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Abstract—Many multicast overlay networks maintain and an upstream node. A node changes its upstream node if
application-specific performance goals such as bandwidth, the performance becomes inadequate by monitoring its per-
latency, jitter and loss rate by dynamically changing the oerlay g5 rmance from the multicast source and periodically prgbin
structure using measurement-based adaptation mechanisms . . - .
This results in an unstructured overlay where no neighbor its neighbor node§ about their performgnce. We refer tq this
selection constraints are imposed. Although such networks Process aadaptationand to the mechanisms used to achieve
provide resilience to benign failures, they are susceptiel to it as adaptation mechanism3here are no constraints in the
attacks conducted by adversaries that compromise overlayates. selection of the neighbor set and no imposed constraintsein t
Previous defense solutions proposed to address attacks #wst resulting overlay. Such networks are referred touastruc-

overlay networks rely on strong organizational constrains . .
and are not effective for unstructured overlays. In this woik, tured overlay networkso differentiate them fromstructured

we identify, demonstrate and mitigate insider attacks agaist Overlay networkq5], where the overlay topology offers pre-
measurement-based adaptation mechanisms in unstructured defined bounds and organizational invariants by constrgini

multicast overlay networks. The attacks target the overlay the set of nodes eligible to become neighbors of a given
network construction, maintenance, and availability and dlow node. Examples of multicast systems using structured ayerl

malicious nodes to control significant traffic in the network . . .
facilitating selective forwarding, traffic analysis, and overlay networks include Scribe [6] and SplitStream [7].

partitioning. We propose techniques to decrease the numbeof While pushing functionality to end-systems allows overlay
incorrect or unnecessary adaptations by using outlier detetion. networks to achieve better scalability, it also makes them

We demonstrate the attacks and mitigation techniques in the yulnerable as trust is pushed to the fringes of the Internet
context of a mature, operationally deployed overlay multiast where end-nodes are more likely to be compromised than

system, ESM, through real-life deployments and emulations .
conducted on the PlanetLab and DETER testbeds, respectivel core routers [8]. Overlay networks are more susceptible to

Keywords: Overlay Networks, Security, Insider Attacks Insider attacks conducted by attackers that infiltrate trezlay
Adaptivity or compromise some of its nodes. One attack that does not

require significant work from the attacker is to exploit the
adaptation mechanisms by influencing the accurate intapre
|. INTRODUCTION tion of performance observations, and the correctnessef th
Multicast overlay networks were proposed as a viable appiesponses received from probed nodes. As a result, an at-
cation level multicast architecture to overcome the staafi tacker can influence the overlay construction and mainiaman
native IP multicast deployments. Examples of such networkentrolling a significant part of the traffic. This faciliest
include ESM [1], Nice [2], ALMI [3], and Overcast [4]. further attacks such as selective data forwarding, chgatin
Moving buffering and relaying functionality from core reus traffic analysis, and overlay partitioning. Some attackshsas
to end-systems provides support for easy deployment and $elective forwarding, may ultimately be noticed by the mict
creased scalability. In addition, using disseminationcitrres so they can be effectively addressed by deploying a posierio
constructed based on partial overlay topology informatiatetection mechanism. Other attacks, such as traffic asalysi
allows for reduced overhead. not have immediately observable results. It is thus ctitioa
Many multicast overlay networks optimize applicationaddress the primary attacks that allow the adversary ta@ont

specific performance goals such as bandwidth, latencgr,jittthe overlay structure maintenance.
and loss rate by dynamically adapting the overlay topology. Previous work addressing malicious attacks on overlay net-
This improves suboptimal overlay meshes resulting fromorks focused on structured overlays [9], [10], [11], [12]3],
random initial neighbor selection, aggressive partitiepair, [14] used for file sharing applications. In this case, thackier
group membership changes, and transient conditions in #antrols the file discovery by manipulating the control aathd
underlying physical network. Each node maintains partiaslessages routed within the overlay, poisoning the routing t
overlay topology in the form of a set of neighbor nodeble, or partitioning the network. The proposed mitigatieoh-



