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ABSTRACT

In today’s digital world securing different forms of content is very important in terms of protecting copyright
and verifying authenticity. Many techniques have been developed to protect audio, video, digital documents,
images, and programs (executable code). One example is watermarking of digital audio and images. We believe
that a similar type of protection for printed documents is very important. The goals of our work are to securely
print and trace documents on low cost consumer printers such as inkjet and electrophotographic (laser) printers.
We will accomplish this through the use of intrinsic and extrinsic features obtained from modelling the printing
process. In this paper we describe the use of image texture analysis to identify the printer used to print a
document. In particular we will describe a set of features that can be used to provide forensic information about
a document. We will demonstrate our methods using 10 EP printers.
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1. INTRODUCTION

In today’s digital world securing different forms of content is very important in terms of protecting copyright and
verifying authenticity.1–7 One example is watermarking of digital audio and images. We believe that a marking
scheme analogous to digital watermarking but for documents is very important.1 Printed material is a direct
accessory to many criminal and terrorist acts. Examples include forgery or alteration of documents used for
purposes of identity, security, or recording transactions. In addition, printed material may be used in the course
of conducting illicit or terrorist activities. Examples include instruction manuals, team rosters, meeting notes,
and correspondence. In both cases, the ability to identify the device or type of device used to print the material
in question would provide a valuable aid for law enforcement and intelligence agencies. We also believe that
average users need to be able to print secure documents, for example boarding passes and bank transactions.

There currently exist techniques to secure documents such as bank notes using paper watermarks, security
fibers, holograms, or special inks.8, 9 The problem is that the use of these security techniques can be cost
prohibitive. Most of these techniques either require special equipment to embed the security features, or are
simply too expensive for an average consumer. Additionally, there are a number of applications in which it is
desirable to be able to identify the technology, manufacturer, model, or even specific unit that was used to print
a given document.

We propose to develop two strategies for printer identification based on examining a printed document. The
first strategy is passive. It involves characterizing the printer by finding intrinsic features in the printed document
that are characteristic of that particular printer, model, or manufacturer’s products. We shall refer to this as the
intrinsic signature. The intrinsic signature requires an understanding and modeling of the printer mechanism,
and the development of analysis tools for the detection of the signature in a printed page with arbitrary content.

The second strategy is active. We embed an extrinsic signature in a printed page. This signature is generated
by modulating the process parameters in the printer mechanism to encode identifying information such as
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Figure 1. Diagram of the EP process: (A) charging, (B) exposure, (C) development, (D) transfer, (E) fusing, (F) cleaning

the printer serial number and date of printing. To detect the extrinsic signature we use the tools developed
for intrinsic signature detection. We have successfully been able to embed information into a document with
electrophotographic (EP) printers by modulating an intrinsic feature known as “banding”. This work in is
discussed in.10

We have previously reported techniques that use the print quality defect known as banding in electrophoto-
graphic (EP) printers as an intrinsic signature to identify the model and manufacturer of the printer.11–13 We
showed that different printers have different sets of banding frequencies which are dependent upon brand and
model. This feature is relatively easy to estimate from documents with large midtone regions. However, it is
difficult to estimate the banding frequencies from text. The reason for this is that the banding feature is present
in only the process direction and in printed areas. The text acts as a high energy noise source upon which the
low energy banding signal is added.

One solution which we have previously reported in14 is to find a feature or set of features which can be
measured over smaller regions of the document such as individual text characters. If the print quality defects
are modeled as a texture in the printed areas of the document then texture features can be used to classify the
document. These types of features can be more easily measured over small areas such as inside a text character.

2. EP PRINTING PROCESS

Our current work has focused on intrinsic feature detection of EP (laser) printers. In order to gain insight into
the types of features that can be used to describe these printers, an understanding of the EP printing process is
necessary. The first thing to note is that in the printed output from any printer there exist defects caused by
electromechanical fluctuations or imperfections in the print mechanism.12 Because these “print quality defects”
are directly related to the printer mechanism, they can also be viewed as an intrinsic signature or feature of the
printer.

Figure 1 shows a side view of a typical EP printer. The print process has six steps. The first step is to
uniformly charge the optical photoconductor (OPC) drum. Next a laser scans the drum and discharges specific
locations on the drum. The discharged locations on the drum attract toner particles which are then attracted
to the paper which has an opposite charge. Next the paper with the toner particles on it passes through a fuser
and pressure roller which melt and permanently affix the toner to the paper. Finally a blade or brush cleans any
excess toner from the OPC drum.

