
Experimental Comparison of Peer-to-Peer
Streaming Overlays: An Application Perspective

Jeff Seibert, David Zage, Sonia Fahmy, Cristina Nita-Rotaru
Department of Computer Science, Purdue University

E-mail: {jcseiber, zagedj, fahmy, crisn}@cs.purdue.edu

Abstract—Peer-to-peer streaming systems are becoming highly
popular for IP Television (IPTV). Most systems can be catego-
rized as either tree-based or mesh-based, and as either push-
based or pull-based. However, there is a lack of clear understand-
ing of how these different mechanisms perform comparatively in
a real-world setting. In this paper, we compare two representative
streaming systems using mesh-based and multiple tree-based
overlay routing through deployments on the PlanetLab wide-
area experimentation platform. To the best of our knowledge,
this is the first study to directly compare streaming overlay
architectures in real Internet settings. Our results indicate that
mesh-based systems inject a much higher number of duplicate
packets into the network, but they perform better under a variety
of conditions. In particular, mesh-based systems give consistently
higher application goodput when the number of overlay nodes,
or the streaming rates increase. They also perform better under
churn and large flash crowds. Their performance suffers when
latencies among peers are high, however. Overall, mesh-based
systems appear to be a better choice than multi-tree based
systems for peer-to-peer streaming at a large scale.

I. INTRODUCTION

In recent years, there has been an explosion of interest
in peer-to-peer (P2P) streaming of audio and video in real-
time [1], [2], [3], [4], [5]. Most streaming systems for IP
Television (IPTV) utilize an overlay (application-level) mul-
ticast group where peers receiving a stream can serve as
proxies that forward content to other peers. A number of
studies have suggested and implemented a variety of overlay
designs [6], [7], [8], [9], [10] to meet the stringent demands of
the commercial market, replacing network-layer (IP) multicast.

Internet streaming has different requirements [11] from
other P2P applications (e.g., file sharing, video-on-demand),
making the design of overlay networks for such applications
a challenging task. Streaming imposes stringent real-time re-
quirements on throughput and latency. Specifically, streaming
applications must sustain throughputs that ensure high quality
of video and audio, while providing simultaneous support for
a large number of participants with dynamic changes in group
membership. In addition, data has to meet deadlines to ensure
smooth playback of the content in real-time.

Two architectures for Internet streaming have emerged in
recent years: tree-based and mesh-based architectures. A tree-
based streaming overlay constructs a tree where the source
broadcasting the stream is the root of the tree and every other
peer in the network is a child of either the source or another
peer. Data simply flows down the tree to all participating
members. An example of a tree-based multicast overlay is

ESM [12]. However, in a single tree-based routing topology,
leaf nodes do not forward data, leading to an imbalance in the
load on the peers. To address this limitation, recent research
has introduced multi-tree overlays. Such systems distribute
bandwidth costs across participants by disseminating the data
on multiple dissimilar trees. Examples of multi-tree multicast
overlays are Chunkyspread [8] and SplitStream [6].

A mesh-based streaming overlay facilitates data dissemina-
tion in a less structured manner, by requiring peers to exchange
data with a subset of the nodes in the network, maintained
in the form of a neighbor set. The major difference from
tree-based overlays is that in mesh-based systems, there is
no predefined route in which data flows. Examples of mesh-
based multicast overlays are Chainsaw [7] and CoolStream-
ing/DONet [9]. Several highly popular IPTV systems, such
as PPLive [4] and PPStream [5], also extend ideas from the
mesh-based BitTorrent [13] for real-time streaming. Meshes
are characteristically resilient to churn and node failures, but
exhibit high overhead.

While several design variants have been proposed for tree-
based and mesh-based overlays, there is a lack of clear
understanding of which designs perform better in a real-world
setting. A concrete characterization of the conditions under
which each provides a better service to the application is
missing. Previous studies have compared overlay multicast
networks via simulations and limited Internet experiments,
including [14], [15], [16], [17], but none focused on streaming
applications. One exception is the work in [18] which conducts
a simulation comparison of a multi-tree system similar to
SplitStream and PRIME [19] – a recently proposed overlay
multicast system which combines the advantages of mesh and
tree designs.

