
On the Accuracy of Decentralized Virtual Coordinate
Systems in Adversarial Networks

David John Zage
Department of Computer Science

Purdue University
West Lafayette, IN 47907 USA
zagedj@cs.purdue.edu

Cristina Nita-Rotaru
Department of Computer Science

Purdue University
West Lafayette, IN 47907 USA

crisn@cs.purdue.edu

ABSTRACT
Virtual coordinate systems provide an accurate and efficient
service that allows hosts on the Internet to determine the
latency to arbitrary hosts without actively monitoring all
nodes in the network. Many of the proposed virtual co-
ordinate systems were designed with the assumption that
all of the nodes in the system are altruistic. However, this
assumption may be violated by compromised nodes acting
maliciously to degrade the accuracy of the coordinate sys-
tem. As numerous peer-to-peer applications rely on virtual
coordinate systems to achieve good performance, it is criti-
cal to address the security of such systems.

In this work, we demonstrate the vulnerability of decen-
tralized virtual coordinate systems to insider (or Byzantine)
attacks. We propose techniques to make the coordinate as-
signment robust to malicious attackers without increasing
the communication cost. We demonstrate the attacks and
mitigation techniques in the context of a well-known dis-
tributed virtual coordinate system using simulations based
on three representative, real-life Internet topologies of hosts
and corresponding round trip times (RTT).

Categories and Subject Descriptors: C.2.0 [General]:
Security and protection; C.2.1 [Network Architecture and
Design]: Network Topology; C.2.4 [Distributed Systems]:
Distributed applications

General Terms: Design, Reliability, Security

Keywords: Virtual Coordinate Systems, Network Coordi-
nates, Attack Mitigation, Reliability, Security

1. INTRODUCTION
A wide range of applications taking advantage of peer-

to-peer systems have emerged in recent years, including file
download and distribution (e.g. BitTorrent [1], Emule [25]),
voice over IP (e.g. Skype [4]), and video broadcasting (e.g.
ESM [11], Coolstreaming [51]). Many of these applications
optimize their performance based on network topology. For
example, the construction of multicast trees or the selection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia,
USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

of a replica for file sharing applications can be greatly im-
proved by taking advantage of network locality. One basic
approach to learn network locality is to probe all hosts in
the network to determine attributes such as latency. The
cost associated with active monitoring to estimate such at-
tributes is non-negligible [11, 52], being exacerbated by the
presence of multiple applications performing this task on a
common network infrastructure.

Virtual coordinate systems [34, 36, 43, 13, 33, 12, 17,
29, 47, 16, 35] have been proposed as a low communication
cost service to accurately predict latencies between arbitrary
hosts in a network. These systems allow a node to map itself
to a virtual coordinate based on a small number of actual
network distance estimates to a subset of reference nodes.
By comparing the virtual coordinates, nodes can trivially
estimate the latency between them.

Two main architectures for virtual coordinate systems
have emerged: landmark-based and decentralized. Land-
mark - based systems rely on infrastructure components
(such as a set of landmark servers) to predict distance be-
tween any two hosts. The set of landmarks can be pre-
determined [34, 33, 16] or randomly selected [43, 35]. Decen-
tralized virtual coordinate systems do not rely on explicitly
designated infrastructure components, requiring any node in
the system to act as a reference node. Examples of decen-
tralized virtual coordinate systems include PIC [12], Vivaldi
[13], and PCoord [47, 46].

The accuracy and stability of virtual coordinate systems
rely on the assumption that the reference set nodes on which
the virtual coordinate computation relies on are altruistic [5]
and correctly participate in the system. Under this assump-
tion, many of the proposed systems have been shown to be
accurate, often achieving an overall latency prediction er-
ror of less than ten percent [13, 47]. While this assumption
may be ensured for landmark-based virtual coordinate sys-
tems by securing the small set of infrastructure nodes, it is
not easily achieved for decentralized systems where any node
can act as a reference node for other nodes in the system. As
a result, decentralized virtual coordinate systems are vulner-
able to insider attacks [21, 22] conducted by attackers that
infiltrate such systems or compromise some of their nodes.
Since virtual coordinate systems are network services pro-
viding support for a wide variety of peer-to-peer applications
and more recently routing [28], they would likely be a prime
candidate for attack. It is critical that such systems are de-
signed to be robust to attackers that influence the accuracy
of the coordinates.

Previous work focused little on mitigating vulnerabilities

of virtual coordinate systems with the notable exception of
[12], which uses the triangle inequality to detect malicious
nodes. The results based on synthetic networks presented in
[12] show that the method does improve the accuracy of the
PIC coordinate system in adversarial networks. However,
as demonstrated in [27, 53, 31], violations of the triangle
equality are very frequent for real networks, resulting in the
inaccuracy and fragility of virtual coordinate systems even
when deployed in non-adversarial networks. Previous work
has also demonstrated the susceptibility of Vivaldi to attacks
[21, 22]. We have recently become aware of [20], developed
simultaneously and independently of our work, which miti-
gates malicious activity using trusted network components.

In this paper, we study the vulnerability of decentralized
virtual coordinate systems to insider attacks and propose
mechanisms to make the accuracy of such systems resilient
to attacks. To the best of our knowledge, we provide the
first solution for mitigating attacks against virtual coordi-
nate systems that is based on realistic assumptions about
network topology and demonstrate its effectiveness using
real-life Internet data sets. Our solution does not increase
the communication in the system, complying with the vir-
tual coordinate system design goal of maintaining a low com-
munication cost. We summarize our key contributions:
• We classify attacks against virtual coordinate systems,
based on the impact on the coordinates, as coordinate infla-
tion, deflation, and oscillation. The attacks are conducted
by insiders that have infiltrated the virtual coordinate sys-
tem or compromised some of the nodes. The low-rate na-
ture of the attacks (i.e. they do not require the attacker to
generate a noticeable amount of traffic) makes them diffi-
cult to detect, while their epidemic nature makes them very
dangerous, as a small number of attackers can significantly
influence the accuracy of the entire system.
•We propose techniques to reduce incorrect coordinate map-
pings by using spatial and temporal correlations to perform
context-sensitive outlier analysis. A key component of our
solution is based on the observation that behavior of attack-
ers can be constrained by correlating dependent metrics.
• We demonstrate the impact of the attacks and the ef-
fectiveness of our defense mechanisms through p2psim [3]
simulations, in the context of the well-studied Vivaldi vir-
tual coordinate system[13] using three representative real-
world topologies of hosts and corresponding RTTs: King
[17], Meridian [48], and AMP [2]. We found through ana-
lytical and empirical studies that a spatial threshold of 1.5
and a temporal threshold of 4.0 provided a low system error
under attack while maintaining an acceptable false positive
rate. Our experiments also show that the method starts to
degrade when the coalition size of malicious nodes in the
reference set of a node increases over 30% of the reference
set size.

