
Secure Multi-Party Computational Geometry

Mikhail J. Atallah and Wenliang Du

Department of Computer Sciences and
Center for Education and Research in Information Assurance and Security

Purdue University
West Lafayette, IN 47907

fmja, duwg@cs.purdue.edu

Abstract. The general secure multi-party computation problem is when
multiple parties (say, Alice and Bob) each have private data (respectively,
a and b) and seek to compute some function f(a; b) without revealing
to each other anything unintended (i.e., anything other than what can
be inferred from knowing f(a; b)). It is well known that, in theory, the
general secure multi-party computation problem is solvable using circuit
evaluation protocols. While this approach is appealing in its general-
ity, the communication complexity of the resulting protocols depend on
the size of the circuit that expresses the functionality to be computed.
As Goldreich has recently pointed out [6], using the solutions derived
from these general results to solve speci�c problems can be impractical;
problem-speci�c solutions should be developed, for eÆciency reasons.
This paper is a �rst step in this direction for the area of computational
geometry. We give simple solutions to some speci�c geometric problems,
and in doing so we develop some building blocks that we believe will be
useful in the solution of other geometric and combinatorial problems as
well.

1 Introduction

The growth of the Internet opens up tremendous opportunities for cooperative
computation, where the answer depends on the private inputs of separate enti-
ties. These computations could even occur between mutually untrusting entities.
The problem is trivial if the context allows the conduct of these computations by
a trusted entity that would know the inputs from all the participants; however if
the context disallows this then the techniques of secure multi-party computation
become very relevant and can provide useful solutions.

In this paper we investigate how various computational geometry problems
could be solved in a cooperative environment, where two parties needs to solve
a geometric problem based on their joint data, but neither wants to disclose its
private data to the other party. Some of the problems we solve in this framework
are:

Problem 1. (Point-Inclusion) Alice has a point z, and Bob has a polygon P .
They what to determine whether z is inside P , without revealing to each other

2 Mikhail J. Atallah et al.

any more than what can be inferred from that answer. In particular, neither of
them allowed to learn such information about the relative position of z and P

as whether z is at the northwest side of P , or whether z is close to one of the
borders of P , etc.

Problem 2. (Intersection) Alice has a polygon A, and Bob has a polygon B; they
both want to determine whether A and B intersect (not where the intersection
occurs).

Problem 3. (Closest Pair) Alice has M points in the plane, Bob has N points in
the plane. Alice and Bob want to jointly �nd two points among these M + N

points, such that their mutual distance is smallest.

Problem 4. (Convex Hulls) Alice has M points in the plane, Bob has N points
in the plane. Alice and Bob want to jointly �nd the convex hulls for theseM+N

points; however, neither Alice nor Bob wants to disclose any more information
to the other party than what could be derived from the result.

Of course all of the above problems, as well as other computational geome-
try problems, are special cases of the general Secure Multi-party Computation
problem [16, 9, 6]. Generally speaking, a secure multi-party computation problem
deals with computing a function on any input, in a distributed network where
each participant holds one of the inputs, ensuring that no more information is
revealed to a participant in the computation than can be computed from that
participant's input and output.

In theory, the general secure multi-party computation problem is solvable us-
ing circuit evaluation protocol [16, 9, 6]. While this approach is appealing in its
generality, the communication complexity of the protocol it generates depends
on the size of the circuit that expresses the functionality F to be computed, and
in addition, involves large constant factors in their complexity. Therefore, as
Goldreich points out in [6], using the solutions derived by these general results
for special cases of multi-party computation can be impractical; special solu-
tions should be developed for special cases for eÆciency reasons. This is a good
motivation for seeking special solutions to computational geometry problems,
solutions that are more eÆcient than the general theoretical solutions.

Due to page limitations, we include detailed solutions to only two of the above
problems: point-inclusion problem and intersection problem. Our work assumes
that all parties are semi-honest; informally speaking, a semi-honest party is one
who follows the protocol properly with the exception that it keeps a record of
all its intermediate computations and might try to derive other parties' private
inputs from the record. We also assume that adding a random number to an x

e�ectively hides x. The assumption is known to be true in a �nite �eld, in the
in�nite case, our protocols can be considered heuristic or approximation.

1.1 Related Work

The history of the multi-party computation problem is extensive since it was
introduced by Yao [16] and extended by Goldreich, Micali, and Wigderson [9],

Lecture Notes in Computer Science 3

and by many others. These works use a similar methodology: each functionality
F is represented as a Boolean circuit, and then the parties run a protocol for
every gate in the circuit. While this approach is appealing in its generality and
simplicity, the protocols it generates depend on the size of the circuit. This
size depends on the size of the input and on the complexity of expressing F as a
circuit. If the functionality F is complicated, using the circuit evaluation protocol
will typically not be practical. However, if F is a simple enough functionality,
using circuit a evaluation protocol can be practical.