nigues leverage the strong organizational constraint®g®g of data, but also contribute to the routing process. Thecgour
on neighbor selection and the invariant relationships betw is assumed to be continually available.
neighbors. While solutions for attacks in structured awerl The overlay construction is self-organized and distridute
networks offer valuable insights into the problem spaceythEach node maintains a neighbor set, a routing table and the
are not appropriate for unstructured overlay multicasivodts upstream node forwarding the data, referred to as the node’s
where no structural constraints exist between neighbors. parent The neighbor set represents only partial topology
In this paper, we focus on identifying, demonstrating, andformation and consists of nodes that are currently realeha
mitigating insider attacks in unstructured multicast daer in the overlay. The nodes in the neighbor set are referred to a
networks. The attacks exploit adaptation mechanisms theters No node has complete knowledge of the dissemination
these networks use in order to maintain application-sgecifopology. The neighbor set is bootstrapped at join time by co
performance. Current adaptation mechanisms assume thattécting the source and is continually updated via a memigersh
information reported by probed nodes is always correct apdotocol. There are no constraints placed on the members of
fail to take into account the effects of malicious attackems a node’s neighbor set. The routing table represents a set of
their surrounding environment. Unlike previous work demomodes that the node is responsible for routing data to, also
strating attacks exploiting adaptivity [15], [16], our vkor referred to aschildren The size of this set is limited by a
considers the effects of insider adversaries in the corikxtsystem characteristic callesaturation degregrepresenting the
overlay networks. We summarize our key contributions:  number of concurrent data streams the node is able to support
e We provide a characterization of the types of mechanisrefore saturating the underlying physical network link.
currently used to achieve adaptivity in overlay networkd an Each node maintains a set of performance variables for each
identify attacks against these mechanisms. We refer to thm@mber of its neighbor set. These variables are dictated by
attacks asattraction, repulsion anddisruption application-specific goals and are continuously measuyed b
¢ We provide an analysis of the solution space for mitigatingsing passive observation and active probes. A node uses the
insider attacks that exploit measurement-based adaptatigollected performance metrics to select a new parent frem it
preventing incorrect or unnecessary adaptations, inicigasneighbor set if the performance becomes inadequate.
stability by incorporating metrics that reflect stabilityté the
decision process, detecting observable malicious bteyttwaum B. Attacker Model
as degradation of service, and isolating the malicious sode We consider a constrained-collusion Byzantine adversary
» We propose techniques to reduce incorrect and unnecesdaggel similar to that proposed in [12], with a system sizéVof
adaptations by using spatial and temporal correlations ad a bounded percentage of malicious nofi¢8 < f < 1)
perform context-sensitive outlier analysis. A key compurg  behaving arbitrarily. The set of malicious nodes is pantiéid
our solution is based on the observation that several etimainto disjoint coalitions with intra-coalition cooperatigpossi-
metrics are dependent variables and the overlay and nstlticale. We assume a malicious adversary has access to all data at
logical networks share overlapping physical links. a node as any legitimate user would (insider access), imgdud
e We demonstrate the effectiveness of the identified attack@&/Ptographic keys stored at a node. This access can be the
and the benefits of our defense mechanisms in the conttsgult of the adversary bypassing the authentication mecha
of a well-known and operationally deployed multicast sgste Nisms or compromising a node through other means. Nodes
ESM [1], through experiments and emulations conducted §annot be completely trusted although they are autheaticat
the PlanetLab [17] and DETER [18] testbeds, respectively. We assume that data authentication and integrity mechanism
Roadmap:The rest of the paper is organized as followgre deployed and we focus only on attacks directed at the
We specify our system and attack models in Section II. vadaptation mechanisms. We assume the source is trusted and
discuss adaptation mechanisms employed by overlay neswofRnnot be compromised.
and identify attacks against them in Section IIl. We propose
defense mechanisms in Section IV. We present experimental
results demonstrating the attacks and the defense tedmiqu
in Section V. We overview related work in Section VI and Any adaptive network protocol based on measurements

IIl. ATTACKS EXPLOITING MEASUREMENTBASED
ADAPTATION IN OVERLAY NETWORKS

conclude our work in Section VII. involves periodically observing and estimating the networ
conditions, followed by making an adaptation decision. For
II. SYSTEM AND ATTACKER MODEL multicast overlays, the variables that are observed ard est

mated include latency, jitter, bandwidth, and loss ratee Th

A. System Model adaptation decision consists of a node selecting a new faren

We focus on overlay networks providing support for singldsy weighing the associated costs versus benefits that could
source broadcasting applications that are high-banddth- occur as the result of the adaptation quantified throughligyuti
dreds of kilobits per second) and real-time, but not intévac function [19]. For unstructured overlays, there are nocstmal
The system consists of a set of nodes and a data source noalgstraints placed on this selection.
communicating via unicast links. All nodes but the source Previous work studied the quality of the data observation
have similar functionality. The nodes are not only receveand estimation, as well as the ability of the metrics to



accurately reflect the state of the network. Examples obfact As many nodes share the same physical links, an attacker
that influence data quality include data freshness, vditybi may instead choose to manipulate the physical or logical
and the presence of noise. Mechanisms proposed to addiefsstructure to affect the performance metrics monidog
these issues are data sampling [20], data smoothing [24]yvictim node by exploiting its physical connectivity to the
metric construction [22], as well as data summarization amnittim. For example, a node can affect the link state estonat
aggregation [23]. Previous work also studied instabgif24], by injecting a very small amount of traffic for a short amount
[25], [26], such as the oscillatory behavior commonly reddr of time, creating the perception that the performance disgta
to as flapping, occurring when nodes rapidly switch betwesignificantly and convincing the victim node to change its
seemingly equal alternatives. New techniques such asyutilparent. A variant of the attack is to target the active prabes
discretization [26], [27], randomization [26], [28], daing which the victim node relies. In this case, the victim's geer
[25], and hysteresis [28], [20] were deployed to mitigateséh will be made to look unappealing as possible parents, tiyereb
phenomena and provide a tradeoff between responsivenesmooeasing the chances of the malicious node moving claser t
change and instability. the source in the multicast structure.

