Flow Policies: Specification and Enforcement

E. Bertino

CERIAS
Purdue University
bertino@cerias.purdue.edu

Abstract

This paper deals with the problem of secure
cooperative updates for XML documents in distributed
systems. In particular, we introduce the basic notions
underlying a flow language by using which a user
can specify the flow that a given XML document has
to follow within a group of cooperating subjects. A
key feature of the flow language is to be based on
the notion of subject credentials. In addition, we
describe a policy language to specify special-purpose
authorizations allowing selected subjects to modify or
extend a given document flow. Finally, we briefly
describe the protocols for wverifying that the path
followed by a document in a collaborative group agrees
with the specified flow and to verify that modifications
on a giwen flow are in accordance with the specified
authorizations.

1 Introduction

The exchange of documents on the Web, in partic-
ular XML documents [5], in the framework of collab-
orative and distributed applications [6] involving dif-
ferent parties, such as subjects belonging to different
organizations, requires a proper infrastructure. In par-
ticular, confidentiality and integrity must be preserved
for documents flowing among different parties making
also sure that only authorized subjects be able to mod-
ify the documents. An approach to achieve such goals
is based on encrypting the document contents and on
generating some special-purpose control information,
that are used by a subject to locally check the in-
tegrity of the document portions for which it possesses
at least an authorization [1]. The encrypted document
and the corresponding control information form the so
called package. Another key requirement, that, up to
now, has not been widely investigated, when dealing
with distributed and collaborative applications, is the
support for the specification of document flow policies,
that is, policies regulating the set of subjects (hereafter
called collaborative group), that must receive a pack-
age during the update process. We believe that this is

E. Ferrari
DSCFM
University of Insubria
Elena.Ferrari@uninsubria.it

G. Mella
DICO
University of Milano
mella@dico.unimi.it

an important requirement since document updates in
many organizations must be governed by specific poli-
cies that reflect the internal rules of the organizations.
Many issues need to be addressed for achieving this
goal. First, a flow policy specification requires the de-
velopment of a high level specification language. The
main features of this language must be the possibil-
ity of generating totally or partially specified lists of
subjects that will have to receive a document in a dis-
tributed and cooperative update process and the pos-
sibility of specifying which subjects can extend a flow
policy by adding new receivers. We also believe that
the language must support flexible ways of qualifying
subjects, based on the notion of credentials. Secondly,
the updates to the original document and to the orig-
inal flow policy must be regulated by proper access
control policies and modification control rules, respec-
tively. These policies and rules must be specified by
the subjects, called here and in what follows origi-
nators, that have generated the documents and flow
policies. Thus, the originators have to specify who
can modify which portions of a particular document
or flow policy and which privileges can be exercised
over them. Finally, a proper infrastructure is required
for the decentralized enforcement of the stated policies
and rules.

In this paper, we propose an approach to these is-
sues. Our approach is based on the generation of some
control information, that are attached to the docu-
ment and updated as the document flows, and that
make a subject able to locally check the correctness
of the path followed by the document till that point
and of the modifications performed over it. We first
present the language we have developed for specify-
ing flow policies and modification control rules. Then,
we present the architecture and related protocols that
we have developed for supporting distributed and col-
laborative update processes for XML documents (see
Figure 1). The architecture includes a Parser, that an-
alyzes the document and the corresponding flow policy.
It applies the access control policies to the document,

— Control0
— % packagel] InformationC]
Flow Policy[%} structurel]
Parserl]
EncryptionC
Module ||~
documentd -
Policy Base[l | | Rule Basell
corruptedd
document
Recovery[] packegel’
Manager[Dispatcher
correctl
documentd % subjectsD] %%
packagel]

Figure 1: Distributed update of documents: overall schema

grouping together the portions to which the same set
of access control policies apply. Then, it applies the
modification control rules to the flow policy portions
grouping them according to the set of rules that ap-
ply to those portions. As a result of this first step
we have the package structure containing the docu-
ment and the flow policy portions grouped according
to the above-mentioned strategy. Then, the Encryp-
tion module, another relevant component of our archi-
tecture, encrypts the document portions using a dif-
ferent key for each generated group, for confidentiality
purposes. Then, the Control Information Generator
generates some control information for both the doc-
ument and the flow policy. Finally the encrypted doc-
ument, the flow policy and all the control information
are inserted in the package by the Dispatcher module.
This module is also in charge of sending the package
to the first chosen subject in the collaborative group.
The Recovery module receives recovery requests from
the subjects and sends back the last correct version of
the received corrupted package.