The existing protocols listed below serve as important building blocks in our
solutions. Our paper [5] contains some primitives for general scienti�c problems,
that could be used as subroutines by some of our computations (as special cases),
however the next section will give better solutions for the special cases that we
need than the general ones given in [5] (more on this later).

The Circuit Evaluation Protocol In a circuit evaluation protocol, each func-
tionality is represented by a Boolean circuit, and the construction takes this
Boolean circuit and produces a protocol for evaluating it. The protocol scans
the circuit from the input wires to the output wires, processing a single gate in
each basic step. When entering each basic step, the parties hold shares of the
values of the input wires, and when the step is completed they hold shares of
the output wire.

1-out-of-N Oblivious Transfer Goldreich's circuit evaluation protocol uses
the 1-out-of-N Oblivious Transfer, and our protocols in this paper also heavily
depends on this protocol. An 1-out-of-N Oblivious Transfer protocol [7, 4] refers
to a protocol where at the beginning of the protocol one party, Bob has N inputs
X1; : : : ; XN and at the end of the protocol the other party, Alice, learns one of
the inputs Xi for some 1 � i � N of her choice, without learning anything
about the other inputs and without allowing Bob to learn anything about i. An
eÆcient 1-out-of-N Oblivious Transfer protocol was proposed in [11] by Naor
and Pinkas. By combining this protocol with the scheme by Cachin, Micali and
Stadler [8], the 1-out-of-N Oblivious Transfer protocol could be achieved with
polylogarithmic (in n) communication complexity.

Homomorphic Encryption Schemes

We need a public-key cryptosystems with a homomorphic property for some of
our protocols: Ek(x)�Ek(y) = Ek(x+y). Many such systems exist, and examples
include the systems by Benaloh [2], Naccache and Stern [10], Okamoto and
Uchiyama [13], Paillier [14], to mention a few. A useful property of homomorphic
encryption schemes is that an \addition" operation can be conduced based on
the encrypted data without decrypting them.

4 Mikhail J. Atallah et al.

Yao's Millionaire Problem

This is another protocol used as a primitive in our solutions; The purpose of
the protocol is to compare two private numbers (i.e., determine which is larger).
This private comparison problem was �rst proposed by Yao [15] and is referred
as Yao's Millionaire Problem (because two millionaires wish to know who is
richer, without revealing any other information about their net worth). The
early cryptographic solution by Yao [15] has communication complexity that is
exponential in the number of bits of the numbers involved, using an untrusted
third party. Cachin proposed a solution [3] based on the �-hiding assumption.
His protocol uses an untrusted third party that can misbehave on its own (for the
purpose of illegally obtaining information about Alice's or Bob's private vectors)
but does not collude with either participant. The communication complexity of
Cachin's scheme is O(`), where ` is the number of bits of each input number.

2 New Building Blocks

In this section, we introduce two secure two-party protocols, a scalar product
protocol, and a vector dominance protocol. Apart from serving as building blocks
in solving the secure two-party computational geometry problems considered
later in the paper, these two protocols are of independent interest and will be
useful in solving other problems as well.

2.1 Scalar Product Protocol

Our paper [5] contains a matrix product protocol that could be used for scalar
product (as a special case), but the scalar product protocol given below is better
than using the general matrix multiplication protocol. We use X � Y to denote
the scalar product of two vectors X = (x1; : : : ; xn) and Y = (y1; : : : ; yn), X �Y =Pn

k=1 xkyk. Our de�nition of the problem is slightly di�erent more general: We
assume that Alice has the vector X and Bob has the vector Y , and the goal
of the protocol is for Alice (but not Bob) to get X � Y + v where v is random
and known to Bob only (of course without either side revealing to the other the
private data they start with). Our protocols can easily be modi�ed to work for
the version of the problem where the random v is given ahead of time as part
of Bob's data (the special case v = 0 puts us back in the usual scalar product
de�nition). The purpose of Bob's random v is as follows: If X � Y is a partial
result that Alice is not supposed to know, then giving her X � Y + v prevents
Alice from knowing the partial result (even though the scalar product has in fact
been performed); later, at the end of the multiple-step protocol, the e�ect of v
can be e�ectively \subtracted out" by Bob without revealing v to Alice (this
should become clearer with example protocols that we later give).

Problem 5. (Scalar Product Problem) Alice has a vector X = (x1; : : : ; xn) and
Bob has a vector Y = (y1; : : : ; yn). Alice (but not Bob) is to get the result of
u = X � Y + v where v is a random scalar known to Bob only.

We have developed two protocols, and we will present both of them here.

Lecture Notes in Computer Science 5

Scalar Product Protocol 1 Consider the following naive solution: Alice sends
p vectors to Bob, only one of which is X (the others are arbitrary). Then Bob
computes the scalar products between Y and each of these p vectors. At the
end Alice uses the 1-out-of-N oblivious transfer protocol to get back from Bob
the product of X and Y . Because of the way oblivious transfer protocol works,
Alice can decide which scalar product to get, but Bob could not learn which one
Alice has chosen. There are many drawbacks to this approach: If the value of X
has certain public-known properties, Bob might be able to di�erentiate X from
the other p� 1 vectors, but even if Bob is unable to recognize X his chances of
guessing it is an unacceptably low 1 out of p.