None of the mechanisms described above take into accounbDisruption attackgarget the availability of the network by
adversarial environments, since they only address thetsffeusing the adaptation process to turn the system againbt itse
of benign problems. However, compromised overlay nodés attacker can create significant disruption in the ovebgay
can take advantage of the adaptation process to gain coninggcting or influencing the observation space metric data t
over overlay traffic by manipulating the path selection ayenerate self-destructive responses as a result of ursagges
the overlay topology. We classify these attacksaftgaction adaptations. The ultimate goal of such attacks is to affect
attacks repulsion attacksanddisruption attacksAny of these the infrastructure that supports the overlay with the inten
attacks can be conducted by an adversary by lying about gievent or degrade service. These attacks can be classified a
observed performance metrics or by artificially influending a form of denial of service (DOS) and can result in jitter,
performance metrics observed by other nodes. flapping, or partitioning the overlay.

Attraction attacksare a form of “bait-and-switch” attacks,
where a malicious node manipulates the observed data in
order to present the network conditions as better than they
are. The attack can also target one particular node, in whichin this section, we describe a comprehensive solution for
case the attacker persuades the victim to attach to a madicimitigating insider attacks that exploit adaptation in dagr
parent in the dissemination structure. The final goal of theetworks. As the attacks we are concerned with are performed
attack can be manipulating data, performing traffic analysby compromised nodes controlled by adversaries, the saluti
performing man-in-the-middle attacks, causing disrupfior space components we describe below are complementary to
specific nodes by isolating them, or selectively droppinguthentication and integrity mechanisms.
packets for a particular destination. A compromised node ca .
perform the attack by falsifying the answers to probe retgued": Solution Space
to create the perception of a route with higher utility from We identify four components that a framework designed to
the perspective of the victim node. The victim will make aaddress insider attacks against adaptation must include. D
incorrect change since the perceived benefit does not reflectiack of space, we provide a high-level description of all
reality. For example, if the adaptation decision is basethen of them and a detailed description of a critical component:
bandwidth from the source, a malicious node can attractrothieducing incorrect or unnecessary adaptations. More |getai
nodes to select it as parent by lying about its bandwidth whebout each component can be found in [29].
it is probed. The victim nodes will incorrectly choose to ptda e (A1) Reducing incorrect adaptation& node makes adap-
and select the malicious node as parent since it appears tatibn decisions based on two types of information: the per-
the change will guarantee a better bandwidth from the souré@mance from the source measured directly by each node
The malicious node can augment the attack by lying abcand the performance of the neighbor nodes obtained by
other metrics such as latency or saturation. probing them. By blindly accepting the information repdrte

Repulsion attackseek to reduce the attractiveness of othéday the potentially malicious probed nodes, correct nodeg ma
nodes or misrepresent their ability, with the ultimate goahake incorrect decisions. We propose to prevent incorrect
of free-loading, traffic pattern manipulation, or augmegti adaptations by detecting and filtering out outliers in theérive
attraction attacks. As in the case of attraction attacksjlston reported by malicious nodes. Our method evaluates temporal
attacks can target one particular node. One way a malicicarsd spatial correlations among data in the system. Although
node can conduct the attack is by lying about its performanaair solution is developed in the context of overlay netwprks
For example, a malicious node may lie about route costs (i.i.can be used to address the more general problem of “blind
hop count) in order to convince other nodes that it has a badceptance” [30] of routing metrics present in many network
connection and thus it should not be selected as a parent. Phetocols. We present this approach in detail in SectiomlV-
malicious node will then obtain a reduced burden while stidl (A2) Increasing stabilityReducing the number of unneces-
taking advantage of the system. sary adaptations has the potential to increase the syahilid

IV. DEFENDING AGAINST ATTACKS IN ADAPTIVE
OVERLAY NETWORKS



decrease the number of incorrect adaptations, while ragucand RTT are utilized because they are highly correlated met-
the overhead. Nodes perceived as unstable will be push&d collected in different manners (probed versus medsure
to the fringes of the tree as no other node will select theraspectively). Since TCP is used as the data transportqoipto
as a parent. We propose to integrate stability metrics sulciss rate is not considered. In order to avoid being susgecte
as the time a node was connected to his current parent, byecorrect nodes, a malicious node must insure that any lie it
frequency of changes, or the degree of variance in metrios irtells: (1) is consistent with what the other peers are répgprt
the function that drives the adaptation. during a probe cycle about current network conditions, (2)
¢ (A3) Detecting observable malicious behavidhe methods ensures consistency between the different dependentcsetri
proposed above may still result in some incorrect adaptatio (bandwidth, latency, and RTT), and (3) is consistent with
However, the attacks exploiting adaptation are often usedmetrics it reported in the past. The spatial outlier detecti
further attack the multicast service, resulting in obsbklwa targets the first and second aspects of consistency, wkhdle th
degradation of service and thus allowing additional désect temporal outlier detection targets the second and thirdasp
mechanisms to be employed. Unlike (A1), which is focuseBpatial and temporal data correlations have been preyiousl
on preventing incorrect adaptations, this component setact shown effective in detecting network attack scenarios .[31]
degradation of service resulting from the incorrect adigoia Unlike the the general approach in [31], our work does not
We propose that every node uses the low-bandwidth, bidtbok for correlations but exploits the fact that they exist t
rectional unicast link that it shares with the source to tev detect suspicious nodes.
feedback to the source about the received data. The linkds al The intuition behind our solution is that the intrinsic dape
used by the source to inform member nodes about the statelefcy existent in the measured variables requires attait&er
the overlay structure to allow them to detect inconsistemcimake sure the “fake” metrics vary in a consistent mannes Thi
in the metrics reported by peers. The structural infornmatiaependency results from a fundamental characteristic df en
can be trusted as it is sent by the source and protec®dtem multicast systems — that the distribution tree apsrl
cryptographically from modifications. on the routing infrastructure, often represented as a measu
e (A4) Isolating malicious nodesWithout taking action called link stress. Lying is made more difficult by the fact
against malicious nodes, the convergence of the protoabl ahat attackers can only make the RTT worse, because it is
the overall system overhead will increase as the malicioasmeasured attribute, and yet, at the same time, the RTT
nodes continue to interfere with the system. We proposenaist remain consistent with both the bandwidth and latency.
gradual response where each node of the overlay maintasr solution also forces an attacker to lie consistentlyhwit
two dichotomous lists: a local suspect list generated by thather peers. This is difficult to achieve as an attacker does
node and a global black list generated by the trusted sourca have perfect knowledge of the observation space, must
based on suspect lists received from nodes in the netwokk. Tccurately predict the random subset of nodes that will be
suspect lists allows nodes to take decisions locally, wthiee queried, and only has a finite amount of time (the probe pgriod
global list allows nodes to share information about malisio to coordinate with other attackers.
nodes in the system. While the benefits of the suspect list aréA key component of our approach is using the Mahalanobis
obvious, the use of the black list requires further investtan  [32] distance to detect outliers. We selected this distance
as it creates opportunities for malicious nodes to black liBuinction because it has been shown to detect outliers with
other correct nodes and also increases link stress in thensys multiple attributes better than other distance functioB3],[
) ] ) ) scales each variable based on its standard deviation and