In this paper, we evaluate two representative systems
through deployments on the PlanetLab wide-area experimen-
tation platform [20]. We select the mesh-based Chainsaw [7]
and the tree-based SplitStream [6] systems because their core
designs are based on a basic bidirectional mesh or a basic
multi-tree topology, and their implementations are publicly
available. To the best of our knowledge, this is the first study
to directly compare streaming overlay architectures in real
Internet settings. We identify the pros and cons of mesh-based
and multi-tree based overlay multicast networks with respect
to P2P streaming under a variety of conditions. Our study
considers not only intuitive aspects such as scalability and
performance under churn, but also less studied factors such as
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bandwidth and latency heterogeneity of overlay participants.
The remainder of this paper is organized as follows. Sec-

tion II classifies overlay multicast streaming systems. Sec-
tion III discusses our criteria for comparison and describes the
two systems we compare. Section IV gives our experimental
methodology and results. Section V surveys related work.
Finally, section VI summarizes the conclusions from our study.

II. TAXONOMY OF OVERLAY MULTICAST APPROACHES

The earliest overlay multicast systems used a single-tree
topology, and did not specifically address real time streaming
requirements [12], [21], [22], [23]. For example, Overcast [22]
was designed for reliable communication, such as file distri-
bution. Later, some of the overlay multicast systems were
extended for the Internet streaming application; for exam-
ple, ESM [12] was extended and deployed for streaming as
discussed in [24]. Multi-tree systems such as CoopNet [25],
SplitStream [6], and Chunkyspread [8] were later proposed.

Mesh-based systems, e.g., CoolStreaming/DONet [9], and
Chainsaw [7], were proposed to address the inherent lack of
resilience of tree-based structures. Hybrid systems such as
Bullet [10] and mTreebone [26] have also been proposed: these
utilize a tree to initially send data and then use a mesh to
send the data that each node is missing. The first pure meshes
used bidirectional links to send data back and forth between
neighbors. Later, mesh-based systems such as MeshCast [27]
and PRIME [19] used links unidirectionally, separating peers
into either sender or receiver groups.

We can also categorize overlays into push- or pull-based
systems. Characteristically, tree-based overlays are push-
based: every parent will automatically send all the data it
receives to each of its children without them requesting it.
Meshes are typically pull-based: participants must request
packets from their neighbors. This affects the control message
overhead required by each type of overlay. Push-based systems
typically exhibit lower overhead since they simply need to
maintain the overlay structure. Pull-based systems need to
continuously update peers concerning what parts of the stream
each node has, thus creating high control overhead.

TABLE I
CLASSIFICATION OF OVERLAY MULTICAST SYSTEMS

System Peer Discovery Topology Push/Pull
ESM Underlying mesh

Overcast Source Single
NICE Bootstrap node

SplitStream Pastry Tree Push
CoopNet Source Multiple

Chunkyspread SwapLinks
mTreebone Source

Bullet RanSub Tree+mesh Both
MeshCast Bootstrap node
PRIME Bootstrap node Unidirectional

CoolStreaming Peers Mesh Pull
Chainsaw Bootstrap node Bidirectional

Table I classifies a set of popular overlay multicast ap-
proaches according to the mechanisms they employ. In the

table, “peer discovery” refers to how each node finds new
neighbors once after it has joined the overlay. RanSub [28]
and SwapLinks [29] are distributed algorithms that find nodes
to peer with. Based on this classification, we have selected
Chainsaw [7] and SplitStream [6] for our experiments, because
their core design reflects a basic bidirectional mesh or multi-
tree topology.

III. COMPARING P2P STREAMING APPROACHES

In this section, we discuss the two systems we have selected
for our comparison study, and present the criteria by which we
compare them.