The above drawbacks can be �xed by dividing vector X into m random
vectors V1; : : : ; Vm of which it is the sum, i.e., X =

Pm
i=1 Vi. Alice and Bob can

use the above naive method to compute Vi � Y + ri, where ri is random number
and

Pn
i=1 ri = v (see Figure 1). As a result of the protocol, Alice gets Vi �Y + ri

for i = 1; : : : ;m. Because of the randomness of Vi and its position, Bob could
not �nd out which one is Vi. Certainly, there is 1 out p possibility that Bob
can guess the correct Vi, but since X is the sum of m such random vectors, the
chance that Bob guesses the correct X is 1 out pm, which could be very small if
we chose pm large enough.

x = v1+v2+v3+v4

v3v2 v4v1

v1 y+r1, v2 y+r2,

v3 y+r3,

v4

v1

v2

v3

Alice Bob
private input: x private input y

among random numbers

v4 y+r4

Alice gets: x y + r1) + (v2 y + r2) + (v3 y + r3) + (v4 y + r4)

hiding v1,v2,v3,v4

y + v = (v1

1−out−of−N
Oblivious Transfer

Fig. 1. Scalar Product Protocol 1

After Alice gets Vi �Y +ri for i = 1; : : : ; n, she can compute
Pm

i=1(Vi �Y +ri)
= X � Y + v. The detailed protocol is described in the following:

Protocol 1 (Two-Party Scalar Product Protocol 1)
Inputs: Alice has a vector X = (x1; : : : ; xn), and Bob has a vector Y =
(y1; : : : ; yn).

6 Mikhail J. Atallah et al.

Outputs: Alice (but not Bob) gets X �Y +v where v is a random scalar known
to Bob only.

1. Alice and Bob agree on two numbers p and m, such that pm is so large that
conducting pm additions is computationally infeasible.

2. Alice generates m random vectors, V1; : : : ; Vm, such that X =
Pm

j=1 Vi.

3. Bob generates m random numbers r1; : : : ; rm such that v =
Pm

j=1 rj .
4. For each j = 1; : : : ;m, Alice and Bob conduct the following sub-steps:

(a) Alice generates a secret random number k, 1 � k � p.
(b) Alice sends (H1; : : : ; Hp) to Alice, where Hk = Vj , and the rest of Hi's

are random vectors. Because k is a secret number known only to Alice,
Bob does not know the position of Vj .

(c) Bob computes Zj;i = Hi � Y + rj for i = 1; : : : ; p.
(d) Using the 1-out-of-N Oblivious Transfer protocol, Alice gets Zj= Zj;k=

Vj � Y + rj , while Bob learns nothing about k.

5. Alice computes u =
Pm

j=1 Zj = X � Y + v.

How is privacy achieved:

{ If Bob chooses to guess, his chance of guessing the correct X is pm.
{ The purpose of rj is to add randomness to Vj �Y , thus preventing Alice from
deriving information about Y .

Scalar Product Protocol 2 In the following discussion, we de�ne �(X) as
another vector whose elements are random permutation of those of vector X .

We begin with two observations. First, a property of the scalar product X �Y
is that �(X) � �(Y) = X � Y , regardless of what � is. Secondly, if Bob sends a
vector �(V) to Alice, where � and V are known only to Bob, Alice's chance of
guessing the position of any single element of the vector V is 1 out of n (n is the
size of the vector); Alice's chance of guessing the positions of all of the elements
of the vector V is 1 out of n!.

A naive solution would be to let Alice get both �(X) and �(Y) but not �.
Let us ignore for the time being the drawback that Alice gets the items of Y
in permuted order, and let us worry about not revealing � to Alice: Letting
Alice know �(X) allows her to easily �gure out the permutation function � from
knowing both X and �(X). In order to avoid this problem, we want to let Alice
know only �(X +Rb) instead of �(X), where Rb is a random vector known only
to Bob. Because of the randomness of X + Rb, to guess the correct �, Alice's
chance is only 1 out of n!. Therefore to get the �nal scalar product, Bob only
needs to send �(Y) and the result of Rb �Y to Alice, who can compute the result
of the scalar product by using

X � Y = �(X +Rb) � �(Y)�Rb � Y

Now we turn our attention to the drawback that giving Alice �(Y) reveals
too much about Y (for example, if Alice is only interested in a single element

Lecture Notes in Computer Science 7

of the vector Y , her chance of guessing the right one is an unacceptably low 1
out of n). One way to �x this is to divide Y to m random pieces, V1; : : : ; Vm,
with Y = V1+ : : :+Vm; then Bob generates � random permutations �1; : : : ; �m
(one for each \piece" Vi of Y) and lets Alice know �i(Vi) and �i(X + Rb) for
i = 1; : : : ;m. Now in order to guess the correct value of a single element of Y ,
Alice has to guess the correct position of Vi in each one of the m rounds; the
possibility of a successful guessing becomes 1 out of nm.