B. Reducing Incorrect Adaptations Using Local Spatial ang,ariance, and takes into account how the measured agisibu
Temporal Correlation for Outlier Detection change in relation to each other. This makes it approprate f

The primary cause of the identified attacks is the ability afur environment where there is a dependency between several
the attacker to influence the adaptation process by manipulsf the attributes reported by each node.
ing the performance metrics. We propose to detect incamist Spatial outlier detectionThe outlier detection is performed
metrics by performing outlier analysis on the informatioly a node as follows. Each probe cycle, the node first computes
received from probed nodes and used in the decision procehe. centroid of the data set consisting of observation tuple
An outlier is a data point that is significantly different (greatefrom all probed nodes. Ambservation tupleis represented
than a threshold) from the rest of the data in the observatibyp bandwidth, latency, and RTT. The node then computes the
space based on a measure of distance. Mahalanobis distance between the observation tuple fran ea

The detection is performed locally by each node usingobed node and the centroid as follows:
spatial and temporal correlations. Tégatial outlier detection o — -
compares the reported metrics received from each node in the d(7,9) = \/((x —9)TCH @ —-7)) 1)
set of probed nodes. Themporal outlier detectioexamines wherex andj are the feature vectors consisting of bandwidth,
the consistency in the metrics received from an individuldtency, and RTT.Z is the value from the probe response
probed node over time. Our outlier detection does not affemhd i/ is the average value that was calculateéd:® is the
the link stress in the system, as it uses the metrics alreddyerse covariance matrix computed from the observation
reported by nodes: latency, bandwidth and RTT. Both latentyyples. When there are not enough observation tuples exteiv




during a probe cycle, the tuples are compared with thdahalanobis distance.
most recent centroid. When there is no variance between th&emporal threshold selectioWe used a threshold of 3.0
received observation tuples, the Mahalanobis distancaatanfor our temporal outlier detection, to allow each of the #re
be computed since the determinant of the covariance mati@atures to vary within one standard deviation from their
becomes zero. In this case, a node is randomly selected frimmporally developed mean. The value was chosen based on
that probe set of observation tuples and compared to the mitet formula of the simplified Mahalanobis distance as in [32]
recent centroid. If no centroid is available, the decisien i Spatio-temporal outlier detectioithe two outlier detection
postponed to the next probe cycle. mechanisms have the potential of being more effective when
Spatial threshold selectionThe threshold for our outlier used together. We combine them by using a codebook tech-
detection can be mathematically derived as in [34], [35hique similar to [31]. The peer nodes are ranked according
assuming a multivariate Gaussian distribution for the io®tr to their spatial outlier distance from the spatial centraidi
vector. The contours of equal probability of this distribat traversed from the closest to the farthest node. The nodéstha
create a 3-dimensional ellipsoid and the outlier threshotdbsest to the spatial centroid that is not a spatial or teaipo
reflects the probability of a vector being within the elligbo outlier is chosen as the new parent. If no peer is found mgetin
specified by the focuk. The probability that a random vectorthese criteria or if there are a large number of temporalest|
lies within the ellipsoid increases with the size kof Thus, no adaptation is performed during that probe cycle.
for a given value oft the probability that a probed tuple lies
within the ellipsoid can be computed as:

1 1 ko2 2 2 We demonstrate through experimental results the attacks
P= "o +2 @T/O erdy ) = ke (2) identified in Section Il and our outlier detection techrégu