A. Chainsaw

Chainsaw [7] is a single-source, multiple-receiver, mesh-
based overlay utilizing a pull-based approach in which nodes
request packets from a set of peer nodes, referred to as the
neighbor set. A new node obtains this set at join time by
contacting a bootstrap node. A node attempts to maintain a
minimum number of neighbors; if a peer disconnects, the node
requests more peers from the bootstrap node. Nodes never
refuse a connection request from any peer.

Whenever a node receives a new packet, it notifies its neigh-
bors about it. In addition, each node maintains information
about packets available for other peers, referred to as window
of availability, i.e., a buffer that contains packets that have
recently been received and about which peers were notified.
Packets are discarded after a certain amount of time to prevent
old data from being propagated in the overlay.

Each node also maintains a list of the packets it is interested
in, referred to as window of interest, by tracking the notifica-
tions of available packets advertised by each of its neighbors
that it does not have. Based on the window of interest, a
node randomly selects packets to request from all available
peers. Each node requests packets from different neighbors to
minimize the number of missed packets.

B. SplitStream

SplitStream [6] is a single-source, multiple-receiver, multi-
tree overlay utilizing a push-based approach in which the
source disseminates data over several disjoint trees. Since
the root and all the other interior nodes will, if possible, be
different for every tree, the bandwidth cost of relaying data is
distributed among all participants. The trees are constructed
using Scribe [30], an application level multicast infrastructure
that is itself built on top of the Pastry Distributed Hash Table
(DHT) [31].

To join, a node contacts a bootstrap node that may not
necessarily be the source. Once a node is part of the overlay,
it subscribes to each tree from which it wishes to receive
content. A node can explicitly declare the maximum number
of children that it wishes to support. Each node maintains
information about each tree that it is part of, i.e., the identity
of its parent and children. A node forwards all packets on to
each of its children, assuming it is an interior node for the
tree which these packets were sent on. The source splits the
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stream into packets and then sends the data down each tree.
SplitStream does not adapt its trees unless a node fails or quits
the overlay.

C. Comparison Criteria

In general, P2P systems deployed over the Internet are
expected to scale well with the number of participants and
take advantage of the diverse resources contributed by each
participant. In addition, Internet streaming applications have
specific characteristics that place additional requirements on
P2P streaming overlays. They must be able to sustain band-
widths in the range of 300 kbps to 1 Mbps [32], with 1 Mbps
delivering “TV quality” audio and video [33], and be able
to provide uninterrupted service in the presence of churn and
flash crowds. They must also deliver data within a given time,
usually on the order of a few seconds, to ensure smooth play-
back of video. As a result, data that arrives late is not useful
for the application and unnecessarily consumes bandwidth. To
ensure that these requirements are met, streaming overlays
often duplicate data in the network, resulting in traffic which
may not be useful from the application perspective (in addition
to control messages sent to maintain information about the
overlay structure and required data).

Based on these observations, our comparison examines
the following aspects that are crucial from an application
perspective:

(1) Scalability with application-prescribed streaming
rates: Obviously, the higher the bandwidth, the higher the
quality of the streaming video provided to the application. We
study the degree to which mesh and multi-tree based overlays
can sustain bandwidths needed or expected to be needed in
the future, seeking to identify any possible saturation points.

(2) Scalability with the number of overlay participants:
We investigate how well mesh and multi-tree based overlays
scale with increasing number of participants.

(3) Unusable data: Since streaming video over the Internet
requires stringent deadlines to be met, only data received be-
fore each deadline is useful. Unusable data therefore includes
both duplicates and data that arrived too late to be relevant.
Usable data constitutes the application goodput.

(4) Impact of bandwidth heterogeneity of overlay par-
ticipants on system performance: Streaming overlays must
be able to operate under the diversified bandwidth capabilities
of users over the Internet. We examine which overlay strategy
better exploits this diversity and does not penalize nodes with
low-bandwidth connections.

(5) Impact of latency heterogeneity of overlay partic-
ipants on system performance: Similar to the diversified
bandwidth capabilities, nodes also exhibit a diversified range
of latencies to other peers and to the broadcast source. We
investigate how the overlays we compare perform in a setting
with nodes having a mix of latency values.