Now, let us consider the unanswered question: how could Alice get �(X+Rb)
without learning � or Rb? We do this with a technique based on a homomor-
phic public key system, that was used in [1] in a di�erent context (to compute
the minimum value in a vector that is the di�erence of Alice's private vector
and Bob's private vector). Recall that an encryption scheme is homomorphic if
Ek(x)�Ek(y) = Ek(x+y). A good property of homomorphic encryption schemes
is that \addition" operation can be conduced based on the encrypted data with-
out decrypting them. Based on the homomorphic public key system, we have the
following Permutation Protocol (where, for a vector Z = (z1; : : : ; zn), we de�ne
E(Z) = (E(z1); : : : ; E(zn)), D(Z) = (D(z1); : : : ; D(zn))):

Protocol 2 (Permutation Protocol)
Inputs: Alice has a vector X . Bob has a permutation � and a vector R.
Output: Alice gets �(X +R).

1. Alice generates a key pair for a homomorphic public key system and sends the
public key to Bob. The corresponding encryption and decryption is denoted
as E(�) and D(�).

2. Alice encrypts X = (x1; : : : ; xn) using her public key and sends E(X) =
(E(x1); : : : ; E(xn)) to Alice.

3. Bob computes E(R), then computes E(X) � E(R) = E(X + R); Bob then
permutes E(X +R) using the random permutation function �, thus getting
�(E(X +R)); Bob sends the result of �(E(X +R)) to Alice.

4. Alice computes D(�(E(X +R))) = �(D(E(X +R))) = �(X +R).

Based on Secure Two-Party Permutation Protocol, we have developed the
following scalar product protocol:

Protocol 3 (Secure Two-Party Scalar Product Protocol 2)
Inputs: Alice has a secret vector X , Bob has a secret vector Y .
Output: Alice gets X � Y + v where v is a random scalar known to Bob

only.

1. Bob's set up:
(a) Bob divides Y to m random pieces, s.t. Y = V1 + : : :+ Vm.
(b) Bob generates m random vectors R1; : : : ; Rm, let v =

Pm
i=1 Vi �Ri.

(c) Bob generates m random permutations �1; : : : ; �m.
2. For each i = 1; :::;m, Alice and Bob do the following:

(a) Using Secure Two-Party Permutation Protocol, Alice gets �i(X + Ri)
without learning either �i or Ri.

8 Mikhail J. Atallah et al.

(b) Bob sends �i(Vi) to Alice.
(c) Alice computes Zi = �i(Vi) � �i(X +Ri) = Vi �X + Vi �Ri

3. Alice computes u =
Pm

i=1 Zi =
Pm

i=1 Vi �X +
Pm

i=1 Vi � Ri = X � Y + v

How is privacy achieved:

{ The purpose of Ri is to prevent Alice from learning �i.
{ The purpose of �i is to prevent Alice from learning Vi. Although Alice learns
a random permutation of the Vi, she does not learn more because of the
randomness of Vi. Without �i, Alice could learn each single value of Vi.

{ If Alice chooses to guess, in order to successfully guess all of the elements in
Y , her chance is (1

n!
)m.

{ Alice's chance of successfully guessing just one elements of Y is nm. For
example, in order to guess the kth element of Y , Alice has to guess the the
corresponding elements in �i(Vi) for all i = 1; : : : ;m; for each i, the chance
is 1

n
.

{ A drawback of this protocol is that the information about
Pn

i=1 yi is disclosed
because the random permutation does not help to hide this information.

Comparison of These Two Protocols The communication cost of Protocol 3
is 4m � n, where m is a security parameter (so that �0 = nm is large enough).
The communication cost of Protocol 1 is p � t �n, where p � 2 and t are security
parameters such that �00 = pt is large enough. Setting �0 = �00 = � for the
sake of comparison, the communication cost of Protocol 3 is 4 log� n

logn
and the

communication cost of Protocol 1 is p log�
log p

n. When n is large, Protocol 3 is more
eÆcient than Protocol 1.

2.2 Secure Two-Party Vector Dominance Protocol

De�nition 1 (Vector Dominance) Let A = (a1; : : : ; an) and B = (b1; : : : ; bn); if
for all i = 1; : : : ; n we have ai > bi, then we say that A dominates B and denote
it by A � B.

Problem 6. (Secure Two-Party Vector Dominance Problem) Alice has a vector
A = (a1; : : : ; an) and Bob has a vector B = (b1; : : : ; bn). Alice wants to know
whether A dominates B. Note in the case where A does not dominate B, neither
Alice nor Bob should learn the relative ordering of any individual ai; bi pair (i.e.,
whether ai < bi or not).

The Protocol We �rst give an outline of the protocol, then discuss each step
in details.

Protocol 4 (Secure Two-Party Vector Dominance Protocol)
Inputs: Alice has a vector A = (a1; : : : ; an), Bob has a vector B = (b1; : : : ; bn).