The rest of the paper is organized as follows: We provide
an overview of decentralized virtual coordinate systems and
attacks against them in Section 2. We propose mitigation
mechanisms in Section 3. We present experimental results
demonstrating the impact of the attacks and the effective-
ness of our solutions in Section 4. We discuss related work
in Section 5 and conclude our work in Section 6.

2. ATTACKS AGAINST VIRTUAL COOR-
DINATE SYSTEMS

In this section, we give an overview of the main compo-

nents of decentralized virtual coordinate systems and de-
scribe how they can be exploited by attackers to influence
their accuracy.

2.1 Decentralized Virtual Coordinate Systems
The design goal of decentralized virtual coordinate sys-

tems is to efficiently create and maintain a stable set of vir-
tual coordinates that accurately predict the latency between
nodes without using fixed infrastructure nodes. Although
each specific virtual coordinate system differs in some de-
tails, most of them follow a common design. The most im-
portant characteristics that define decentralized coordinate
systems are (1) the reference or neighbor set, (2) the dis-
tance prediction mechanism, and (3) the error minimization
technique.

In a decentralized virtual coordinate system, each node
calculates its coordinates based on the information obtained
from a small set of nodes in the network, which we refer to as
the reference set. There are several methods used to select
the reference set. One of the most promising methods iden-
tifies a set of close and a set of distant network nodes and
selects a random subset of each [13, 12]. Nodes may have dif-
ferent reference sets. Different systems use different sizes of
the reference set due to the frequency of actual network mea-
surements, the number of nodes queried per measurement
interval, and the error minimization technique utilized. For
example, Vivaldi uses a reference set size of 64 nodes [21],
PCoord uses 10 nodes [46], and PIC uses 32 nodes [12].

Once a reference set has been selected, a node deter-
mines its coordinate based on a predefined distance pre-
diction mechanism, such as the Euclidean distance. Each
system typically maintains coordinates in either low dimen-
sional (usually 2 to 8 dimensions) Euclidean space [12], an
augmented Euclidean space [13], or non-Euclidean (e.g. hy-
perbolic) space [39]. In general, it has been shown that
none of the embedding spaces dominates the others in per-
formance [32] and lower dimensionality Euclidean spaces are
often sufficient [13]. A node determines its position and then
successively refines it by periodically querying nodes in its
reference set. Queried nodes respond with metrics that can
include local error, perceived system error, local coordinates,
and RTT.

Virtual coordinate systems provide accurate latency pre-
diction, achieved through error minimization techniques of
a chosen distance error function. Examples include:
• Generic multi-dimensional minimization designed to min-
imize a relative system error measure (such as logarithmic
transformed error) using techniques such as the downhill
simplex method [12].
• Minimizing coordinates by simulating Newtonian mechan-
ics. Each node in the system is simulated as a particle influ-
enced by the field force induced between nodes. Each pair of
particles (nodes) either pulls or repulses each other, thereby
reducing the total system error [39].
• Minimizing coordinates by simulating spring relaxation,
where the state of the springs at rest is the optimal embed-
ding. The system minimizes the squared system error by
iteratively finding the low-energy point of the spring-based
system [13].

While each technique has benefits, systems based on multi -
dimensional minimization are often slow to converge, sensi-
tive to initial system conditions, and sensitive to high error
measurements. Simulation techniques such as spring relax-

ation are computationally inexpensive, less sensitive to high
error nodes, and more amenable to general decentralized
system design.

In general, virtual coordinate systems achieve the over-
all goals of accuracy and stability while reducing traffic by
as much as two orders of magnitude when compared with
active monitoring to estimate RTT [12]. Systems such as
Vivaldi [13], PCoord [47], and PIC [12] stabilize at an aver-
age system latency estimation error of ten milliseconds for
large scale simulations and deployments.

2.2 Attacker Model
We consider a constrained - collusion Byzantine adversary

model similar to that proposed in [9], with a system size of N
and a bounded percentage of malicious nodes f (0 ≤ f < 1)
behaving arbitrarily. The set of malicious nodes may col-
lude. We assume a malicious adversary has access to all
data at a node as any legitimate user would (insider access),
including cryptographic keys stored at a node. This access
can be the result of the adversary bypassing the authenti-
cation mechanisms or compromising a node through other
means. Nodes cannot be completely trusted although they
are authenticated. We assume that data authentication and
integrity mechanisms are deployed and we focus only on at-
tacks directed at the accuracy of the virtual coordinates.

2.3 Attacks Description
The correct operation of virtual coordinate systems is de-

pendent on the assumption that the reference set nodes are
altruistic and respond with correct metrics to queries from
any node computing its corresponding coordinates. An at-
tacker controlling reference set nodes has the ability to in-
fluence the coordinate maintenance process by manipulating
the information, such as remote node error and coordinates,
returned in response to a query. By blindly accepting this
malicious information, a correct node computes incorrect
coordinates.

A malicious node is able to indirectly take advantage of
the error minimization techniques and chosen error function
by manipulating the metrics it reports as a reference set
node. In doing so, an attacker is able to make a victim node
move away from its correct position by either pushing the
node away from or pulling it closer to the malicious node’s
reported coordinates. For example, a malicious node can
attract a victim node towards a random position and away
from the victim’s correct position by reporting false virtual
coordinates and a low error. Also, since many of the min-
imization techniques rely on the measured RTT of queries,
a malicious node can push a victim node away from itself
by delaying its query responses. The larger the induced
delay, the farther the victim node will re-calculate its posi-
tions away from the malicious node’s reported coordinates
to possibly more erroneous locations. An attacker may also
take advantage of the error minimization techniques to re-
pel a victim node away from specific virtual coordinates by
making its queried responses appear worse than actuality
by advertising coordinates with high error. We refer to such
attacks that result in coordinate mappings farther from the
correct location as coordinate inflation.

An attacker may cause a victim node to remain immo-
bile by reporting positions similar to the current position of
that victim node. A malicious node may also report false
coordinates where the distance between the victim and the

attacker reflects the RTT between the nodes, once again
rendering the victim immobile. We refer to such attacks in
which the victim nodes are prevented from performing nec-
essary, correct coordinate changes as coordinate deflation.

Any attack against the coordinate system may target a
particular node, subset of nodes, or region of the coordi-
nate space. The final goal of manipulating the coordinate
system can include isolating subsets of nodes from the net-
work, creating general disorder in the system, and rendering
the coordinate system unusable due to high estimation error.
We refer to attacks which result in nodes not converging to a
virtual coordinate and continuously changing their positions
as coordinate oscillation.