(6) System recovery when confronted with flash crowds:
First experienced in web-based applications, flash crowds were
shown to occur frequently in Internet streaming [34]. Hence,

an overlay must be able to quickly integrate newcomers into
the overlay and ensure a small startup delay.

(7) System performance under high churn: Peers leaving
the system during a given period can adversely affect the
performance of the system, as some nodes may find themselves
disconnected or experience a temporary service interruption.
We investigate the performance of mesh and multi-tree based
overlays under high churn.

IV. EXPERIMENTAL RESULTS

In this section, we directly compare the two overlay systems,
Chainsaw and SplitStream, using real-world deployments and
metrics derived from the goals stated in Section III-C.

A. Experimental Methodology

To study the two systems under real-world conditions,
we conducted our experiments on PlanetLab [20]. PlanetLab
provides a research platform for large scale distributed exper-
imentation of peer-to-peer systems over the Internet [35]. In
order to mitigate the possible limitations of using a testbed,
such as those addressed in [35], we ran several experiments
at different times of the day and different days of the week
and computed the variance of our results. As can be seen
from Figure 1, there is little variability in the systems with
respect to the time of day the experiments were performed.
Further, we randomly selected experimental nodes for different
experiments (subject to certain constraints as discussed later
in this section) to validate the statistical significance of results,
and nodes were chosen to span multiple operational and
administrative domains. Each experiment was repeated ten
times.

We used streaming bit rates of 400 kbps to 1 Mbps, which
are representative of the bit rates used in many current video
streaming applications [32]. The source was always located on
a host at Purdue University. We configured the source to wait
for 30 seconds before starting to send data. We consider that
a packet must arrive within 5 seconds to be considered useful,
according to the buffer times used in [36], [37], [38]1. We used
a maximum of 280 nodes in our experiments because that is
the largest number of nodes with access bandwidth greater
than 1 Mbps that we could connect to.

We configured Chainsaw such that each node uses a min-
imum of 15 neighbors, and assumes the request for a packet
is lost after 1 second. The source connects to twice as many
neighbors as a regular node and pushes two copies of every
packet. We configured SplitStream to use 16 trees, with every
node joining all trees. A node sends every packet to every child
(assuming that it is a packet for that tree). These Chainsaw
and SplitStream parameters are the same as in [39] and [6]
respectively. We used a default packet size of 2500 bytes for
Chainsaw unless otherwise specified. For SplitStream, since
one packet per second was sent through each tree, the packet
size was determined by the desired streaming rate, and changes
per experiment.

1Our experiments with 10 and 15 second thresholds revealed that both
systems perform only marginally better.
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Fig. 1. Goodput at different times of the day and different streaming
rates using a configuration of 112 nodes that have over 1 Mbps bandwidth
capabilities

We compare the two systems by evaluating the following
metrics:

• Goodput is the average rate of data that was received
before the deadline (5 seconds), and that had not been
received before.

• Late Data is the average rate of data that was received
after the deadline.

• Duplicate Data is the average rate of data that was
received before the deadline, but that had been received
before.

• Throughput is the average rate at which all applica-
tion data is received. In other words, Throughput =
Goodput + LateData + DuplicateData.

• Continuity Index, defined by Pai et al. [7], is used to
measure the effect of churn. It is equal to the goodput
divided by the total amount of data that could have
possibly been received while a peer participated in the
overlay. This is equivalent to Goodput

StreamingRate .

B. Scalability with Streaming Rates

To compare how well each overlay scales with increasing
streaming rates, we vary the streaming rate from 400 kbps
to 1 Mbps, using a deployment of about 280 nodes for both
Chainsaw and SplitStream. In each experiment, the source
streamed data for 20 minutes. We used all responsive nodes
on PlanetLab that had high access bandwidth (greater than
1 Mbps) and low latency (with average Round Trip Times
(RTTs) of 100 ms to the source). Figure 2 shows the results
and the means with 95% confidence intervals.