Since in a previous paper [2] we have already pre-
sented an approach to distributed and collaborative
updates of XML documents, in this paper we focus on
flow policy management.

The approach we present is based on the follow-
ing assumptions: 1) all the originators are considered
trusted; 2) a package can be sent to only one sub-

sequent receiver; 3) no loss of messages, that is each
message sent to a subject is certainly received.

To the best of our knowledge, the work reported
in this paper is the first addressing the problem of flow
policy management in distributed systems. This work
is part of the Author-X project [3], whose aim is to
provide a comprehensive system for the protection of
XML documents.

The remainder of this paper is organized as fol-
lows. Section 2 presents the flow policy modifica-
tion model on which our approach relies, introduc-
ing also the flow policy specification language. Sec-
tion 3 presents the control information required by
our approach for the integrity check of the flow pol-
icy content, whereas Section 4 introduces the informa-
tion inserted in the package by the subjects that have
modified the document/flow policy content. Finally,
Section 5 presents the protocols at the originator and
receiver sides, whereas Section 6 concludes the paper.

2 Flow Policy Modification Control
Model

A modification control model is necessary to spec-
ify who can modify which portions of a flow policy and
how it can do that. Before presenting our flow policy
modification control model we need to better intro-
duce the concept of flow policy. A flow policy contains
the sequence of subjects that must receive the pack-

age with which it is associated. This sequence can be
fully specified in advance, at the beginning of the up-
date process, or partially specified when the process
starts and then modified and extended by authorized
subjects. A flow policy attachment does not neces-
sarily contain the univocally specified list of receivers,
but it can contain some receiver specifications, that is,
sets of properties that have to be verified by the re-
ceivers. Each receiver specification can also contain
some alternative receiver profiles, specified by using
an XML-based language called X-Sec [4]. A receiver
is considered legal for a particular receiver specifica-
tion if it satisfies at least one of the receiver profiles
that belong to that specification. Our flow policy spec-
ification language enables also an originator to grant
a receiver the permission of extending a flow policy
by inserting a sub-flow policy. This is supported by
associating the value subpath, that enables an inser-
tion, or nosubpath, that denies an insertion, with a
receiver profile. This value is denoted as an extension
specification.
Example 1 An example of flow policy is the follow-
mg:
<{rs1,(rpl,"//vice_manager [@Department="R&D"]",
subpath), (rp2, "//secretary[@Department="R&D"]",
nosubpath)}, {rs2,(rp3,"//accountant[@level="third"]",
subpath) }, {rs3,(rp4,"//company_director", subpath)}>
which specifies that the first receiver must be a vice
manager or a secretary of the "RED” Department;
the second receiver must be a third level accountant;
whereas the third receiver must be a company director.
Moreover, the flow policy specifies that whereas vice
managers, accountants and company directors are
entitled to insert a new sub-policy into this flow policy,
secretaries are not enabled to do so.
{rs1, (rp1,"//vice_manager [@Department="R&D"]",subpath),
(rp2,"//secretary[@Department="R&D"]", nosubpath)} 18
an example of receiver specification consisting of two
receiver profiles:
(rp1,"//vice_manager [@Department="R&D"]" ,subpath) and
(rp2, "//secretary[@Department="R&D"]", nosubpath).

Our modification control model consists of a set of
modification control rules specified in terms of subjects
that can modify a flow policy, a privilege that can be
exercised by authorized subjects, an object on which
the privilege can be exercised, and some propagation
options, to reduce the number of rules to be specified.
Subjects. In our model subjects are qualified by
means of conditions specified against credentials. Fig-
ure 2 shows an example of XML credentials specified
according to X-Sec [4]. Each subject has one or more

credentials, issued by different Certification Author-
ities (CAs). Conditions specified on credentials are
denoted as credential expressions, and are specified by
means of an XPath-based language [7].