While all of the attacks have different goals, in the end,
they all distort the coordinate space and can make using the
computed coordinates worse than using randomly assigned
coordinates. Even short-lived, localized attacks have a long-
lasting effect on the overall system. For example, even when
a single victim node is displaced from its correct position,
this has an epidemic, detrimental effect on many of the nodes
in the system as the victim node will push/pull nodes away
from their correct coordinates by reporting its now incorrect
coordinates. That is because a correct node that computed
its coordinates based on incorrect information may serve as
a reference set for other nodes in the system, thus negatively
influencing their coordinate computation. Besides degrad-
ing the accuracy of the coordinate system, the attacks will
also adversely impact any application using the coordinate
system to estimate network measurements. In addition, as
the attacks exploit the semantics of the information con-
tained on the packet, they do not add a noticeable change
in traffic load and thus are difficult to detect by traditional
mechanisms.

3. LEVERAGING OUTLIER DETECTION
TO ADD ROBUSTNESS TO VIRTUAL
COORDINATE SYSTEMS

In this section, we discuss how techniques used in net-
work security can be used in the context of virtual coor-
dinate systems to make them more robust to attacks from
compromised nodes. As such systems were proposed with
the intention to decrease the communication cost involved
in active monitoring, our goal is to propose mitigation tech-
niques that do not add any communication to the system.
We propose to prevent incorrect coordinate updates by de-
tecting and filtering out outliers in the metrics reported by
queried nodes. Our method evaluates temporal and spatial
correlations among data in the system. Below, we provide
an overview of outlier detection and describe how we apply
it to virtual coordinate systems.

3.1 Overview of Outlier Detection
The usability of a data set and the quality of statistical

measures derived from it are integrally related to the number
of outliers present. Outliers are data points which deviate
so much from the rest of the data set as to arouse suspicion
that they were generated by a different mechanism [7, 19].
The identification of outliers can lead to discovering impor-
tant trends and information, such as the presence of mali-
cious activities. Outlier detection, also known as anomaly
or deviation detection, has been used in a variety of different
fields including intrusion detection [14, 38], fraud detection

[15], medical analysis [41], and business trend analysis [23].
Many of the techniques for outlier detection utilize a sta-

tistical - based or distance-based approach in which an out-
lier is any point which lies beyond a specified distance thresh-
old. The Euclidean, Manhattan, Minkowski, and Maha-
lanobis distance functions are the most commonly used func-
tions in determining distance [41, 8], each having its own
benefits given the type of analysis being performed.

Malicious activity can lead to spatial and temporal incon-
sistencies. Spatial outlier detection identifies observations
which are inconsistent with their surrounding neighbors,
while temporal outlier detection identifies inconsistencies in
the metrics of the observation space of a system over time.
The use of both temporal and spatial outlier detection al-
lows for the identification of multiple types of attacks with
better accuracy than either alone.

3.2 Applying Outlier Detection in Virtual Co-
ordinate Systems

We leverage techniques from outlier detection to identify
malicious behavior and take defensive actions to mitigate its
effects. Instead of allowing malicious coordinate mappings
to occur and then trying to detect them, we focus on reduc-
ing the likelihood of a node computing incorrect coordinates
through the use of statistical outlier detection. Since the ev-
idence of malicious activity is distributed across space and
time, we propose to detect them using both temporal and
spatial correlations among metrics in the system.

Each node independently performs outlier detection be-
fore changing its coordinates in order to identify and filter
out outliers in the received metrics. Spatial outlier detec-
tion compares the recently received metrics from each of the
queried nodes in a node’s reference set and forces a node
to report metrics consistent with what other reference peers
are currently reporting. Temporal outlier detection exam-
ines the consistency of the metrics received from an indi-
vidual queried node over time and forces a node to report
metrics consistent with what it has reported in the past.

To avoid adding communication cost, we use metrics al-
ready reported by the nodes in the reference set. We use
the 3-tuple of 〈remote error, change in remote coordinates,
latency〉 to generate the spatial outlier statistics and the
5-tuple of 〈remote error, local error, latency, change in re-
mote coordinates, change in local coordinates〉 to generate
the temporal outlier statistics. The metrics were chosen
on the basis that while each of them represents a different
measure of system performance, changes in one measure will
result in a correlated change in other metrics. For example,
as the system stabilizes to low overall error, the local er-
ror reported by each node and correlated magnitude of the
change in coordinates will both change less. An attacker
must therefore report a high error with greatly changing co-
ordinates in order to not be identified as malicious. Our
solution also forces an attacker to lie consistently with other
peers. This is difficult to achieve as an attacker does not
have perfect knowledge of the observation space, must ac-
curately predict the random subset of reference nodes that
will be queried, and only has a finite amount of time to
coordinate with other attackers.

Our approach uses the Mahalanobis [45] distance to de-
tect outliers. We selected this distance function because it
has been shown effective at detecting outliers with multiple
attributes [30], scales each variable based on its standard

deviation and covariance, and takes into account how the
measured attributes change in relation to each other [44].

3.2.1 Spatial outlier detection
We use spatial outlier detection to examine the consis-

tency of recently received metrics from queried nodes. A
node queries a random node from its reference set and re-
ceives an observation tuple which consists of 〈remote error,
change in remote coordinates, latency〉. The node records
this response and tracks the most recent u updates in a
queue-like fashion, where the oldest responses are replaced
by newer ones and u is equal to the size of the reference set.
Unlike more message-intensive distributed systems where a
new set of responses from all nodes queried (in this case
nodes in the reference set) are collected in response to one
query [11], virtual coordinate systems collect these responses
sequentially. Our approach requires a node to perform out-
lier detection every time it receives a new tuple, considering
the most recent u updates. We highlight that this technique
is an instance of spatial outlier detection since we examine
metrics across various system nodes and not time.

Once a node receives an observation tuple, the node first
computes the centroid of the data set consisting of obser-
vation tuples from the stored u updates. The node then
computes the Mahalanobis distance between the received
observation tuple and the centroid as follows [45]:

d(~x, ~y) =
√

((~x− ~y)T C−1(~x− ~y)) (1)

where ~x and ~y are the feature vectors consisting of error,
latency, and distance from the last virtual coordinate. ~x is
the value from the query response and ~y is the average value
that was calculated. C−1 is the inverse covariance matrix
computed from the stored observation tuples. Finally, this
distance is compared against a spatial threshold. We discuss
spatial threshold selection in Sec. 4.3.

