an unknown
printer. Five printer models are used in training process.
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