In EP printing, some causes of the artifacts in the printed output are fluctuations in the angular velocity of
the OPC drum, gear eccentricity, gear backlash, and polygon mirror wobble. These imperfections in the printer



Entropy
Variance/

Features

GLCM

1 Feature Vector per Character

Individual

Characters

Output

Class

Majority

Vote

5NN Classifier
Extract

Features

Extract

Characters

Document

Unknown

Figure 2. System diagram of printer identification scheme

are directly tied to the electromechanical properties of the printer and create corresponding fluctuations in the
developed toner on the printed page.15, 16 These fluctuations in the developed toner can be modeled as a texture.
We will use gray-level co-occurrence features to describe the texture and identify the printer which created a
document.

3. SYSTEM OVERVIEW

Figure 2 shows the block diagram of our printer identification scheme. Given a document with an unknown
source, referred to as the unknown document, we want to be able to identify the printer that created it. For
our test purposes we will use our Forensic Monkey Text Generator (FMTG) described in11 to create random
documents with known statistics to be classified.

The first step is to scan the document at 2400 dpi with 8 bits/pixel (grayscale). Next all the letter “e”s in
the document are extracted. The reason for this is that “e” is the most frequently occurring character in the
English language. A set of features are extracted from each character forming a feature vector for each letter “e”
in the document. Each feature vector is then classified individually using a 5-Nearest-Neighbor (5NN) classifier
as described in.17

The 5NN classifier is trained with 5000 known feature vectors. The training set is made up of 500 feature
vectors from each of 10 printers listed in Figure 3. Each of these feature vectors are independent of one another.
To classify an unknown feature vector X, the euclidean distances between X and all the known feature vectors
are obtained. A majority vote among the 5 smallest distances provides the classification result.

Let Ψ be the set of all printers {α1, α2, · · · , αn} (in our work these are the 10 printers shown in Figure 3).
For any φǫΨ, let c(φ) be the number of “e”s classified as being printed by printer φ. The final classification is
decided by choosing φ such that c(φ) is maximum. In other words, a majority vote is performed on the resulting
classifications from the 5NN classifier.



Manufacturer Model DPI

Brother hl1440 1200
HP lj4050 600
Lexmark e320 1200
HP lj1000 600
HP lj1200 600
HP lj5M 600
HP lj6MP 600
Minolta 1250W 1200
Okidata 14e 600
Samsung ml1430 600

Figure 3. Printers used for classification.
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4. GRAYLEVEL CO-OCCURRENCE TEXTURE FEATURES

We want to be able to determine a set of features that can be used to describe each printer uniquely by observing
an example of the output of the printer. We will treat the output scanned document as an “image” and use
image analysis tools to determine the features that characterize the printer. We will accomplish this by extracting
features from individual printed characters, in particular an “e”. Each character is very small, about 180x160
pixels and is non-convex, so it is difficult to perform any meaningful filtering operations in either the pixel or
transform domain if we are interested only in the printed region of each character. As described in Section 2,
the printed areas of the document have fluctuations which can be viewed as texture. To model the texture we
used graylevel co-occurrence texture features as described in18, 19 as well as two pixel based features.

Graylevel co-occurrence texture features assume that the texture information in an image is contained in the
overall spatial relationships among the pixels in the image.18 This is done by first determining the Graylevel
Co-occurrence Matrix (GLCM). This is an estimate of the second order probability density function of the pixels
in the image. The features are then statistics obtained from the GLCM.

We assume that the texture in a document is predominantly in the process direction.14 Figure 4 shows an
idealized character, Img(i, j), from which features are extracted. The region of interest (ROI) is the set of all
pixels within the printed area of the character. The determination of this region involves morphological filtering
and is discussed in.11

We define the number of pixels in the ROI to be

R =
∑

(i,j)ǫROI

1. (1)

We then estimate the Gray-Level Co-occurrence Matrix (GLCM). This matrix, defined in Equation 2, has entries
glcm(n,m) which are equal to the number of occurrences of pixels with graylevels n and m respectively with a
separation of (dr,dc) pixels (see Figure 5). The number of pixels over which this estimate is obtained is given
by Equation 3. If the GLCM is normalized with respect to Rglcm, its entries then represent the probability of
occurrence of pixel pairs with graylevels n and m with separation (dr,dc). We will choose dc = 0 and vary dr

between 1 and 10.

glcm(n,m) =
∑

(i,j),(i+dr,j+dc)ǫROI

1{Img(i,j)=n,Img(i+dr,j+dc)=m} (2)

Rglcm =
∑

(i,j),(i+dr,j+dc)ǫROI

1 (3)
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pglcm(n,m) =
1

Rglcm

glcm(n,m) (4)

Twenty features are obtained from the GLCM. The first four are the marginal means and variances defined
by Equations 7-10 which are estimated from the marginal probability densities defined by Equations 5 and 6.

pr(n) =

255∑

m=0

pglcm(n,m) (5)

pc(n) =
255∑

m=0

pglcm(n,m) (6)

µr =

255∑

n=0

pr(n) (7)

µc =

255∑

m=0

pc(m) (8)

σ2
r =

255∑

n=0

n2pr(n) − µ2
r (9)

σ2
c =

255∑

m=0

m2pc(m) − µ2
c (10)

The next seven features are the energy of the normalized GLCM, three entropy measurements, the maximum
entry in the GLCM, and two correlation metrics. These are defined by Equations 11- 17.