3.2.2 Temporal outlier detection
We use temporal correlations to detect inconsistencies in

the metrics reported over time by a reference set node. We
use the tuple consisting of 〈remote error, local error, latency,
change in remote coordinates, change in local coordinates〉.
Using incremental learning, we compute a temporal centroid
for each of the members of a node’s reference set. We as-
sume each of the reported metrics is statistically indepen-
dent, necessitating the storage of just the mean, standard
deviation, and sample count computed from the received
query responses over time. The stored values for a reference
set member are incrementally updated with the metrics re-
ceived from that member’s query response, similar to [45],
using the technique described in [24]. In order to compare
newly received values with the temporal centroid, we use the
“simplified Mahalanobis distance” presented in [45]:

d(x, ȳ) =

n−1∑
i=0

(|xi − ȳi|/(σ̄i + α)) (2)

where n is the number of metrics, five in our case (remote
error, local error, latency, change in remote coordinates, and
change in local coordinates), σ̄i is the standard deviation,
and α is a smoothing factor empirically set to .001 to help
to avoid over-fitting and reduce false positives [45]. Once
a query response is received, the latest observation tuple is
compared with the corresponding temporal centroid using
the simplified Mahalanobis distance, based on a temporal

threshold that decides if the tuple is an outlier or not. We
discuss temporal threshold selection in Sec. 4.3.

3.2.3 Spatio-temporal outlier detection
We combine the two outlier detection mechanisms de-

scribed above by using a codebook technique similar to [18].
Each reference set node response that is not a spatial or
temporal outlier is utilized in updating the receiver node’s
coordinates. If the reference node is found to be an out-
lier, the query response will not be used in future temporal
centroid calculations since it will not be incorporated into
the temporal mean, temporal standard deviation, or sample
count. Also, it will not be used in future spatial centroid
calculations since it will be dropped from the most recent u
updates.

4. EXPERIMENTAL RESULTS
In this section, we demonstrate the impact of attacks

against virtual coordinate systems through simulations us-
ing actual Internet topologies. In addition, we demonstrate
that our proposed mechanisms enhance the robustness of de-
centralized virtual coordinate systems to such attacks. We
examine their effect on a representative decentralized vir-
tual coordinate system, Vivaldi [13], which is simulated in
the p2psim simulator [3]. We selected Vivaldi to demon-
strate the attacks and defense mechanisms because it is a
mature system, conceptually easy to understand and visu-
alize, and has been shown to produce low error embeddings
[13].

4.1 Evaluation Methodology
We use three different RTT data sets collected from real-

life Internet topologies. Table 1 and Fig. 1 summarize the
characteristics of each data set. The data sets are:

• King: The King data set contains the pair-wise RTT
of 1740 nodes measured using the King method [17].

• Meridian: The Meridian data set, obtained from the
Cornell Meridian project [48], contains the pair-wise
RTT of 2500 nodes measured using the King method
[17].

• AMP: The AMP data set, collected from the NLANR
Active Measurement Project [2] on March 1, 2007,
contains complete information for 90 high-speed nodes
contained mostly in North America.

Table 1: Data Sets Characteristics
Data Set # Nodes Avg. Max. Std. Dev.

RTT RTT RTT
King 1740 180ms 800ms 66ms

Meridian 2500 80ms 1000ms 69ms
AMP 90 70ms 453ms 51ms

We selected the King and Meridian data sets because they
are representative of larger scale peer-to-peer systems, and
were used in validating many virtual coordinate systems.
They have very different data characteristics. The King
data set contains a variety of link latencies, allowing nodes in
the virtual coordinate system to form a structure in which
nodes with small RTTs between them converge into clus-
ters, as seen in Fig. 1(a). The average RTT of Meridian

is approximately half that of King since it contains many
nodes a short distance from one another, as seen in Fig. 1(b)
where the system forms fewer, but larger clusters. The fi-
nal data set, AMP, was used since it represents a smaller,
high speed system, such as a corporate network. In AMP,
100ms or less links account for nearly 90% of all links, re-
sulting in one main cluster, as seen in Fig. 1(c). We did not
consider synthetic topologies since they do not capture im-
portant network properties such as violations of the triangle
inequality.

(a) King (b) Meridian (c) AMP

Figure 1: Node placement chosen by Vivaldi for var-
ious data sets

In order to quantitatively compare the effect of attacks on
the accuracy of the system, we evaluate two error metrics:
System prediction error is defined as

Errorpred = |ActRTT − EstRTT | (3)

where the ActRTT is the actual measured RTT and EstRTT

is the predicted RTT by the virtual coordinate system. This
metric provides an intuition of how the overall system is
performing. The lower the system prediction error is, the
more accurate the predicted RTTs are.
Relative error is defined as

Errorrel =
Errorattack

Errorno attack
(4)

where Errorattack is the system prediction error measured
in the presence of malicious nodes and Errorno attack is the
system prediction error without malicious nodes. This met-
ric captures the impact an attacker has on the coordinate
system. A relative error greater than one indicates a degra-
dation in accuracy and a value less than one indicates a
better estimation accuracy than the baseline.

For each of the error measures, the 5th, 50th, and 95th

percentile error are analyzed. These values are obtained
by selecting the corresponding entries from a sorted array
of prediction error and are averaged over multiple simula-
tion runs. Intuitively, the 5th percentile represents low error
nodes, the 50th percentile corresponds to average or median
error nodes, and the 95th percentile represents high error
nodes.

We ran one million tick long simulations, using the King
data set as our default topology unless otherwise noted. The
nodes join in a flash-crowd scenario in which all nodes join
simultaneously and are each initially placed at the origin of
the logical coordinate space. Each node proceeds indepen-
dently of other nodes in the network and chooses a reference
set of 64 nodes using the Vivaldi method where half of the
nodes are selected as the closest nodes based on network la-
tency and the rest are selected at random. All other Vivaldi
parameters were initialized to the optimal values discussed
in [13]. Each of the experiments utilizes a two-dimensional
coordinate space {(x, y)|x, y ∈ [−300000, 300000]}. Every
simulation was run ten times with the reported metrics av-
eraged over all of the simulation.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50

S
ys

te
m

 P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Malicious Nodes
10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(a) 5th Percentile Prediction Error

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

S
ys

te
m

 P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Malicious Nodes
10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(b) 50th Percentile Prediction Error

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

S
ys

te
m

 P
re

di
ct

io
n

E
rr

or
 (

m
s)

Simulation Time

No Malicious Nodes
10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(c) 95th Percentile Prediction Error

Figure 2: System prediction error under different percentages of attackers (King)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(a) 5th Percentile Relative Error

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(b) 50th Percentile Relative Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

10% Malicious Nodes
20% Malicious Nodes
30% Malicious Nodes

(c) 95th Percentile Relative Error

Figure 3: Relative error under different percentages of attackers (King)

4.2 Attacks Against Distributed Virtual Coor-
dinate Systems

In this section we demonstrate several attacks against the
Vivaldi coordinate system. Vivaldi was designed to tolerate
high-error, benign nodes, but it has no built-in mechanisms
to defend against malicious nodes.