Lecture Notes in Computer Science 9

1. Inputs Disguise: Using a disguise technique (described later), Alice gets the
disguised input A0 = (a0

1; : : : ; a
0

4n), and Bob gets the disguised input B0 =
(b0

1; : : : ; b
0

4n). Let VA

VA = (

2nz }| {
1; : : : ; 1;

2nz }| {
0; : : : ; 0)

2. Private Permutation: Bob generates a random permutation � and a random
vector R. Using the Permutation Protocol (Protocol 2), Alice gets A00 =
�(A0 +R). Bob also computes B00 = �(B0 +R), V 0

A = �(VA).
3. Yao's Millionaire Comparison: Alice and Bob use Yao's Millionaire protocol

as subroutine to compare A00

i with B00

i , for i = 1; : : : ; 4n, where A00

i (resp.,
B00

i) is the ith element of vector A00 (resp., B00). At the end, Alice gets the
result U = fu1; : : : ; u4ng, where ui = 1 if A00

i > B00

i , otherwise ui = 0.
4. Dominance Testing: Alice and Bob use a private equality-testing protocol to

compares U with V 0

A: If U = V 0

A, then A dominates B; otherwise, A does not
dominate the B. (Note: when we later use this protocol for the intersection
protocol, this step must be skipped.)

Outputs: If the Dominance Testing step needs to be skipped, Alice outputs
U and Bob outputs V 0

A. Otherwise, Alice and Bob each output the dominance
testing results.

Step 1: Inputs Disguise

For convenience, we assume ai and bi for i = 1; : : : ; n are integers; however
our scheme can be easily extended to the non-integer case. The disguised inputs
are the followings:

A0 = (2a1; : : : ; 2an; (2a1 + 1); : : : ; (2an + 1);

� 2a1; : : : ;�2an;�(2a1 + 1); : : : ;�(2an + 1)) (1)

B0 = ((2b1 + 1); : : : ; (2bn + 1); 2b1; : : : ; 2bn;

� (2b1 + 1); : : : ;�(2bn + 1);�2b1; : : : ;�2bn) (2)

The purpose of the inputs disguise is to get the same number of a0

i > b0

i situations
as that of a0

i < b0

i situations; therefore, nobody knows how many ai's are larger
than bi's and vice versa. The disguise is based on the fact that if ai > bi, then
2ai > 2bi+1, (2ai +1) > 2bi, �2ai < �(2bi+1), and �(2ai +1) < �2bi, which
generates two >'s, and two <'s.
Step 2: Private Permutation: This step is fully discussed in Secure Two-
Party Permutation Protocol (Protocol 2).
Step 3: Yao's Millionaire Comparison

Alice now has A00 = �(A0 + R) = (a00

1 ; : : : ; a
00

4n), Bob has B00 = �(B0 + R) =
(b00

1 ; : : : ; b
00

4n). They can use Yao's Millionaire Protocol to compare each a00

i with
b00

i . Actually it is an one-side (asymmetric) version of it because only Alice learns
the result. So at the end of this step, Alice gets U = (u1; : : : ; u4n), where for
i = 1; : : : ; 4n, ui = 1 if a0

i > b0

i, otherwise ui = 0.
Step 4: Dominance Testing

10 Mikhail J. Atallah et al.

Because VA is exactly what U should be if vector A dominates B, we only
need to �nd out whether U = VA. Alice cannot just send U to Bob because it will
allow Bob to �nd out the relationship between ai and bi for each i = 1; : : : ; n. So
we need a way for Alice and Bob to determine whether Alice's U equals Bob's
VA without disclosing each person's private input to the other person.

This comparison problem is well studied, and was thoroughly discussed by
Fagin, Naor, and Winkler [12]. Several methods for it were discussed in [12, 11].
For example, the following is part of the folklore:

Protocol 5 (Equality-Testing Protocol)
Inputs: Alice has U , Bob has VA.
Outputs: U = VA i� EB(EA(U)) = EA(EB(VA)).

1. Alice encrypts U with a commutative encryption scheme, and gets EA(U);
Alice sends EA(U) to Bob.

2. Bob encrypts EA(U), and gets EB(EA(U)); Bob sends the result back to
Alice.

3. Bob encrypts VA, gets EB(VA); Bob sends EB(VA) to Alice.
4. Alice encrypts EB(VA), gets EA(EB(VA)).
5. Alice compares EB(EA(U)) with EA(EB(VA)).

3 Secure Two-Party Geometric Computations

In the following, we want to illustrate how the building blocks we studied earlier
can be put together to solve geometric problems. Many other geometric problems
are amenable to such solutions; and in fact we suspect that the solutions we give
below can be further improved.