Figure 2(a) depicts the average throughput of all nodes. In
an ideal case, the application data received would be identical
to the streaming rate. It can be seen that the throughput used
by Chainsaw is very close to the ideal. In contrast, Split-
Stream receives considerably less than the ideal, especially
as the streaming rate increases. As seen in Figure 2(b), the
goodput for both overlays is less than the streaming rate, with
SplitStream suffering more for higher streaming rates. The
confidence intervals depicted on the figures are considerably
wider for SplitStream than for Chainsaw, demonstrating that
SplitStream performance has a higher variability across the

ten identical experiments. SplitStream is thus more sensitive
to Internet conditions.

The reason for the low goodput of SplitStream is depicted
in Figure 2(c). SplitStream receives a non-negligible amount
of late data (data received after the 5 second deadline) – higher
than the late data received by Chainsaw. We attribute this to
the fact that Chainsaw is a pull-based system, where each peer
decides what pieces of information it needs. Unlike Chainsaw,
SplitStream uses a push-based approach in which nodes push
data to their children on different trees at different times. This,
combined with the lack of any mechanism for dropping late
data, results in unnecessary bandwidth consumption.

Figure 2(d) shows the duplicate data for both overlays.
SplitStream, being tree-based, receives a negligible amount
of duplicate data, whereas Chainsaw suffers from a slightly
growing amount of duplicate data as streaming rates increase.
SplitStream received negligible amounts of duplicate data in
all the experiments presented in this paper.

In summary, our results demonstrate that Chainsaw outper-
forms SplitStream at higher streaming rates. Surprisingly, in
the range of 400 kbps to 1 Mbps, we found no saturation point,
meaning that for our 280 node scenario, neither system has an
inherent streaming rate below 1 Mbps where it cannot send
any more data.

C. Scalability with Overlay Size

Figure 3 demonstrates the impact of the size of the multicast
group when using a streaming rate of 1 Mbps for 20 minutes,
varying the number of overlay nodes from 80 to 280 (the num-
ber of responsive PlanetLab nodes with good bandwidth and
latency properties). We also repeated the set of experiments for
a streaming rate of 500 kbps and the results were consistent
(with SplitStream and Chainsaw being closer in performance).
We omit these results due to space limitations.

As the number of nodes participating in the overlay in-
creases, we can see from Figure 3(b) that the goodput of
Chainsaw slightly increases, without a corresponding increase
in throughput (Figure 3(a)). This demonstrates that Chainsaw
scales with the number of participants in the overlay and
is able to effectively use the available resources without
increasing the amount of late or duplicate data in the system.
However, this is not the case with SplitStream. Although Split-
Stream performance is still acceptable, as seen in Figure 3(b)
and Figure 3(a), both the throughput and goodput of the system
degrade as the size of the overlay increases. Since all of the
nodes in these experiments have good bandwidth and latency
properties and we have shown that SplitStream performs well
at a streaming rate of 1 Mbps, the goodput degradation can
be attributed to the increase in overlay size.

We can see from Figure 3(c) and Figure 3(d) that both
systems’ ability to maintain consistently low amounts of late
data is invariant of the overlay size. However, in general,
Chainsaw is able to outperform SplitStream under large group
sizes, maintaining a higher streaming rate and larger amount
of good data in the system.
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Fig. 2. Performance for different streaming rates using a configuration of 280 nodes with bandwidth greater than 1 Mbps
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Fig. 3. Performance for different overlay sizes for a 1 Mbps streaming rate
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Fig. 4. Performance for different percentages of nodes with bandwidth of 1 Mbps or higher, using a configuration of 112 nodes with heterogeneous bandwidth
capabilities. In the figure, “C” denotes Chainsaw and “S” denotes SplitStream

D. Impact of Bandwidth Heterogeneity

Figure 4 demonstrates the impact of bandwidth heterogene-
ity on the performance of the multicast systems. Different
percentages of full versus restricted bandwidth nodes were
selected as overlay participants in our experiments. For exam-
ple, in the 70% experiment, 30% of the nodes had varying
bandwidth capabilities that were less than 1 Mbps, while the
remaining nodes were more than capable of streaming the full
system streaming rates. Nodes for each group were selected
at random from nodes matching the bandwidth criteria. The
source streamed data at rates between 400 kbps and 1 Mbps,
and about 112 nodes participated in each of the experiments.
To expedite the experiments we streamed for 10 minutes each.