Inflation and deflation attacks. We first demonstrate
how a coalition of f=30% malicious nodes can target one par-
ticular victim node and conduct an inflation or a deflation
attack. Note that the actual number of attackers which di-
rectly influence the victim is the number of malicious nodes
that are selected to be in the reference set of the victim node.
Using the hypergeometric distribution, we can determine the
probability of having a given number of malicious reference
set members. If we let k represent the number of malicious
nodes in a reference set, N be the number of nodes in the
system, D is the total number of malicious nodes, and n is
the size of the reference set, then the probability of having
exactly k malicious nodes in a reference set is given by

f(k; N, D, n) =

(
D
k

)(
N−D
n−k

)
(

N
n

) (5)

By summing the discrete probability distributions for values
from 0 to k, we can determine the probability of having a
certain percentage of malicious nodes in reference set. In
the King data set, given that 30% of the total nodes are
malicious, the probability that at least 30% of the nodes in
a reference set (about 20 nodes) are also malicious is only
about 35%.

Fig. 4 presents the location and associated prediction error
of a victim node under non-attack conditions and under the
two attacks. The correct location of the victim node is in the
upper left quadrant. For the deflation attack, note the circle

at the origin representing a victim node which did not move
to its correct position. In this scenario, the attackers send
the victim node coordinates that minimize the difference be-
tween the actual RTT and estimated RTT (the Euclidean
distance between the attacker and victim). As a result, the
victim stays at its current coordinate while believing it has
a very low perceived estimation error. Fig. 4(b) also depicts
an inflation attack, where the attackers send the victim node
chosen coordinates along with an artificially high RTT by
delaying query responses. Note the square in the upper right
quadrant representing the victim node forced to move away
from the origin and towards a location chosen by the at-
tacker. As can be seen in the Table 4(a), the attacks greatly
increase the prediction error of the victim node from 10ms
to 60ms for the deflation attack and to 70ms for the inflation
attack.

Attack Pred. Error
None 10 ms

Deflation 60 ms
Inflation 70 ms

w/defense 11 ms

(a) Prediction Error

(b) Node Placement

Figure 4: Victim node error and placement for a
deflation and inflation attack (King)

Oscillation attacks. We demonstrate an oscillation at-
tack in Fig. 5. In this scenario, the attacker sends the victim
nodes erroneous random positions selected over the coordi-
nate space with a low error value, causing the victim nodes

to make multiple incorrect coordinate changes. As seen in
Fig. 5(a), the system under non-attack conditions has an
easily identifiable structure in which nodes with small RTTs
between them converge into clusters in the coordinate space.
When the system is under attack as seen in Fig. 5(b), the
virtual coordinate system loses its structure and hence also
loses its ability to yield a low error embedding. This at-
tack also exemplifies the epidemic nature of such attacks.
As correct nodes computing incorrect coordinates are later
used as reference nodes for other nodes, the entire system
destabilizes.

(a) No attack (b) Oscillation attack

Figure 5: Virtual coordinate system node placement
under an oscillation attack (King)

Impact of percentage of malicious nodes. We in-
vestigate the effect of the number of malicious nodes on
the accuracy of the system, by varying the percentage of
malicious nodes. Each queried malicious node returns er-
roneous metrics in the form of a random position selected
over the coordinates {(x, y)|x, y ∈ [−100000, 100000]} and a
low, non-zero error value. A malicious node also randomly
delays its response between 100ms and 1000ms in order to
induce greater variability in its responses in an attempt to
expand the coordinate space.

Fig. 2 presents the prediction error for the King data set
for several percentages of malicious nodes. Under non-attack
conditions, a node joining the coordinate system is initially
placed at the origin of the logical coordinate space. As time
passes, each node receives query responses from its reference
set and is able to refine its position, allowing the system as
a whole to achieve lower prediction error. Once the system
stabilizes about halfway through the simulation, the sys-
tem prediction error remains roughly constant. After this
point, each of the nodes continues to refine its position, but
the overall sum of these movements yields little change in
the prediction error. While the system under attack may
initially start with similar prediction errors since nodes are
initially placed at the origin, it is never able to effectively
refine its coordinates and achieve the desired low estimation
error found in the non-attack scenario. As the percentage of
attackers increases, the ability of the system to accurately
estimate latency significantly degrades.

Similar trends are also evident in Fig. 3, where the sys-
tem can be seen to stabilize at a much higher relative error
than the baseline of one. Having even a small percentage of
attackers incurs double or triple the estimation error when
compared with the non-malicious scenario. Malicious nodes
have a greater negative impact on the lower error nodes, as
can been seen from the higher relative errors in Fig. 3(a) and
Fig. 3(b) than in Fig. 3(c). When a low error node moves
in response to malicious data, it is prone to make large, er-
roneous changes to its own position and experience a higher
estimation error.

Impact of attacks on different network topologies.

We examine the impact of the attacks on different network
topologies with different sizes and variabilities by using three
representative data sets. Fig. 6 shows the relative error for
these data sets when f=30% of the nodes are malicious. Each
of the topologies is adversely effected, with the King data
set (Fig. 6(a)) showing the greatest degradation in accuracy
due to the fact it has more variation in RTT and is prone to
excessive over and under estimation in response to an attack.
Meridian (Fig. 6(b)) shows less degradation due to the fact
it has less variation in its link latencies. AMP (Fig. 6(c))
shows more variability in the relative error due to its small
size and frequent, large-scale node coordinate changes.

4.3 Threshold Selection for Spatial-Temporal
Outlier Detection

An important aspect of our approach is selecting the tem-
poral and spatial thresholds that allow for the identification
of potentially malicious query responses and eliminate them
from the coordinate computation process. We consider the
same attack scenario with a percentage of attackers as in
Section 4.2 to experimentally determine our outlier detec-
tion thresholds since this scenario is one of the most difficult
in which to identify malicious responses. When a malicious
node selects a coordinate to respond with, this coordinate is
selected from an area in which many altruistic nodes reside.
The malicious nodes also report low but variable error inline
with low-error altruistic nodes. These factors help disguise
the malicious nodes actions and make them much harder to
detect.

We use a slightly modified version of the method proposed
in Section 3.2. Specifically, we do not use latency in the out-
lier detection due to the fact the latencies are predetermined
in the simulator and thus show little variability.

Temporal threshold selection. We used a threshold of
4.0 for our temporal outlier detection to allow for the four
features: remote error, local error, change in remote coordi-
nates, and change in local coordinates to vary at most one
standard deviation over each feature from their temporally
developed mean. The value was chosen based on the formula
of the simplified Mahalanobis distance as in [45].