3.1 Secure Two-Party Point-Inclusion Problem

We will look at how the point-location problem is solved in a straightforward
way without worrying about the privacy concern. The computation cost of this
straightforward solution is O(n). Although we know the computation cost of the
best algorithm for the point-location problem is only O(logn), we are concerned
that the \binary search" nature of that solution might lead to the disclosure of
partial information. Therefore, for a preliminary result, we focus on the O(n)
solution. The algorithm works as follows:

1. Find the leftmost vertex l and the rightmost vertex r of the polygon.
2. Decide whether the point p = (�; �) is above all the edges on the lower

boundary of the polygon between l and r.
3. Decide whether the point � is below all the edges on the upper boundary of

the polygon between l and r.
4. If the above two tests are both true, then the point is inside the polygon,

otherwise it is outside (or on the edge) of the polygon.

Lecture Notes in Computer Science 11

If we use fi(x; y) = 0 for the equation of the line boundary of the polygon,
where fi(x; y) = 0 for i = 1; : : : ;m represent the edges on the lower part of the
boundary and fi(x; y) = 0 for i = m+1; : : : ; n represent the edges on the upper
part of the boundary, then our goal is to decide whether fi(�; �) > 0 for all
i = 1; : : : ;m and fi(�; �) < 0 for all i = m+ 1; : : : ; n.

The Protocol First, we need to �nd a way to compute fi(�; �) without dis-
closing Alice's p : (�; �) to Bob or Bob's fi to Alice. Moreover, no party should
learn the result of fi(�; �) for any i because that could disclose the relationship
between the location and the edge. Since fi(�; �) is a special case of scalar prod-
uct, we can use Secure Two-Party Scalar Product Protocol to solve this problem.
In this protocol, we will let both party share the result of fi(�; �), namely, one
party will have ui, the other party will have vi, and ui = fi(�; �) + vi; therefore
nobody learns the value of fi(�; �), but they can �nd out whether fi(�; �) > 0
by comparing whether ui > vi, which could be done using Yao's Millionaire
Protocol [15, 3].

However, we cannot use Yao's Millionaire Protocol for each (ui; vi) pair in-
dividually because that would disclose the relationship between ui and vi, thus
reveal too much information. In fact, all we want to know is whether (u1; : : : ; un)
dominates (v1; : : : ; vn). This problem can be solved using the Vector Dominance
Protocol (Protocol 4)

Based on the Scalar Product Protocol and Vector Dominance Protocol, we
have the following Secure Two-Party Point-Inclusion Protocol:

1. Bob generates n random numbers v1; : : : ; vn.
2. Alice and Bob use Scalar Product Protocol to compute ui = fi(�; �) + vi,

for i = 1; : : : ;m and compute ui = �fi(�; �) + vi for i = m + 1; : : : ; n.
According to the scalar product protocol, Alice will get (u1; : : : ; un) and
Bob will get (v1; : : : ; vn). Bob will learn nothing about ui and (�; �); Alice
will learn nothing about vi and the function fi(x; y).

3. Alice and Bob use the Vector Dominance Protocol to �nd out whether vec-
tor A = (u1; : : : ; un) dominates B = (v1; : : : ; vn). According to the Vector
Dominance Protocol, if A does not dominate B, no other information is
disclosed.

Claim. If A = (u1; : : : ; un) dominates B = (v1; : : : ; vn), then the point p = (�; �)
is inside the polygon; otherwise, the point is outside (or on the edge) of the
polygon.

3.2 Secure Two-Party Intersection Problem

Two polygons intersect if (1) one polygon is inside another, or (2) at least one
edge of a polygon intersects with one edge of another polygon. Since (1) can be
decided using the Point-Inclusion Protocol, we only focus on (2).

We will �rst look at how the intersection problem could be solved in a
straightforward way (O(n2)) without worrying about the privacy concern. For

12 Mikhail J. Atallah et al.

the same reason we decide not to use the more eÆcient O(n) algorithm because
of the concern about the partial information disclosure. The algorithm works as
follows:

1. For each pair (ei; e
0

j), decide whether ei intersects with ej , where ei is an
edge of polygon A and e0

j is an edge of polygon B,
2. If there exists an edge ei 2 A and an edge e0

j 2 B, such that ei intersects
with e0

j , then A and B intersect.

We use fi(x; y); (xi; yi); (x
0

i; y
0

i), for i = 1; : : : ; na, to represent each edge of
the polygon A, where fi(x; y) is the equation of the line containing that edge,
(xi; yi) and (xi; yi) represents the two endpoints of the edge. We use gi(x; y), for
i = 1; : : : ; nb, to represent each edge of the polygon B.

The Protocol During the testing of whether two edges intersect with each
other, obviously, nobody should learn the result of each individual test; other-
wise, he knows which of his edge intersects with the other party's polygon. In
our scheme, Alice and Bob conduct these n2 testings, but nobody knows the
result of each individual test, instead, they share the results of each test, namely
each of them gets a seemly-random piece of the result. One has to obtain both
pieces in order to know the result of each test. At the end, all these shared pieces
are put together in a way that only a single result is generated, to show only
whether the two polygon boundaries intersect or not.