<vice_manager cid=“50">
<name>
<Fname> Jim </Fname>
<Ilname > Mason </lname>
</name>
<age> 52 </age>
<department> R&D < /department>
<salary> 9,000 < /salary>
<category > Top Executive </category>
< /vice_manager>

<secretary cid=“12", vice_manager=“50" >
<name>
<Fname> Alice </Fname>
<Iname > Brown </lname>
</name>
<age> 38 </age>
<department> R&D < /department>
<salary> 2,000 </salary>
<level > third </level>
<duty > vice_manager secretary </duty>
< /secretary>

Figure 2: Examples of XML credentials

Privileges. The privileges supported by our model
are delete and update. The first privilege can be ex-
ercised over one or more receiver specifications or over
one or more receiver profiles; whereas the second can
be exercised only over the credential expressions that
describe the receiver profiles or the extension specifi-
cations.

Objects. Objects to which a modification control
rule applies can be receiver specifications, receiver pro-
files, credential expressions, and extension specifica-
tions, according to the privilege specified in the rule,
as discussed above.

Propagation options. Finally, our model supports
the definition of two propagation options: PROP and
NO_PROP. The propagation option PROP causes the ap-
plication of a rule to the specified object and to all
the objects that compose it, whereas NO_PROP causes
the application of a rule to the specified object only.
The set of rules specified for the flow policies generated
by a flow policy’s originator are locally stored into a
repository called Rule Base (RB).

Example 2 Ezamples of rules referred to the flow pol-
icy of Example 1 are the following:
<(r_idl,delete,//vice_manager[@cid="50"],rp3,NO_PROP),
(r_id2,update,//vice_manager [@cid="50"],rp4,PROP) >

The first rule allows vice_manager Jim (see Figure 2)
to delete the receiver profile contained in the second re-
ceter specification, whereas the second rule allows the
same subject to update the credential expression and
the extension specification associated with the receiver

profile contained in the third receiver specification. o

3 Flow Policy Control Information

To correctly enforce the modification of the flow
policy portions and to allow a receiver to locally check
the integrity of those portions, we need to associate
with a flow policy some control information, referred
to as flow policy attachment. Flow policy portions are
grouped together according to the set of rules that ap-
ply to them forming some regions. All the flow policy
portions to which no rule applies belong to a unique
non-modifiable region, whereas the other portions be-
long to modifiable regions. Control information associ-
ated with the non-modifiable region consists of a hash
value computed over all the flow policy portions that
belong to that region. To protect the authenticity of
this information the flow policy’s originator encrypts
this hash value with its private key.

Before presenting the control information associ-
ated with modifiable regions we have to introduce the
concept of flow policy modification certificate. A flow
policy modification certificate is generated by the flow
policy’s originator according to the rules in RB. Given
a modification control rule mer belonging to RB and
a subject sbj to which mer applies a flow policy modi-
fication certificate, generated for sbj according to mcr,
contains the following information: the sbj’s public key
(sbj-pubkey), the privilege contained in mer (priv),
and the set of regions and corresponding flow policy
portions, to which mecr applies. Each certificate is
signed by the flow policy’s originator with its private
key for authentication purpose and distributed to the
subject to which it belongs to.

Modifiable regions can be classified in three dif-
ferent categories: updatable, deletable, and updatable-
deletable regions. Updatable regions contain flow pol-
icy portions to which only rules containing the update
privilege apply. Deletable regions contain flow pol-
icy portions to which only rules containing the delete
privilege apply. Whereas updatable-deletable regions
contain flow policy portions to which rules containing
both delete and update privilege apply. Control infor-
mation associated with a modifiable region is different
according to the corresponding category. For exam-
ple, a signature is computed by the last subject that
has updated an updatable region ur on the flow policy
portions belonging to ur itself and inserted in the flow
policy attachment. A modifiable region also contains a
set of flow policy modification certificates used by the
subsequent receivers to verify that the modifications
executed till that point over the region are correct wrt
the specified policies and rules.