Spatial threshold selection. The threshold for our
outlier detection can be mathematically derived as in [40,
37], assuming a multivariate Gaussian distribution for the
metrics vector. The contours of equal probability of this
distribution create a 2-dimensional ellipse and the outlier
threshold reflects the probability of a vector being within
the ellipse whose semi-axes are determined by k. The prob-
ability that a random vector lies within the ellipse increases
with the size of k. Thus, for a given value of k the probability
that a probed tuple lies within the ellipse can be computed
as:

P = 1− e
−k2

2 (6)

We initially analytically selected a k of 1.5, in theory cre-
ating a threshold through which 53% of the coordinate up-
dates would successfully pass. Through empirical testing of
over 200,000 coordinate updates over multiple simulations,
we found an ellipse determined by this threshold will allow
approximately 79% of the updates to pass. This variation
from the mathematically derived value can be attributed to
the fact that the used metrics do not form a perfect normal-
ized distribution and have a smaller variance than assumed
in Equation 6. A node may select smaller spatial threshold

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

5th Percentile Relative Error
50th Percentile Relative Error
95th Percentile Relative Error

(a) King

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

5th Percentile Relative Error
50th Percentile Relative Error
95th Percentile Relative Error

(b) Meridian

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

5th Percentile Relative Error
50th Percentile Relative Error
95th Percentile Relative Error

(c) AMP

Figure 6: Relative error under 30 percent malicious nodes for three real-life Internet latency data sets

values for stronger security guarantees, with the drawback
that it may find its coordinate less accurate due to discard-
ing valid updates.

Table 2: False Positive Rate (Percentage) and Me-
dian Prediction Error for Different Spatial Outlier
Thresholds (King)

% Mal.
Nodes

Spatial Outlier Threshold
1.25 1.50 1.75 2.00

0 28, 16ms 21, 16ms 17, 16ms 13, 16ms
10 17, 17ms 13, 18ms 10, 19ms 5, 20ms
20 21, 18ms 15, 21ms 7, 23ms 6, 26ms
30 27, 20ms 11, 22ms 10, 33ms 9, 36ms

Fig. 7 presents the relative error for the King data set in
which the temporal outlier threshold was set to 4.0 and vari-
ous spatial outlier detection thresholds were tested. Table 2
presents corresponding false positive rate and median sys-
tem prediction error for the different thresholds. Although
higher thresholds provide a smaller false positive rate, they
do induce a higher error rate. For example, as malicious
nodes are introduced into the system, a threshold of 2.00
maintains a low false positive rate with the trade-offs that
the prediction error raises to 36ms, with 14ms more than
the threshold of 1.5 which maintains a prediction error of
22ms, when 30% of the nodes are malicious. We note that
virtual coordinate systems are designed to be long-running
services and hence the presence of a small percentage of false
positive will not hinder the system. Based on the results in
Fig. 7 and Table 2 we conclude that a spatial threshold of
1.5 worked well for different percentages of attackers while
having an acceptable false positive rate.

4.4 Mitigating Attacks Against Virtual Coor-
dinate Systems

In this section we demonstrate the effectiveness of our
defense mechanisms at mitigating the effects of malicious
nodes and sustaining the usability of the system.

Inflation and deflation attacks. We begin by reex-
amining the inflation and deflation attacks against a victim
node, this time with a system using our defense mechanisms.
The victim node is able to identify and mitigate the effect
of the malicious nodes, achieving a prediction error of 11ms,
as shown in Fig. 4. The error is similar to a system under
non-attack conditions (10ms), and nearly six times less than
the unprotected system.

Different percentage of malicious nodes. Fig. 7
presents the relative error for the King data set for differ-
ent percentages of malicious nodes. Note that for a spatial

threshold of 1.5, our solution mitigates the system instabil-
ity caused by the malicious nodes and even helps the sys-
tem to stabilize at a more accurate local minimum than the
initial protocol design to tolerate benign errors. While each
node may occasionally accept erroneous data from malicious
nodes due to a short temporal history or a skewed spatial
history with updates from only a few nodes (as can be seen
by the brief rise in error before coming back down), over
time the system is able to avoid many malicious updates.

Table 3: False Positive Rate (Percentage) and Me-
dian Prediction Error for Different Data Sets Using
A Spatial Outlier Threshold of 1.5

% Mal.
Nodes

Topology
Meridian AMP King

0 23, 30ms 21, 18ms 21, 16ms
10 13, 30ms 15, 20ms 13, 18ms
20 12, 32ms 14, 25ms 15, 21ms
30 11, 40ms 12, 36ms 11, 22ms

Different network topologies. Fig. 8 and Table 3 show
the results for the King, Meridian and AMP topologies with
and without outlier detection, where the attack scenario is
the same as the coalition attack in Section 4.2. Applying
the spatial threshold of 1.5 which was tested on the King
data set, we find our solution is able to mitigate the sys-
tem instability in all three data sets. The King data set
(Fig. 8(a)) maintains a low relative error for various percent-
ages of the attackers. We also note it is able to maintain a
low system prediction error and low number of false positives
(Table 3). In Table 3, the less the system prediction error
increased with the number of attackers, the more resiliently
the system performed under attack. Similar trends can also
be observed for the Meridian data set (Fig. 8(b)). While
our solution is able to offer protection to the smaller scale
AMP data set from malicious nodes, it can be seen from
Fig. 8(c) that larger percentages of malicious nodes begin to
overwhelm the system. This occurs since the percentage of
malicious nodes is high (≥ 30%), each benign node will have
many malicious reference set members. For example, given
that 30% of the total nodes are malicious, the probability
that at least 30% of the nodes in a reference set of AMP
are also malicious is about 67%. This is nearly double the
probability for King or Meridian under the same conditions
due to AMP’s much smaller size (see Table 1).

Malicious coalition size tolerated by outlier detec-
tion. All defense mechanisms and protocols resilient to
insiders have limitations regarding the number of attack-
ers they can tolerate. We analyze the number of malicious

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(a) 5th Pct. Relative Error, 10% Mal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(b) 50th Pct. Relative Error, 10% Mal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(c) 95th Pct. Relative Error, 10% Mal.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(d) 5th Pct. Relative Error, 20% Mal.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(e) 50th Pct. Relative Error, 20% Mal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(f) 95th Pct. Relative Error, 20% Mal.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(g) 5th Pct. Relative Error, 30% Mal.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(h) 50th Pct. Relative Error, 30% Mal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

No Detection
1.25 Thresh.
1.5 Thresh.

1.75 Thresh.
2.00 Thresh.

(i) 95th Pct. Relative Error, 30% Mal.