We initially selected & of 2.37, creating a threshold whichin lthe gontextbof the E?M overla)_/ muIticas_t s;gstelm. we
half of the probes would successfully pass. Through testifigiected ESM because of its mgturlty, e)ftensw_e eployment
in over 539,739 probe responses during 19,465 probe cycl@ d th_e advanced set of adaptation techniques it employs. Ou
we found an ellipsoid determined by a threshold of 1.5 wiffxperiments show that, although ESM employs an advanced

contain approximately 80% of the nodes. Thus, we selectedd of adaptation mechqmsms, it is unable to m|t|gate the
threshold of 1.5 for our experiments. This variation frore thattacks posed by a ma!lcm_)l_Js adversary. Our outlier d@"‘*’.c“
mathematically derived value can be attributed to the faat t Va5 able FO reduce_ 5|gn|f|cant_ly the number of malicious
the used metrics do not form a perfect normalized distriuti changes without adding to the link stress in the system.
and have a smaller variance than assumed in Equationa2.oyerview of ESM
A node may select smaller threshold distances for stronger _ . . .
security guarantees, with the drawback that it may findfits?l ESM [1] is a multicast sys_tem mainly used for broa_tdcastmg
isolated due to aggressive filtering. Iive events §ugh as academic conferences._ We provide a hlgh-
Temporal outlier detectionWe use temporal correlationslevel description below. For further details, the reader is
to detect inconsistencies in the performance metrics teporrgfer.red. to [29]'. ESM forms a peer-to-peer overlay tree fqr
over time by a node. We develop models for the peers Ofdéstrlbutmg mquc_ast_conten_t. A node changes Its parent |
given node during the course of a multicast session by usi overlay to maintain and improve application performanc

incremental learning. Our technique is based on the “sfieli 5 th pasdswe obiervc;]mondand .probcling. are uéng to CO”(?Ct
Mahalanobis distance” presented in [32]: ata used to make the adaptation decision. uses data

V. EXPERIMENTAL RESULTS

1 sampling and data smoothing to address variations in the
d(z,7) = Z(m — il /(6 + ) (3) Metrics considered: available bandwi(_jth, Iatenpy, and.R’_TT
=0 ESM also employs a number of combined metrics, damping,

where n is the number of metrics, three in our case (bandwidtandomization, hysteresis and three utility functionsddrass
latency, and RTT)g; is the standard deviation, and is a instabilities in the observed data. The three utility fuoies are
smoothing factor empirically set to .001 to help to avoidevebased on: bandwidth, latency, and a combination of bandwidt
fitting and reduce false positives [32]. We trade-off accyra and latency. A damping factor is used to induce stability and
of the distance function to minimize the amount of data wa randomization technique is used to avoid the case where
must store by making the assumption that the metrics aeveral nodes try to change to the same parent.

statistically independent. As a result, each node maistain In order to select a new parent, a node first computes a
for each peer only the temporal centroid consisting of tHist of potential candidates from its neighbor set. Nodegtvh
mean, standard deviation, and sample count computed frane currently saturated, descendants, or did not respoed wh
the observation tuples received over time, and not the whabtcently probed are not considered. If there is no utilitinga
history. The centroid for each peer is incrementally updlat®o node is selected and the process will be repeated next
with observations received during each probe cycle, asdh [3cycle. If several nodes are candidates, then the first catedid
using the technique Knuth described in [36]. At the end @ selected as the new parent. The selection process uses
the probe cycle, the latest observation tuple for each eermiysteresis to generate a negative bias against nodes treat ha
compared with the corresponding temporal centroid usieg therformed poorly in the past.



The Ability of Lying Nodes to Attract/Affect Other Nodes
100 T T

80

60 -

40 -

Affected Nodes (%)

B s e e 2 & L Nt @ ® ®
o $/Nodes ona Path (‘:ontaining‘a Lying die-n ------
o 10 20 30 40 50
Lying Nodes (%) (@ (b) (©) (d)
Fig. 1. The effect of attraction attacks on correct nodesafoESM overlay
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B. Testbed and Experiment Setup

To study the attacks and defense mechanisms under real-
world conditions, we conducted our experiments on the Plane
Lab [17] Internet testbed. In addition, for repulsion ansrdp-
tion attacks that could have been disruptive to PlanetLab, w

Bandwidth (Kbps)

used DETER [18], a testbed that provides a stable, conlxella 20 1
emulation environment for network security research. 100 [ B
We use sixty minute long ESM deployments of 100 nodes oLt il ‘ ‘
in which the nodes join after the experiment begins and leave LT e
before it ends, with an average participation time of fifefi
minutes. As in previous ESM deployments [37], nodes are (e)

probed every seven seconds, the saturation degree of torf&c2. Anexample of repulsion attack against an ESM overlaycontrolled
nodes is six, and the source constant bit rate is 480 Kbps. &fpeiment o BETER (2) represents the overlay and thecasiitree before

. . attack while (b), (c) and (d) are the topology changes in thdticast tree
experiments use these parameters unless otherwise notedas a result of the attack. Node E is manipulated by the attackattach to

. malicious node D, although this causes E to be three hops &way the
C. Attack Effectiveness source, instead of just one. (e) The average bandwidth wjthlégy changes