As seen in Figure 4(a), the throughput varies little for each
system, regardless of the percentage of bandwidth-constrained
nodes. However, Figure 4(b) shows that the usefulness of the
data decreases as streaming rates and percentage of bandwidth-
constrained nodes increases. The reason for this can be seen in
Figure 4(d). As the percentage of bandwidth-constrained nodes
increases, the amount of late data considerably increases. This
can be explained by the fact that in both systems, bandwidth-
constrained peers become overwhelmed and quickly get be-
hind on their duties to relay data to their peers. The amount of
late data is significantly larger in Chainsaw than in SplitStream
because if a packet is not received 1 second after the request,
that same packet is requested again from another peer which
can create another late packet. Thus, it would be worthwhile
for each mesh node to keep track of an expected round-trip
time between every peer and itself and intelligently schedule
packets based on that value. This would also decrease the

amount of duplicate data received. We have validated this by
experimenting with timeouts of 2 seconds and 3 seconds, and
found that the late and duplicate data indeed decreases.

Figure 4(c) characterizes how individual nodes perform
in each system when 30% of the nodes are bandwidth-
constrained (for the 1 Mbps streaming rate scenario). In
SplitStream, very few nodes receive none of the stream and no
nodes receive the entire stream. This is due to the fact that in
a tree, all nodes are penalized if they have an ancestor that is
bandwidth-constrained. In Chainsaw, about 70% of the nodes
receive most of the stream (almost vertical line between 0.4
and 1 at 1 Mbps), while the rest receive very little of the stream
(steep curve between 0 and 200 kbps). This demonstrates
that Chainsaw mitigates the impact of bandwidth-constrained
nodes on high bandwidth nodes. However, it also shows that
Chainsaw penalizes low bandwidth nodes since they receive
very little of the stream.

E. Impact of Latency Heterogeneity

Figure 5 demonstrates the impact of latency heterogeneity
on the performance of Chainsaw and SplitStream when three-
quarters (15 out of 20) of the nodes are in close proximity,
and one-quarter have high latency in relation to the closely
connected majority and the source. The 15 nodes in close
proximity were located in North America with RTTs of less
than 50 ms, and the rest of the nodes were selected at random
from nodes in Europe with RTTs of greater than 150 ms to
the source at Purdue University. The source streamed data at
rates between 400 kbps and 1 Mbps for 10 minutes.

Interestingly, as seen in Figure 5(b), we find the SplitStream
and Chainsaw goodput results are quite similar to each other in



7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 400  500  600  700  800  900  1000

T
hr

ou
gh

pu
t (

kb
ps

)

Streaming Rate (kbps)

Chainsaw
SplitStream

(a) Throughput

 0

 200

 400

 600

 800

 1000

 400  500  600  700  800  900  1000

G
oo

dp
ut

 (
kb

ps
)

Streaming Rate (kbps)

Chainsaw
SplitStream

(b) Goodput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100 200 300 400 500 600 700 800 900 1000

Fr
ac

tio
n 

of
 N

od
es

Goodput (kbps)

Chainsaw
SplitStream

(c) Goodput CDF for a 1 Mbps Streaming Rate

 0

 50

 100

 150

 200

 400  500  600  700  800  900  1000

L
at

e 
D

at
a 

(k
bp

s)

Streaming Rate (kbps)

Chainsaw
SplitStream

(d) Late Data

 0

 100

 200

 300

 400

 500

 400  500  600  700  800  900  1000

D
up

lic
at

e 
D

at
a 

(k
bp

s)