Figure 7: Relative error under different percentage of attackers using different spatial outlier thresholds
(King)

Table 4: Number of Colluding Nodes Tolerated by
Spatial Outlier Detection for Different Data Sets Us-
ing A Spatial Outlier Threshold of 1.5

Data Set
Attack Type King Meridian AMP

Inflation 19.7 21.6 19.8
Deflation 20.2 19.8 12.6

Oscillation 19.6 20.3 19.3

colluding nodes that can be tolerated by our outlier detec-
tion mechanism using a reference set size of 64. Table 4
presents the number of malicious nodes in a reference set
which by colluding can influence the spatial centroid calcu-
lation enough to allow the attack types discussed in Sec-
tion 2.3 to bypass the detection mechanism. Nearly twenty
malicious nodes (or 30% of the reference set size) are re-
quired for nearly all of the identified attack types across the
three data sets. The deflation attack is more successful for
AMP since the RTTs are less variable and the virtual co-
ordinate system creates one main cluster (Fig. 1(c)) that

contains all of the nodes. This also explains why high per-
centages of malicious nodes (≥ 30%) were able to overwhelm
our solution in the AMP scenarios. In these cases, the be-
nign nodes were likely to have twenty or more malicious
nodes in their reference set, which could cause the spatial
centroid to shift and allow malicious updates to pass unde-
tected. We conclude that our defense method works well
when the size of the malicious coalition is smaller than one
third of the total number of nodes in the reference set. This
bound is inline with the performance of other methods that
tolerate malicious insiders (e.g. [10]).

System overhead. Our defense mechanisms do not in-
troduce any extra link stress since they utilize information
that is already being exchanged between nodes. The mem-
ory utilization for spatial correlation requires maintaining
the most recent u updates. In the case of the temporal out-
lier detection, the memory usage consists of maintaining the
temporal centroid. By incrementally updating the centroid,
we do not need to maintain the entire history for each probed
node but only need to store the mean, standard deviation,
and count for each of the metrics. The additional compu-
tational complexity is bounded by the number of nodes in
the reference set which is constant. The computation of the

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

20% Malicious No Detection
20% Malicious w/ Detection

30% Malciouis No Detection
30% Malicious w/ Detection

(a) King

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

20% Malicious No Detection
20% Malicious w/ Detection

30% Malciouis No Detection
30% Malicious w/ Detection

(b) Meridian

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50

R
el

at
iv

e
E

rr
or

Simulation Time

20% Malicious No Detection
20% Malicious w/ Detection

30% Malciouis No Detection
30% Malicious w/ Detection

(c) AMP

Figure 8: Relative error under different percentage of attackers using a spatial outlier threshold of 1.5 with
three real-life Internet latency data sets

temporal and spatial outliers is a constant time calculation
performed at each node when it updates its coordinate.

5. RELATED WORK
In this section, we review previous work in three areas:
Attacks in virtual coordinate systems. One of the few
systems to consider actual malicious behavior is the PIC
[12] virtual coordinate system, which uses a security test
based on the triangle inequality. Any node which violates
the triangle inequality above some margin of error is ignored
and designated as malicious. However, it has been shown
that RTT measurements often violate this inequality [27, 53,
31] and thus solutions based solely on such inequalities may
degrade system performance when no attack is occurring.
Kaafar et al. demonstrate the susceptibility of Vivaldi to
attacks [21, 22].

We have recently become aware of [20], developed simul-
taneously and independently of our work, which employs a
set of trusted nodes as a reference set by which to analyze
all node behavior for malicious patterns and behavior. The
key difference in the techniques is our method does not ne-
cessitate the need for a trusted component in the network.
Coordinate system error and landmark selection. An
important area of research orthogonal to the security of the
system is the minimization of error in the system. The
accuracy of such systems is greatly effected by landmark
placement for centralized schemes and neighbor selection in
decentralized schemes. In [49], it is shown that a hierar-
chical approach can lead to better performance over non-
hierarchical solutions. Works by Lua et al. [31] and Zhang
et al. [50] demonstrate shortcomings of current systems and
propose possible new metrics and measurements to more ac-
curately embed the distance in the coordinate system. These
areas provide interesting opportunities for further research
since our work could possibly leverage these new metrics to
place further constraints on the attackers and create a more
robust, accurate, and fault-tolerant system.
Use of spatial and temporal correlations. Recently the
benefits of the Mahalanobis distance for statistical anomaly
detection have been demonstrated in the context of network
intrusion detection [45, 26]. In [26], the authors present a
comparative study of detection schemes based on data min-
ing techniques for network based intrusion detection. In [45]
the authors discuss an unsupervised, payload-based network
anomaly detector based on the Mahalanobis distance which
was used to detect attacks like worms.

Spatial and temporal correlations were previously used in

the context of network security. A notable work in this as-
pect by Jiang and Cybenko [18] uses temporal and spatial
correlations to detect attack scenarios using a large amount
of information from intrusion detection systems, firewalls,
and different software logs. Unlike this more general ap-
proach, our work focuses on virtual coordinate systems.

Correlations have also been used in wireless networks for
the detection of attacks [6, 42]. The work by Huang et al.
[6] uses correlations between different features to identify
attacks against wireless ad hoc routing protocols while the
work by Tanachaiwiwat and Helmy [42] shows how to aug-
ment sensor networks with spatio-temporal correlations to
detect misinformation being injected into the sensor streams.
In our work, the correlation is incorporated in-line with the
coordinate computation and analysis is performed on real
Internet data sets.

6. CONCLUSION
In this paper, we studied attacks against the accuracy of

virtual coordinate systems. We classified the attacks as co-
ordinate inflation, deflation and oscillation and showed that
even a small number of attackers can severely degrade coor-
dinate accuracy due do the epidemic nature of the attacks.
We proposed to use spatial-temporal correlation to perform
outlier detection on updates received from malicious nodes
and eliminate them from the coordinate computation pro-
cess. By using analytical and empirical methods we found
that a spatial temporal of 1.5 and a temporal threshold of
4 produced a low system error and maintained an accept-
able false positive rate. Finally, we examined the limitations
of outlier detection when a significant percentage of nodes
are malicious and found that the method starts degrading
when more than 30% of the nodes in a reference set form a
malicious coalition.

Future work includes analyzing the relation between ref-
erence set size and the system size and the effect of our
mechanisms on upper level applications using virtual coor-
dinate systems to estimate network measurements.

7. ACKNOWLEDGMENTS
We would like to thank AAron Walters for his guidance

and insights. We also thank Jing Dong for his patient ex-
planations. Finally, we thank the authors of Vivaldi and
p2psim for the help and scripts they provided. This work
is supported by National Science Foundation CyberTrust
Award No. 0430271. The views expressed in this research
are not endorsed by the National Science Foundation.

8. REFERENCES
[1] Bittorrent. http://www.bittorrent.com/.
[2] Nlanr active measurement project. http://amp.nlanr.net/.
[3] p2psim: A simulator for peer-to-peer protocols.

http://pdos.csail.mit.edu/p2psim/.
[4] Skype. http://www.skype.com/.
[5] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin,

and C. Porth. Bar fault tolerance for cooperative services.
In Proc. of SOSP, Dec. 2005.