4 Receiver Declarations

A subject that has received a package can exercise
on the document and/or on the flow policy portions
the privileges contained in the document/flow policy
modification certificates that it has received by the
originators. The j* receiver of a package must sat-
isfy the j*" receiver specification in the flow policy to
be a valid receiver. To allow subsequent receivers to
check that it is really a valid j** receiver, it has to
insert within the j** receiver specification rs one of
its credentials that satisfies at least one of the creden-
tial expressions associated with the alternative receiver
profiles belonging to rs. Moreover, it has to specify
the identity of the next receiver. Finally, it can also
insert two types of declarations within rs: a document
modification declaration and/or a flow policy modifica-
tion declaration. The former declaration contains the
list of all modification operations executed over doc-
ument portions. Each declared operation is given in
terms of the executed privilege and list of modified
document portions. A corresponding certificate must
be inserted in the modified region in the proper region
control component. The latter declaration is similar to
the former one, indeed also in this case it contains the
list of modification operations executed over the flow
policy. A corresponding flow policy modification cer-
tificate must be inserted in the proper region. Before
sending the updated package to the next receiver it has
also to sign the whole rs’s content for authentication
and integrity purposes. All the declarations stored in
the flow policy form the so called modification history
of both the document and the flow policy.

To prevent a subject sbj that has received several
times the same package from sending an old package
version to another subject, each receiver sends its cur-
rent version of the flow policy attachment to all the
other subjects involved in the distributed and collab-
orative update process.

Example 3 Figure 8 shows the package received by
the first subject involved in a distributed and collab-
orative process and the updated package sent by this
subject to the subsequent one. In particular, the first
subject deletes a receiver profile belonging to the third
receiver specification, according to the flow policy mod-
ification certificate (fpmcl) that it has received by the
proper flow policy originator. It also inserts in the
flow policy attachment the required information before
signing the content of its corresponding receiver spec-
ification (i.e., the first one) and then it inserts in the
package the used certificate in the proper flow policy

region (fpaR2). 0O

si0]

packagel]

documentd

rs20]

—I rp4D|——

ol
-

FPMD]

declaration

receiver Cspecificaton[]
receiver profiled
inserted credentialsC)
next subjectd]

| document modification(]
declaration]

region RO

packagel]
e % E—
document[
executed operations.[]
- deletion(J of receiver profile:d
rsid rs20) r,gf rsgl] rp7
rpl[l|———| rp4D|—— 6l — 00—
A
: cou
- delete,0 fpaR2[Iip70
flow policy modification(
9 certificates possessed by s1ET]
-[pmcl0= (delete,d PKIs
fpaR20 fpaR20p700]
..
LEGENDO flow policy modificationd

| signature computed by(]
subject son the content[d
contained in the boxO
control information associated(
with flow policy attachment[

flow policy portionsd
belonging told fpaR20

fpaR20] fpmcl0d

Figure 3: Package received by a subject and then sent after execution of some modifications

5 Protocols

In this section we present the protocols executed
by a receiver to check the integrity of a package and
to exercise privileges on the document or flow poli-
cies, and the protocols executed by the originators to
recover a corrupted package version.
5.1 Receiver Protocol

A subject sbj upon receiving a package executes
the integrity check procedure to detect possible cor-
ruptions to the package content. First, the flow pol-
icy and the document are analyzed. Since a subject
has received by the subjects that have already received
the package the corresponding flow policy attachments
and it has saved the correct one with the highest num-
ber of receivers, it is enabled to check if the flow policy
contained in the received package contains or not all
those receivers that have notified their package recep-
tion. If this correspondence is not verified an error
occurs and sbj sends a flow policy recovery request to
the originator of the flow policy (or sub-flow policy)
that contains the sender of the received package. The
same activity is executed if during the flow policy in-
tegrity check an error occurs. Moreover, if an error

occurs during the document integrity check process a
recovery request is sent to the document’s originator to
obtain a package that contains the last correct version
of the corrupted regions. The integrity verification is
based, in both cases, on the check that the current con-
tent is the result of the execution of all and only the
operations declared in the flow policies by the previous
receivers starting from the original content and that
such modification operations are legal wrt the poli-
cies and the rules stored respectively in the repository
called Policy Base(PB) and RB of the originators.
5.2 Originator Protocol