Energy =

255∑

n=0

255∑

m=0

p2
glcm(n,m) (11)

hxy1 = −
255∑

n=0

255∑

m=0

pglcm(n,m) log2(pr(n)pc(m)) (12)



hxy2 = −
255∑

n=0

255∑

m=0

pr(n)pc(m) log2(pr(n)pc(m)) (13)

hglcm = −
255∑

n=0

255∑

m=0

pglcm(n,m) log2 pglcm(n,m) (14)

MaxProb = max
n,m

{pglcm(n,m)} (15)

ρnm =
255∑

n=0

255∑

m=0

(n − µr)(m − µc)pglcm(n,m)

σrσc

(16)

diagcorr =

255∑

n=0

255∑

m=0

|n − m|(n + m − µr − µc)pglcm(n,m) (17)

Four features, Equations 19- 22, are obtained from the difference histogram defined by Equation 18. They
are the energy, entropy, inertia, and local homogeneity of D(k) respectively.

D(k) =
∑

0≤n≤255
0≤m≤255
|n−m|=k

pglcm(n,m) (18)

Denergy =

255∑

k=0

D(k) (19)

hD = −

255∑

k=0

D(k) log2 D(k) (20)

ID =

255∑

k=0

k2D(k) (21)

hD =

255∑

k=0

D(k)

1 + k2
(22)

The last five features, Equations 25- 29, are obtained from the sum histogram defined by Equation 23. They
are the energy, entropy, variance, cluster shade, and cluster prominence of S(k) respectively.

S(k) =
∑

0≤n≤255
0≤m≤255
n+m=k

pglcm(n,m) (23)

µS =

510∑

k=0

kS(k) (24)

Senergy =
510∑

k=0

S(k) (25)



hS = −
510∑

k=0

S(k) log2 S(k) (26)

σ2
S =

510∑

k=0

(k − µS)2S(k) (27)

AD =

510∑

k=0

(k − µr − µc)
3S(k)

(σ2
r − σ2

c + 2rσrσc)
3

2

(28)

BD =

510∑

k=0

k − µr − µc)
4S(k)

(σ2
r − σ2

c + 2rσrσc)2
(29)

In addition to the 20 graylevel features above, two simple features are also included and defined in Equations 31
and 33. These are the variance and entropy of the pixel values in the ROI.

µImg =
1

R

∑

(i,j)ǫROI

Img(i, j) (30)

σ2
Img =

1

R

∑

(i,j)ǫROI

(Img(i, j) − µImg)
2 (31)

pImg(α) =
1

R

∑

(i,j)ǫROI

1{Img(i,j)=α} (32)

hImg = −

255∑

α=0

pImg(α) log2 pImg(α) (33)

5. RESULTS

Using our FMTG, we estimated that in a page of English text printed at 12 point font there are on average 458
“e”s per page. For a 10 point font there are on average 630 “e”s per page. To test our classification technique we
use a test document containing 300 “e”s. This document is printed on each of our test printers and scanned at
2400dpi. Each scanned document is then classified using values of dr between 1 and 10, providing 10 classification
results for each document.

Using all 22 features, we decide which dr will give the best performance by examining the percent correct
classification after the 5NN classifier as shown in Figure 6(a). From this plot we find that the dr which provides
the best classification results is dr = 2. The classification matrix for this choice of dr is shown in Figure 8. Each
entry of the matrix is the number of “e”s out of the 300 in the test document which were classified as the printer
listed at the heading of its column. For example, examining the first row we see that 197 “e”s, printed from the
Brother HL-1440 were classified correctly. The second highest number of “e”s were classified as being printed
by the Minolta 1250W. A majority vote indicates that this document was most likely printed by the HL-1440,
which is correct.

Again let c(φ) be equal to the number of “e”s from any one unknown document classified as being printed by
printer φ. Furthermore let c(φ1) be the greatest among all classes, and c(φ2) be the second greatest. Then we
say that the final classification resulting from the majority vote among the c(φ) has a higher confidence if the
ratio between c(φ1) and c(φ2) is larger. In this case, all the printers are classified correctly and with a relatively
high confidence with the exception of the Okidata 14e, which is classified as being a Minolta 1250W.
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Figure 6. Percent correct classification after the 5NN classifier for various dr

The classification is repeated using 4 manually chosen features. These features are σ2
Img, hImg, µr, and

Energy. We find from Figure 6(b) that the best choice of dr in this case is 2. Scatter plots of these features
which show good separation between all ten printers are shown in Figures 7(a) and 7(b). The HP LaserJet 4050
is a higher quality printer compared to the others in our test set, and the graylevel variance of its output is very
low, moving all of its data points to the far left of Figure 7(a) off the graph.