[6] Y. an Huang, W. Fan, W. Lee, and P. S. Yu. Cross-feature
analysis for detecting ad-hoc routing anomalies. In Proc. of
ICDCS, 2003.

[7] V. Barnett and T. Lewis. Outliers in statistical data. 1978.
[8] D. Birant and A. Kut. Spatio-temporal outlier detection in

large databases. In Proc. of ITI, 2006.
[9] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.

Wallach. Secure routing for structured peer-to-peer overlay
networks. In Proc. of ACM OSDI, 2002.

[10] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In Proc. of ACM OSDI, 1999.

[11] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast (keynote address). In SIGMETRICS, 2000.

[12] M. Costa, M. Castro, R. Rowstron, and P. Key. PIC:
practical Internet coordinates for distance estimation. In
Proc. of ICDCS, 2004.

[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a
decentralized network coordinate system. In Proc. of
SIGCOMM, 2004.

[14] D. E. Denning. An intrusion-detection model. IEEE Trans.
Softw. Eng., 13(2):222–232, 1987.

[15] Z. Ferdousi and A. Maeda. Unsupervised outlier detection
in time series data. In Proc. of ICDEW, 2006.

[16] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt,
and L. Zhang. Idmaps: A global internet host distance
estimation service, 2000.

[17] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
Estimating latency between arbitrary internet end hosts. In
Proc. of SIGCOMM-IMW, 2002.

[18] G. Jiang and G. Cybenko. Temporal and spatial
distributed event correlation for network security. In
American Control Conference, 2004.

[19] R. Johnson and D. Wichern. Applied multivariate
statistical analysis. Prentice-Hall, Inc. Upper Saddle River,
NJ, USA, 1988.

[20] M. A. Kaafar, L. Mathy, C. B. K. Salamatian, T. Turletti,
and W. Dabbous. Securing internet coordinate embedding
systems. In Proc. of SIGCOMM, 2007.

[21] M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous.
Real attacks on virtual networks: Vivaldi out of tune. In
Proc. of LSAD, 2006.

[22] M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous.
Virtual networks under attack: Disrupting internet
coordinate systems. In Proc. of CoNext, 2006.

[23] E. M. Knorr and R. T. Ng. Algorithms for mining
distance-based outliers in large datasets. In Proc. of
VLDB, 1998.

[24] D. E. Knuth. The Art of Computer Programming, 2nd Ed.
(Addison-Wesley Series in Computer Science and
Information. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1978.

[25] Y. Kulbak and D. Bickson. The eMule Protocol
Specification. eMule project, http://sourceforge.net.

[26] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and
J. Srivastava. A comparative study of anomaly detection
schemes in network intrusion detection. In Proc. of SIAM
SDM, 2003.

[27] J. Ledlie, P. Gardner, and M. Seltzer. Network coordinates
in the wild. In Proc. of USENIX NSDI, 2007.

[28] J. Ledlie, P. Pietzuch, M. Mitzenmacher, and M. Seltzer.
Wired geometric routing. In Proc. of IPTPS, 2007.

[29] H. Lim, J. Hou, and C. Choi. Constructing internet
coordinate system based on delay measurement. In Proc. of
SIGCOMM-IMC, 2003.

[30] C. Lu, D. Chen, and Y. Kou. Multivariate spatial outlier
detection. International Journal on Artificial Intelligence
Tools, World Scientific, 13(4):801–812, December 2004.

[31] E. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft.
On the accuracy of embeddings for internet coordinate
systems. In Proc. of ACM IMC, 2005.

[32] C. Lumezanu and N. Spring. Playing Vivaldi in Hyperbolic
Space. In Proc. of SIGCOMM-IMC, 2006.

[33] E. Ng and H. Zhang. Predicting internet network distance
with coordinates-based approaches. In Proc. of INFOCOM,
2002.

[34] T. Ng and H. Zhang. A network positioning system for the
internet. Proc. of USENIX, 2004.

[35] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris.
Lighthouses for scalable distributed location. In Proc. of
IPTPS, 2003.

[36] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and
I. Stoica. Geographic routing without location information.
In Proc. of ACM MobiCom, 2003.

[37] M. I. Ribeiro. Gaussian probability density functions:
Properties and error characterization. Technical report,
Instituto Superior Tecnico, Lisboa, Portugal, 2003.

[38] C. Sargor. Statistical anomaly detection for link-state
routing protocols. In Proc. of ICNP, 1998.

[39] Y. Shavitt and T. Tankel. Big-bang simulation for
embedding network distances in euclidean space.
IEEE/ACM Trans. Netw., 12(6):993–1006, 2004.

[40] R. C. Smith and P. Cheeseman. On the representation and
estimation of spatial uncertainty. International Journal of
Robotics Research, 5(4):56–68, 1986.

[41] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to
Data Mining. Addison Wesley, USA, 2006.

[42] S. Tanachaiwiwat and A. Helmy. Correlation analysis for
alleviating effects of inserted data in wireless sensor
networks. In Proc. of MobiQuitous, 2005.

[43] L. Tang and M. Crovella. Virtual landmarks for the
internet. In Proc. of SIGCOMM, 2003.

[44] A. Walters, D. Zage, and C. Nita-Rotaru. Mitigating
attacks against measurement-based adaptation mechanisms
in unstructured multicast overlay networks. In Proc. of
ICNP, November 2006.

[45] K. Wang and S. J. Stolfo. Anomalous Payload-based
Network Intrusion Detection. In Proc. of RAID, 2004.

[46] L. wei Lehman and S. Lerman. Pcoord: Network position
estimation using peer-to-peer measurements. In Proc. of
NCA, 2004.

[47] L. wei Lehman and S. Lerman. A decentralized network
coordinate system for robust internet distance. In Proc. of
ITNG, 2006.

[48] B. Wong, A. Slivkins, and E. Sirer. Meridian: a lightweight
network location service without virtual coordinates. In
Proc. of SIGCOMM, 2005.

[49] R. Zhang, C. Hu, X. Lin, and S. Fahmy. A hierarchical
approach to internet distance prediction. In Proc. of
ICDCS, 2006.

[50] R. Zhang, C. Tang, Y. Hu, S. Fahmy, and X. Lin. Impact
of the Inaccuracy of Distance Prediction Algorithms on
Internet Applications – An Analytical and Comparative
Study. In Proc. of INFOCOM, 2006.

[51] X. Zhang, J. Liu, B. Li, and T. Yum.
CoolStreaming/DONet: A Data-driven Overlay Network
for Peer-to-Peer Live Media Streaming. In Proc. of
INFOCOM, 2005.

[52] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Technical Report 01-1141, UC Berkeley, 2001.

[53] H. Zheng, E. Lua, M. Pias, and T. Griffin. Internet routing
policies and round-trip-times. In Proc. of PAM, 2005.