1) Attraction Attacks: We demonstrate the effect that agngéfih%g; fgsl'gei{;\?eg,ésr‘ed impulses representing gabdnalicious
single coalition of one malicious node, who exploits the
adaptive nature of ESM, has on the multicast tree constmucti located near the source in the overlay topology, the gréfager
maintenance, and stability. One randomly selected node peffect will be on the overall system.
forms an attraction attack in which it lies every probe cycle 2) Repulsion AttacksWhile performing experiments, we
about having the best bandwidth (480Kbps), latency (Omsticed that nodes with very good performance, such as those
and no saturation. We summarize our findings in Table directly attached to the source, could not be fooled by mali-
When the node is honest, it is selected only 5 times ascmus nodes simply by lying, and more sophisticated attacks
parent by other nodes. However, when the node is malicioase needed. We demonstrate a repulsion attack where an
it is selected 172 times, or almost 35 times more often. Tla¢tacker affects the partially observable link state estiom in
malicious node causes the overlay to become more unstablegmler to make a node incorrectly believe that the performanc
can be seen in the large increase of total parent changes. Trom the current parent is inadequate.
increased instability can be attributed to the fact thatribe Fig. 2 presents a star topology composed of six nodes, all
child will eventually realize the bait-and-switch and chan of which are connected with 100 Mbps links to switch S1. For
parents again. demonstrative purposes, ESM is configured to use a saturatio
We next consider the effect on the correct nodes whelegree of two. In our example, node A is the source and nodes
a percentage of randomly selected malicious nodes perfoén D, and E are end-systems in the overlay. Nodes B and
attraction attacks. Metrics we investigate are: the pegaggn F are outsiders who collude with D, a malicious node that
of nodes that have at least one malicious node on their paths infiltrated the overlay. During the attack, nodes B and F
to the source, the percentage of nodes that have a malicigeserate traffic to augment the attack of malicious node D,
node as a parent at some point during the experiment, and wigch lies about its bandwidth (480Kbps), latency (Omsy an
number of parent change decisions that resulted in sefpatinsaturation (none). Similar results will be obtained if nede
malicious node. The results of the experiment, summarizedB and F are trusted members of the overlay attempting to
Fig. 1, demonstrate that even a small percentage of maticiamprove their position in the tree or influence the path data
nodes will affect the majority of correct nodes in the ovgrlatakes from the source to themselves or others.
Fluctuations in the general trends of the curves result fromThe overlay initially converges to the stable structurensae
the use of real-world experimentation and randomly setectig. 2(a), at which point the mean bandwidth is approxinyatel
malicious nodes. The greater the number of malicious nod&80 Kbps. Topology changes occur at the impulses seen in



Average Bandwidth vs. Time the overlay. We vary the percentage of malicious nodes to
600 | ‘ ‘ ‘ ‘ ‘ ] 10%, 30%, and 50% of the overlay size to demonstrate the
performance degradation that results when more nodes behav
maliciously.
] We define the relative strength of a particular attack as:
(' . ] Bnorm - Badv

200 250 300 T= By X Nty 4)
rdatalAveBWVSTime" using 2:3—— whereB,, . and B4, represent the average throughputin the
e absence and presence of adversaries respectivelyyand, 4,
Fig. 3. An example of disruption attack against an ESM oyeita a is the number of adversaries. Intuitiyely, tau represehts t
controlled experiment on DETER. The experiment was peréarasing the amount of damage an attack created in the system. The greater
Eamf ex]petrrr;nf;liingl tsheetu% fasl Fiogi-n tzchgaE; r?ttaggﬁgaﬁfricidm:ssesigrr:qd the performap(?e degradation obsgrved in the_ system .between
Tl(J);JSolsogOy changes are denote([j) by the solidg and dashed impldpaesintingl when the malicious nodes are p_asswe and active (the ditere
good and malicious parent changes respectively. betweenB,,,;, andB.4,), the higher the value of tau and the
more damage an attack inflicts on the overlay.

Fig. 2(e). The attack begins at 115 seconds when nodes B anftig. 5 depicts tau varying over the percentage of the traffic
F begin flooding 30 seconds worth of traffic at the sourcgropped. As it can be seen, the greater the amount of data
node A. After several seconds of traffic, the attack is able {gffic a malicious node drops, the greater the effect it has
generate the first change in the tree when node C choog@sthe system. The drop in the effectiveness of the attacks as
node E as its new parent in Fig. 2(b), despite the fact thatife malicious nodes drop high percentages of data (100%) is
will be an extra hop to the source. Then, 14 seconds latergge to ESM categorizing the malicious nodes as unstabls link
switches back to its previous position, but the overlay hets yhased on past experienced bandwidth and having a bias ggains
to stabilize in Fig. 2(c). Next, node E detaches from thes®urchoosing them as parents. Fig. 5 also shows the intuitive
and, instead of choosing node C, chooses the malicious Neggion that the greater the number of malicious nodes, the
D, as its parent in Fig. 2(d). Note that node E was previousyifeater effect there is on the system. It can be noted that jus
directly connected to the source but it is now connectecethrggg, malicious nodes have a significant effect on the average
hops away. The changes after 200 seconds are due to nqglgsiwidth. We believe this is because a percentage of 10%
leaving the experiment. malicious nodes is enough to obtain advantageous positions