Streaming Rate (kbps)

Chainsaw
SplitStream

(e) Duplicate Data

Fig. 5. Performance for a configuration of 20 nodes with heterogeneous latencies: 15 nodes are in close proximity to the source and each other, while the
remaining 5 have longer latencies to these 15 nodes and the source

these experiments. However, even though the average system
goodput is very similar, the individual node performance ex-
perienced when streaming 1 Mbps, presented in Figure 5(c), is
quite dissimilar. Chainsaw exhibits two sets of nodes achieving
two performance extremes, very low or very high throughput,
while SplitStream nodes exhibit a much broader range of
performance, with the majority of the nodes receiving between
600 kbps and 1 Mbps.

In contrast to the goodput, Figure 5(a) shows that the Chain-
saw throughput is appreciably higher than that of SplitStream,
due to a significant amount of late data (Figure 5(d)) and
duplicate data (Figure 5(e)). This indicates that SplitStream
is better able to push data to the nodes with longer RTTs
within the deadlines, whereas the pull mechanism of Chainsaw
causes several packet deadlines for the long latency nodes to
be missed.

We repeated our experiments with a total of 70 and a total
of 220 nodes, with 60% of the nodes being in North America
and the rest in other continents. We found that as the overlay
size increases, the average performance of Chainsaw increases
and the average performance of SplitStream decreases, which
is consistent with the results in Section IV-C. These results
are omitted for space reasons, and because of their similarity
to Figure 2.

F. Flash Crowds

To determine the effect of flash crowds on the stability
and performance of the multicast systems, we used about 280
nodes for each overlay and had a designated percentage of
the nodes join midway through the experiment lifetime. The
duration of the experiment was 6 minutes during which the

source streamed data at 500 kbps. The system was allowed
to stabilize before the flash crowd nodes join at 3 minutes
after the experiment started in order to isolate the effect of the
crowd.

Figure 6 depicts the effect that two exemplar percentages
(flash crowds of 20% and 80% of the nodes) had on the
two systems. From Figure 6(a) and Figure 6(b), we can see
that both multicast systems quickly stabilize and return to
performance levels similar to before the flash crowd, even
when the majority of the nodes join after the experiment has
begun. However, as seen from Figure 6(b), the performance
of SplitStream begins to degrade with larger flash crowd
sizes. We believe this is due to SplitStream attempting to find
appropriate parents for nodes in the flash crowd, which can
create a lengthy startup time for nodes.

We also examine the effects on the individual flash nodes
after joining the network in order to determine what an
individual user might experience. In Figure 6(c), we can
see both systems are able to effectively integrate a majority
of nodes into the dissemination structure and provide good
performance to these nodes (within 90% of the streaming rate).
In both cases, over 90% of the Chainsaw nodes and 75% of the
SplitStream nodes achieve good performance. This difference
in individual performance also helps explain why the average
performance of SplitStream degrades with larger flash crowd
sizes, since SplitStream has a larger percentage of nodes not
receiving the desired bandwidth.

G. Churn

To evaluate the impact of churn on each overlay, we began
with an overlay of 80 nodes. We then model node join behavior
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(c) CDF of 80% Nodes in Flash Crowd
Fig. 6. Performance for different percentages of flash crowds using a configuration of 280 nodes with bandwidth greater than 1 Mbps

using a Poisson process and node stay time using a Pareto
distribution. These choices were motivated by observations
from real overlay multicast deployments [24] and Mbone
sessions [40] and have been previously used by Bharambe et
al. in [41]. For the Pareto distribution, we assume a minimum
stay time of 90 seconds and an α of 1.42, which results
in a mean stay time of 300 seconds. These parameters are
consistent with distributions found in other live streaming
applications on the Internet [42], [24]. We vary the mean of
the Poisson process between 5 and 15, leading to group sizes
varying from 150 to 280 nodes. For example, if the Poisson
mean is set to 10, then on average, every 10 seconds there
is a node that joins. Each experiment ran for 16 minutes and
40 seconds (1000 seconds) and the source streamed data at
500 kbps.
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Fig. 7. Continuity Index using a configuration of an initial 80 nodes followed
by other nodes joining based on a Poisson process