First, let us see how to conduct such a secure two-party testing of the inter-
section. Assume Alice has a edge f1(x; y) = 0, where f1(x; y) = a1x+ b1y + c1,
and a1 � 0; the two endpoints of the edge are (x1; y1) and (x

0

1; y
0

1). Bob has a line
f2(x; y) = 0, where f2(x; y) = a2x + b2y + c2, a2 � 0; the two endpoints of the
edge are (x2; y2) and (x0

2; y
0

2). According to the geometries, f1 and f2 intersect
if and only if f1's two endpoints (x1; y1), (x

0

1; y
0

1) are on the di�erent sides of f2,
and f2's two endpoints (x2; y2) and (x0

2; y
0

2) are on the di�erent sides of f1. In
another words, f1 and f2 intersect if and only if one of the following expressions
is true:

{ f1(x2; y2) > 0 ^ f1(x
0

2; y
0

2) < 0 ^ f2(x1; y1) > 0 ^ f2(x
0

1; y
0

1) < 0
{ f1(x2; y2) > 0 ^ f1(x

0

2; y
0

2) < 0 ^ f2(x1; y1) < 0 ^ f2(x
0

1; y
0

1) > 0
{ f1(x2; y2) < 0 ^ f1(x

0

2; y
0

2) > 0 ^ f2(x1; y1) > 0 ^ f2(x
0

1; y
0

1) < 0
{ f1(x2; y2) < 0 ^ f1(x

0

2; y
0

2) > 0 ^ f2(x1; y1) < 0 ^ f2(x
0

1; y
0

1) > 0

We cannot let either party know the results of f1(x2; y2), f1(x
0

2; y
0

2), f2(x1; y1),
or f2(x

0

1; y
0

1) (in the following discussion, we will use f(x; y) to represent any of
these expressions). According to the Scalar Product Protocol, we can let Alice
know the result of f(x; y) + r, and let Bob know r, where r is a random num-
ber generated by Bob. Therefore, nobody knows the actual value of f(x; y), but
Alice and Bob can still �gure out whether f(x; y) > 0 by comparing f(x; y) + r

with r.
Let u1 = f1(x2; y2) + r1, u

0

1 = f1(x
0

2; y
0

2) + r0

1, u2 = f2(x1; y1) + r2, and
u0

2 = f2(x
0

1; y
0

1) + r0

2. Alice has (u1; u
0

1; u2; u
0

2) and Bob has (r1; r
0

1; r2; r
0

2). Then
f1 and f2 intersect if and only if one of the following expressions is true:

Lecture Notes in Computer Science 13

{ u1 > r1 ^ u
0

1 < r0

1 ^ u2 > r2 ^ u
0

2 < r0

2

{ u1 > r1 ^ u
0

1 < r0

1 ^ u2 < r2 ^ u
0

2 > r0

2

{ u1 < r1 ^ u
0

1 > r0

1 ^ u2 > r2 ^ u
0

2 < r0

2

{ u1 < r1 ^ u
0

1 > r0

1 ^ u2 < r2 ^ u
0

2 > r0

2

Our next step is to compute each of the above expressions. As before, nobody
should learn the individual comparison results, just the aggregate. Let us useE to
denote any one of the above expressions. Using the Vector Dominance Protocol,
we can get Alice to know a random piece t, and Bob to know another random
piece s, such that E is true if and only if t = s.

Now Alice has 4 �n2 numbers (t1; : : : ; t4n2), Bob has (s1; : : : ; s4n2). We want
to know whether there exists an i = 1; : : : ; 4n2, such that ti = si. Although there
are some other approaches to achieve this, we believe using the circuit evaluation
protocol is eÆcient in this case, because the size of the circuit is small (linear
in the number of the items). The security of the circuit evaluation protocol
guarantees that only the �nal results{yes or no{will be disclosed; nobody learns
any other information, such as how many ti's equal to si's, and which ti = si.

The following is the outline of the protocol:

1. Let m = na � nb.
2. For each pair of edges, perform the following sub-protocol. Suppose the index

of this edge pair is i, for i = 1; : : : ;m; suppose (f; (x1; y1); (x
0

1; y
0

1)) 2 A and
(g; (x2; y2); (x

0

2; y
0

2)) 2 B are two edges.
(a) Using the scalar product protocol, Alice gets U = (u1; u

0

1; u2; u
0

2), and
Bob gets R = (r1; r

0

1; r2; r
0

2), where u1 = f(x2; y2) + r1, u
0

1 = f(x0

2; y
0

2) +
r0

1, u2 = g(x1; y1) + r2, and u0

2 = g(x0

1; y
0

1) + r0

2.
(b) Using the Vector Dominance Protocol, Alice gets ti;1; ti;2; ti;3; ti;4, and

Bob gets si;1; si;2; si;3; si;4
3. Alice has (t1;1; t1;2; t1;3; t1;4; : : : ; tm;1; tm;2; tm;3; tm;4), and Bob has (s1;1; s1;2;

s1;3; s1;4; : : : ; sm;1; sm;2; sm;3; sm;4). Alice and Bob uses circuit evaluation
method to �nd out whether there exists i 2 f1; : : : ;mg, j 2 f1; : : : ; 4g, such
that ti;j = si;j .