The cost of such an attack consists of saturating the 1@{the vulnerable tree structure which has no path redundanc
Mbps link with a short 30 second burst of traffic. In real In-

ternet deployments, the cost of the attack will be subsiyti E. Effectiveness of Outlier Detection
less since links will typically have a lower capacity. To demonstrate the effectiveness of our outlier detectton a
3) Disruption Attacks: Fig. 3 demonstrates an examplémproving the parent selection process and the stabilithef
of a disruption attack where the attacker exerts an artificigystem, we considered one malicious attacker and recorded
influence, extraneous traffic, towards a focal point of théde number of parent changes that took place for the duration
overlay topology. The main difference from previous attclof the experiment considering two cases, one when only the
is that the artificial influence is done periodically in order spatial outlier is used, and one when the temporal-spatial
destabilize the infrastructure. In the experiment in Figti® outlier is enabled. The outcome of these experiments is show
attacker sends 5 second bursts of traffic every 30 seconidsTable |. The results indicate that using the spatial eutli
This is similar to the attacks performed in [15], [16] whicldetection scheme has dramatically reduced the likelihdod o
targeted the TCP congestion control. Fig. 3 shows that usiodoosing a malicious parent since the number of times the
this technique the attacker can keep the system in a constailicious node was selected as a new parent is reduced from
churn as it keeps trying to stabilize itself. Despite theé that 172 to 70. The addition of the temporal outlier detection
the attacker was using only 5 second bursts of traffic, pargatther reduces this to only 35 times.
changes occurred in the overlay at almost every probe cycle.Our method also dramatically improved the stability of the
overlay in spite of the presence of the malicious node, as
measured by the decrease in total parent changes denoted in
We studied the effect multiple malicious nodes can have @fird column of Table I. In fact, the number of adaptations
the overlay topology. Having a malicious parent can result js comparable to the number of adaptations that would occur
a severe degradation of service if the malicious parentésci when no malicious nodes are present in the overlay.
to selectively drop data. In Fig. 4, we demonstrate the irhpac N ) ) )
malicious nodes that use their position in the tree can exert F. Coalitions of Attackers and Spatial Outlier Detection
the bandwidth of correct nodes. The graphs plot the bantiwidt The previous experiment demonstrated the effectiveness of
averaged over all receivers as a function of time. Malicioube spatial correlation for detecting outliers produced ey
nodes start dropping 100% of the data traffic received thHrougingle coalition containing one attacker. We now consitier t
the data dissemination tree fifteen minutes after they gbineonstrained collusion model presented in Section |I-B incih
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referred to as “Optimum BW, Latency”, the malicious nodes
can only lie about the latency and bandwidth and not the
RTT. The second case, referred to as “Optimum BW, Latency,
RTT”, the malicious nodes agree to lie consistently on a set
of predefined values: RTT of 0, latency of 0, and bandwidth
of 480 Kbps. Note that in order to influence the RTT, this
case requires that one malicious node indeed has an RTT of 0
with the victim and it can intercept all the RTTs of the other
nodes in the coalition. The third case, referred to as “Mean”
assumes that the attackers have the ability to share their
observed performance and compute and report the average of
their real metrics, again only bandwidth and latency. Thisec
requires strong coordination between the attackers, whigp

not always be possible during a probe cycle without creating
inconsistencies in measured probe times. We compare these
cases with the normal case, when no nodes are lying.

We summarize our findings for an ESM overlay of 118
nodes on PlanetLab in Fig. 6. The graph depicts the rank of
possible parents of a malicious node member of a coalition.
Note that it took a malicious coalition of 80% of the nodes
in a probe set in the first case and 60% of the nodes in
a probe set in the second case before a malicious node is
chosen as the next parent. This demonstrates the effegtisen

all faulty nodes are part of the same coalition. A coalitidn of the spatial outlier detection since both the number and
colluding attackers may attempt to bypass the outlier dierec type of metrics used by the outlier detection defense make
mechanism itself by shifting the centroid so they are ndt difficult for the attackers to maintain consistency. Ireth

perceived as outliers anymore. As a result, one of the mesnbévlean” case, 47% of the nodes needed to be in a coalition

of the malicious coalition will be selected as the parent.
We consider three colluding cases requiring different deede would be chosen. This demonstrates that if the attsicker

grees of coordination between the attackers. In the first,cabave more information, then they can reduce the amount of

before they could deterministically guarantee that a nale



work necessary for subverting the spatial outlier detectio Use of spatial and temporal correlationSpatial and tem-
mechanism. When compared with the normal case in which poral correlations were previously used in the context of
node exhibits malicious behavior, the “coalition” wouldlypn network security. A notable work in this aspect is [31] where
need to contain 40% of the nodes. Thus, lying about metri@jthors use temporal and spatial correlations to trace back
even with sophisticated coordination techniques, is n@éon attacks and detect attack scenarios, using a large amount of
an effective attack technique. The spatial outlier techaigge information from intrusion detection systems, firewallsda
describe constrains the behavior of attackers and redhees tdifferent software logs. Unlike the approach in [31], which
ability to artificially augment their influence on the system was more general, our work focuses on overlay networks and
does not look for correlations, but exploits the fact thagyth
G. Overhead and System Performance exist to detect inconsistent metrics and find suspiciougsod