An originator in our approach is in charge of gen-
erating documents and/or flow policies, all the corre-
sponding control information and all the needed cer-
tificates. It has also to take care of sending the decryp-
tion keys associated with document regions, document
modification certificates, and flow policy modification
certificates to the proper subjects. Moreover, an orig-
inator has to manage recovery requests received by
subjects involved in the update process. If it receives
a flow policy recovery request regarding the delivery
of an old version of a package or concerning an er-

ror affecting a region in a (sub-)flow policy, the orig-
inator sends a message to each subject stored in the
flow policy attachment that it has locally saved, to
obtain a package containing a correct flow policy ver-
sion, starting from the last subject in the flow pol-
icy and going backwards. The process ends when the
originator receives a package satisfying the required
property. Once the package has been recovered, as
last step, the originator sends to the subject sbj from
which it has received that package the request of send-
ing that package to a different receiver. The originator
also notifies all the other subjects that sbj will send the
rebuilt package to a receiver subject that it chooses.
Note that such a chosen receiver must be different from
the subject to which the package had been sent before
by sbj. If the originator receives a document recov-
ery request for a document that it has generated, it
sends a message to each subject stored in the flow pol-
icy attachment that it has locally saved to obtain a
package containing the last correct version of one or
more corrupted regions, starting from the last subject
in the flow policy and going backwards. The process
ends when the originator collects from the received
packages the last correct version of all the corrupted
regions. Then, it inserts in the package received by
the subject s who sent the recovery request all these
correct region versions and it sends back this updated
package to s. Finally, the originator notifies all the
other subjects the set of document modification dec-
larations that must no longer be considered for docu-
ment integrity check.

6 Concluding Remarks

In this paper we have presented how a distributed
and collaborative update process can support specifi-
cation and modification of flow policies. In particular
we have shown the flow policy modification control
model that regulates who can modify a flow policy
or its portions and the infrastructure needed to en-
force a correct exercise of the privileges supported by
our model. We plan to extend this work along two
main directions. First, a feature that we intend to ad-
dress is the possibility, for a receiver, of entering, in the

flow policy attachment, only the required information
needed to guarantee that it is a valid receiver, instead
of a whole credential. Secondly, we plan to implement
a prototype system and test the performance and the
overhead implied by our solution.

References
[1] E.Bertino, E.Ferrari, G.Mella, “A Framework

for Distributed and Cooperative Updates of XML
Documents”, Proc. of the 16th Annual IFIP WG

11.8, Working Conference on Data and Applica-
tion Security, Cambridge, UK, July 2002.

[2] E.Bertino, E.Ferrari, G.Mella, “An Approach to
Cooperative Updates of XML Documents in Dis-
tributed Systems”, Technical Report, DICO, Uni-
versity of Milano, 2003.

[3] E. Bertino, B. Carminati, E. Ferrari, G. Mella,
“Author-X - A System for Secure Dissemina-
tion and Update of XML Documents”, Proc.
of Third International Workshop on Databases
in Networked Information Systems (DNIS 2003),
Aizu, Japan, September 2003.

[4] E. Bertino, S. Castano, E. Ferrari, “On Specify-
ing Security Policies for Web Documents with an
XML-based Language”. Proc. of the ACM Sympo-
stum on Access Control Models and Technologies
(SACMAT’2001), Fairfax, VA, May 2001.

[5] World Wide Web Consortium. Ex-
tensible ~ Markup Language (XML) 1.0,
(Second Edition) 2000. Available at
http://www.w3.org/TR/2000/REC-xm1-20001006.

[6] B.Thuraisingham, A. Gupta, E.Bertino, E.Ferrari,
“Collaborative Commerce and Knowledge Man-
agement Across Borders”, Knowledge and Pro-
cess Management, Vol.9, No. 1, pp. 43-53, January
2002.

[7] World Wide Web Consortium. XML Path
Language (Xpath), 1.0, 1999. Available at:
http://www.w3.org/TR/1999/REC-xpath-199911186.