The results presented in Figure 7 indicate that Chainsaw
performs better. First, it always has a much higher continuity
index than SplitStream. This can be attributed to its receiving
much more unique data than SplitStream. Second and more
importantly, a higher join rate has a lower effect on it than on
SplitStream. We can calculate from previous experiments that
without churn, Chainsaw and SplitStream have a continuity
index of .95 and .88, respectively. Hence, we can see that
churn has a drastic effect on SplitStream. Since we have shown
that SplitStream deals well with flash crowds, we attribute
this to the time consuming process of children recognizing
that their parent is gone and then reinserting each child and
its subtree somewhere else. In contrast, Chainsaw nodes have

many neighbors from whom to request packets and can also
simultaneously request more neighbors from the bootstrap
node.

V. RELATED WORK

A number of studies have compared overlay multicast
networks via simulations and on the Internet, including [14],
[15], [16], [17]. These studies, however, focused on network-
level metrics, such as the underlying overlay structure, relative
delay penalty over unicast and IP multicast, and link stress
(i.e., number of duplicate packets on each underlying Internet
link). They did not consider application-level metrics for real-
time streaming applications, as we do in this work.

Several other studies compared overlay networks for file-
sharing applications [43], [44]. These studies focus on com-
paring unstructured networks similar in spirit to Gnutella,
with structured overlay networks such as ones using dis-
tributed hash tables. Unlike these studies, we use a variety of
application-specific metrics, since our focus is on streaming
applications.

With the emergence of many, sometimes proprietary, com-
mercial streaming systems, another focus of recent research
has been understanding user behavior. Hei et al. [32] measured
the performance of the PPLive [4] system, with the goal
of quantifying user behavior and gaining insights into the
protocol underlying PPLive. Deployments of open source
systems have also been studied. Chu et al. [24] analyzed traces
collected from a system based on ESM [12].

Perhaps closest to our work is the work in [18], which
presents an interesting simulation comparison of a multi-tree
scheme similar to SplitStream and the PRIME [19] overlay
multicast proposal. Our goal, however, is to understand per-
formance of existing streaming systems under a variety of real
Internet conditions, including realistic latency and bandwidth
heterogeneity. Further, we believe that Chainsaw is closer in
spirit to a basic mesh, and hence more suited to our study.

VI. CONCLUSIONS

In this paper, we have compared the streaming performance
of two representative P2P streaming systems, SplitStream
and Chainsaw, via Internet experiments using PlanetLab. We
can make several observations from our experimental results.
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First, the mesh-based Chainsaw generally yields a higher
goodput to the streaming application than the multi-tree based
SplitStream. The difference between the two systems is small
when streaming rates are low, or when the number of nodes
in the system is small. However, Chainsaw scales better to
higher streaming nodes or larger overlays.

Second, SplitStream was better able to cope with nodes
that have higher latencies to the remaining nodes, while
Chainsaw had a significant amount of late data and duplicate
data in that case. The nodes with high latency suffered in
performance with Chainsaw. In cases with bandwidth-limited
nodes, Chainsaw performed better than SplitStream on the
average, but bandwidth-limited nodes suffered, and Chainsaw
again transmitted considerable late and duplicate data. Based
on these results, we suggest that mesh-based systems use
adaptive timeouts and intelligently schedule packets based on
expected round-trip times. Third, as expected, Chainsaw was
better able to deal with churn and with large flash crowds.

From our observations, mesh-based systems appear to be
a better choice than multi-tree based systems for peer-to-peer
streaming, especially for larger overlays and higher streaming
rates. Mesh-based systems are clearly a better choice for nodes
with high bandwidth capabilities and low round trip times,
while multi-tree based systems currently cope better with
stringent real time deadlines under heterogeneous conditions.
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