Our outlier detection does not introduce any extra linksstre  Correlations have also been used in sensor network and ad-
since it uses information that is already being exchang@dc networks for the detection of malicious nodes [39], [40]
between nodes. The memory utilization for spatial correlddost of this research focused on the evaluation of off-line
tion only lasts for the span of a probe cycle and requirefata developed in a simulator. In our work, the correlat®n i
maintaining the observation tuple associated with eactef tactually incorporated in-line with the protocol as it tries
probed nodes, while the storage requirements consist eé thadapt. Analysis is performed on the Internet with real data
additional values in the route table for the peer set maiethi while fusing multiple correlations to improve our predieti
by each node. In the case of the temporal outlier detectien, tabilities. The work in [40] shows how to augment a sensor
memory usage consists of maintaining the temporal centroitetwork with spatio-temporal correlation to detect misinf
By incrementally updating the centroid, we do not need tmation being injected into the sensor streams. In our rebear
maintain the entire history for each probed node. The teaipowe are concerned with an attacker manipulating the control
outlier detection also requires modifying the route tabigies information in order to influence system adaptation.
to store nine additional values: mean, standard deviatind, = Malicious behavior in overlay networkhe problem of
count for each of the three metrics. malicious attackers was previously studied in the contéxt o
structured overlay networks. A subset of these types oflatta
referred to as Eclipse attacks [13], [14], was subsequently

Our work focuses on attacks exploiting measurement-basstddied in optimized structured file sharing overlays. The
adaptation in overlay networks and our solution uses cdscepolution enforces degree constraint invariants assatiatth
borrowed from anomaly detection. Below we review work imeighbors, supported by anonymous auditing, and takesiadva
several areas related to our research. tage of strong organizational neighbor constraints exisie

Attacks exploiting adaptivityPrevious work showed the such networks. As unstructured overlay networks do not have
vulnerability of the TCP adaptation mechanisms, i.e. ttsich constraints, the proposed solutions are not appéicabl
congestion control mechanism, to malicious attacks [15]. To the best of our knowledge, the problem of malicious
The authors showed that by manipulating the end-systenrisider attacks was not studied in the context of unstrectur
perception of network congestion, the adaptivity mechmanisoverlay networks. An attack performed by selfish attackers
could be used to perform a low-rate DOS attack with sevefiee. nodes that want to obtain an advantage but do not have
effects on TCP throughput. The attack was generalized destructive goals) was shown through simulations in [41it O
[16], as a form of low-rate ROQ attack targeting point-towork is differentin the fact that it considers maliciousaakers
point adaptive control loops that drive resource allocaind and presents results in the context of a real system in real
affect perceived service of a system (bandwidth, jitter).et deployments over the Internet.

Our work assumes a different, stronger adversarial model
in a distributed system, specifically overlay networks. The
nature of the attacks, application and deployment enviemtm In this paper we identified insider attacks that exploit
allows us to use a context sensitive observation space andasurement-based adaptation mechanisms in multicast ove
correlated information associated with the same inforomati lay networks. We discussed a comprehensive defense frame-
that drives the adaptation to detect and limit the effect @fork and presented an in-depth solution to a critical aspect
malicious behavior. of the problem: preventing poor adaptation decisions in net

Anomaly detection and Mahalanobis distanRecently the works influenced by attackers. Our solution lies in perfargni
benefits of the Mahalanobis distance for statistical angmaldpatial and temporal outlier analysis on measured and grobe
detection have been demonstrated in the context of netwanletrics to allow an honest node to make better use of avail-
intrusion detection [32], [38]. In [38] the authors present able information before making an adaptation decision. We
comparative study of detection schemes based on data minilggnonstrated the effectiveness of the newly identifiecclsta
techniques for network based intrusion detection. In [32nd the benefits of using our outlier detection and response
the authors discuss an unsupervised, payload-based ketwoechanisms in the context of ESM, a well-known adaptive
anomaly detector based on the Mahalanobis distance whiollticast overlay network. Our experiments conducted at-re
was used to detect attacks like worms. life deployments and emulations, demonstrate that althoug
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ESM employs an advanced set of adaptation mechanisms ifli§ A. Singh, T.-W. Ngan, P. Druschel, and D. Wallach, “Bsk attacks
unable to mitigate the attacks posed by a malicious adwersar
Previous research has demonstrated the inability of conveqy,

tional detection techniques to detect attacks on adaptive p

tocols. In this research, we have demonstrated the impzetaf-6]
of tightly coupling the detection space and the control spac
We showed that by incorporating context sensitive anomdty]

detection into the protocol, the detection mechanisms hayél ; .
] J. F. Nash, “The Bargain ProblenEtonometricavol. 18, pp. 155-162,

the

semantic understanding to improve the adaptive decis

on overlay networks: Threats and defenses Tl 23" Conference on
Computer CommunicationgBarcelona, Spain), April 2006.

A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-target DOS
attacks: the shrew vs. the mice and elephants3IBCOMM '03 2003.
M. Guirguis, A. Bestavros, and |. Matta, “Exploitingehransients of
adaptation for RoQ attacks on internet resources,The 12" |EEE
International Conference on Network Protocols (ICNP’02D04.
“Planetlab.” http://www.planet-lab.org/.

“Deter.” http://www.isi.edu/deter/.

1950.

process. Our experiments demonstrate that our techniq{ge$ D. G. Andersen, “Resilient overlay networks,” Mastethesis, Depart-
improve the adaptation process and the overall stabilithef
system while limiting the effect of malicious nodes.
Current work investigates the trade-offs and benefits afsha
ing information about malicious behavior using a two-stadé?l
response mechanism relying on local and global knowledge.
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