6000 6500 7000 7500 8000

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

σ
Img
2

h Im
g

σ
Img
2  vs. h

Img
 for 10 printers. dr=1

hl1440
lj4050
e320
lj1000
lj1200
lj5M
lj6MP
1250W
14e
ml1430

(a) σ2

Img vs hImg

65 70 75 80 85 90
2

3

4

5

6

7

8

9

10
x 10

−3

µ
r

E
ne

rg
y

µ
r
 vs. Energy for 10 printers. dr=1

hl1440
lj4050
e320
lj1000
lj1200
lj5M
lj6MP
1250W
14e
ml1430

(b) µr vs Energy

Figure 7. Scatter plots for 4 manually chosen features

The classification results for these four features are shown in Figure 9. All the printers are classified correctly
with the exception of the HP LaserJet 1200 which is classified as being an HP LaserJet 1000. This is reasonable



In\Out hl1440 lj4050 e320 lj1000 lj1200 lj5M lj6MP 1250W 14e ml1430 Majority Vote

hl1440 207 0 1 2 0 13 4 52 17 4 hl1440

lj4050 0 300 0 0 0 0 0 0 0 0 lj4050

e320 1 0 257 0 2 0 0 26 14 0 e320

lj1000 5 0 1 137 59 8 14 12 8 56 lj1000

lj1200 5 0 1 90 128 21 7 8 4 36 lj1200

lj5M 62 0 0 5 8 175 22 18 8 2 lj5M

lj6MP 37 0 12 23 6 31 147 33 4 7 lj6MP

1250W 34 0 40 2 1 8 1 179 32 3 1250W

14e 85 0 21 3 2 2 5 118 63 1 1250W

ml1430 7 0 5 71 14 14 19 7 23 140 ml1430

Correctly Classified 

Incorrectly Classified 

Bold = 2
nd

 highest classification 

123

123

Figure 8. Classification results using 22 features and dr = 2

In\Out hl1440 lj4050 e320 lj1000 lj1200 lj5M lj6MP 1250W 14e ml1430 Majority Vote

hl1440 156 0 2 3 2 18 12 71 32 4 hl1440

lj4050 0 300 0 0 0 0 0 0 0 0 lj4050

e320 0 0 282 0 0 1 0 13 4 0 e320

lj1000 8 0 0 137 89 25 31 8 0 2 lj1000

lj1200 9 0 1 145 93 31 15 5 0 1 lj1000

lj5M 42 0 1 6 10 199 20 22 0 0 lj5M

lj6MP 34 0 24 67 37 39 68 20 0 11 lj6MP

1250W 43 0 105 0 1 24 11 114 2 0 1250W

14e 90 0 36 0 0 0 1 32 120 21 14e

ml1430 36 0 1 15 5 0 35 5 55 148 ml1430

Correctly Classified 

Incorrectly Classified 

Bold = 2
nd

 highest classification 

123

123

Figure 9. Classification results using 4 features and dr = 2

since these two printers we believe use the same print engine.

We can not say that the results obtained using 4 features are the same or better than when using all 22
features. The reason is that the confidence in the classification results using 4 features is in general lower than
when using all the features. For example, the ratio between c(φ1) and c(φ2) for the Minolta 1250W when using
22 features is higher than in the 4 feature case. Similarly the HP LaserJet 6MP, Minolta 1250W, and Okidata
14e all have lower confidence in their classification results despite the fact that they are classified correctly when
using only 4 features.

6. CONCLUSION

Printer identification using graylevel co-occurrence texture features shows promising results. Although in Figure 8
we demonstrated good results, we would like to go further and reduce the number of features needed. Clearly
this is possible given the results in Figure 9 using only 4 of the 22 original features. Our preliminary results



indicate that some of the features may be redundant. Further work needs to be done in constructing an optimal
feature set.

It is important to note that the technique presented requires that prior information about the printers in
question be known. If the unknown document was printed by a printer which is not included in the classifier
training data set, then it will be mistakenly classified as one of the known printers.

It will also be important to extend this technique to work with multiple font sizes, font types, and also different
characters. Some preliminary results show that our method is independent of font type and size with training,
but that cross font and size testing has mixed results. Using our current system to classify a document using
all the characters contained in it, not just “e”s, would require a separate 5NN classifier block for each character.
This increases the complexity of the classifier. Ideally we would like a subset of features, or techniques for
estimating the GLCM which are independent of character, font size, and font type.

Additionally, techniques for documents containing color and images as well as documents created by ink jet
printers need to be investigated.
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