4 Applications

The following two scenarios describe some potential applications of the problems
we have discussed in this paper.

1. Company A decided that expanding its market share in some region will
be very bene�cial after a costly market research; therefore A is planning to
do this. However A is aware of that another competing company B is also
planning to expand its market share in some region. Strategically, A and B

do not want to compete against each other in the same region, so they want
to know whether they have a region of overlap? Of course, they do not want
to give away location information because not only does this information
cost both companies a lot of money, but it can also cause signi�cant damage

14 Mikhail J. Atallah et al.

to the company if it were disclosed to other parties: for example, a larger
competitor can immediately occupy the market there before A or B even
starts; or some real estate company can actually raise their price during the
negotiation if they know A or B is very interested in that location. Therefore,
they need a way to solve the problem while maintaining the privacy of their
locations.

2. A country decides to bomb a location x in some other country; however, A
does not want to hurt its relationship with its friends, who might have some
areas of interests in the bombing region: for example, those countries might
have secret businesses, secret military bases, or secret agencies in that area.
Obviously, A does not want to disclose the exact location of x to all of its
friends, except the one who will de�nitely be hurt by this bombing; on the
other hand, its friends do not want to disclose their secret areas to A either,
unless they are in the target area. How could they solve this dilemma? If each
secret area is represented by a secret polygon, the problem becomes how to
decide whetherA's secret point is within B's polygon, whereB represents one
of the friend countries. If the point is not within the polygon, no information
should be disclosed, including the information such as whether the location is
at the west of the polygon, or within certain longitude or latitude. Basically
it is \all-or-nothing": if one will be bombed, it knows all; otherwise it knows
nothing.

5 Conclusions and Future Work

In this paper, we have considered several secure two-party computational geom-
etry problems and presented some preliminary work for solving such problems.
For the purpose of doing so, we have also presented two useful building blocks,
Secure Two-Party Scalar Product Protocol and Secure Two-Party Vector Dom-
inance Protocol.

In the protocols for the Point-Inclusion problem and the Intersection problem,
we use an ineÆcient algorithm to decide whether a point is side a polygon (or
whether two polygon intersect) although more eÆcient solutions exist, because
of the concern about information disclosure. In our future work, we will study
how to take advantage of those eÆcient solutions without degrading the privacy.

References

1. Wenliang Du, Mikhail J. Atallah and Florian Kerschbaum. Protocols for secure
remote database access with approximate matching. Technical report, 2001.

2. J. Benaloh. Dense probabilistic encryption. In Proceedings of the Workshop on

Selected Areas of Cryptography, pages 120{128, Kingston, ON, May 1994.

3. C. Cachin. EÆcient private bidding and auctions with an oblivious third party. In
Proceedings of the 6th ACM conference on Computer and communications security,
pages 120{127, Singapore, November 1-4 1999.

Lecture Notes in Computer Science 15

4. G. Brassard, C. Cr�epeau and J. Robert. All-or-nothing disclosure of secrets. In
Advances in Cryptology - Crypto86, Lecture Notes in Computer Science, volume
234-238, 1987.

5. Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative scienti�c
computations. In 14th IEEE Computer Security Foundations Workshop, Nova
Scotia, Canada, June 11-13 2001.

6. O. Goldreich. Secure multi-party computation (working draft). Available from
http://www.wisdom.weizmann.ac.il/home/oded/public html/ foc.html, 1998.

7. S. Even, O. Goldreich and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28:637{647, 1985.

8. C. Cachin, S. Micali and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. Advances in Cryptology: EUROCRYPT '99,

Lecture Notes in Computer Science, 1592:402{414, 1999.
9. O. Goldreich, S. Micali and A. Wigderson. How to play any mental game. In

Proceedings of the 19th annual ACM symposium on Theory of computing, pages
218{229, 1987.

10. D. Naccache and J. Stern. A new cryptosystem based on higher residues. In Pro-

ceedings of the 5th ACM Conference on Computer and Communications Security,
pages 59{66, 1998.

11. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation (extended
abstract). In Proceedings of the 31th ACM Symposium on Theory of Computing,
pages 245{254, Atanta, GA, USA, May 1-4 1999.

12. R. Fagin, M. Naor and P. Winkler. Comparing information without leaking it.
Communication of the ACM, 39:77{85, 1996.

13. T. Okamoto and S. Uchiyama. An eÆcient public-key cryptosystem. In Advances

in Cryptology { EUROCRYPT 98, pages 308{318, 1998.
14. P. Paillier. Public-key cryptosystems based on composite degree residue classes.

In Advances in Cryptology { EUROCRYPT 99, pages 223{238, 1999.
15. A.C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual

IEEE Symposium on Foundations of Computer Science, 1982.
16. A.C. Yao. How to generate and exchange secrets. In Proceedings 27th IEEE

Symposium on Foundations of Computer Science, pages 162{167, 1986.

