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ABSTRACT

Leaky prediction layered video coding (LPLC) partially includes the enhancement layer in the motion compen-
sated prediction loop, by using a leaky factor between 0 and 1, to balance the coding efficiency and error resilience
performance. In this paper, rate distortion functions are derived for LPLC from rate distortion theory. Closed
form expressions are obtained for two scenarios of LPLC, one where the enhancement layer stays intact and the
other where the enhancement layer suffers from data rate truncation. The rate distortion performance of LPLC
is then evaluated with respect to different choices of the leaky factor, demonstrating that the theoretical analysis
well conforms with the operational results.
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1. INTRODUCTION

Layered video coding® has a nested structure whereby different levels of the bitstream are decoded in a fixed
sequential order. Fine granularity scalability (FGS) is a specific layered scalable coding structure, which possesses
full rate (or SNR) scalability over a wide range of data rates [1-3]. Layered coding is desired for error resilient
video streaming over heterogeneous networks with changing bandwidth mainly because: (1) It can be adapted
to varying channel bandwidth by simply discarding the higher layer(s), or, by truncating the bitstream when
using FGS; (2) It allows one to protect parts of the bitstream differently, i.e., the use of unequal error protection
(UEP).

For error resilient video transmission in an error-prone environment, error protection can be used for the
base layer since it carries more significant information. This achieves a trade-off between coding efficiency and
robustness. The enhancement layer however, still remains vulnerable to errors. Due to the potential incom-
pleteness or destruction of the enhancement layer, traditional layered coding schemes usually do not incorporate
the enhancement layer into the motion compensated prediction (MCP) loop at the encoder to prevent drift
at the decoder. This results in poor coding efficiency, when compared to non-scalable coding, since the high-
quality reconstruction offered by both the enhancement layer and the base layer is not exploited by the motion
compensation operation.

This work was supported by a grant from the Indiana 21st Century Research and Technology Fund. Address all

correspondence to E. J. Delp at ace@ecn.purdue.edu, telephone: +1 765 494 1740.
*In this paper, we are specifically interested in the SNR layered video coding approach, and refer to it as layered video

coding.

Visual Communications and Image Processing 2004, edited by Sethuraman Panchanathan, 543
Bhaskaran Vasudev, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 5308
© 2004 SPIE and IS&T - 0277-786X/04/$15



To circumvent this coding inefficiency, leaky prediction layered coding (LPLC) [4-6] includes an incomplete
version of the enhancement layer within the MCP loop to improve the coding efficiency while maintaining graceful
error resilience performance. LPLC has attracted much attention in the literature recently due to its performance
in handling the trade-off between coding efficiency and drift. It provides a flexible coding structure, by utilizing
a leaky factor which is between 0 and 1, to down-scale the enhancement layer before it is incorporated into the
MCP loop. When the leaky factor « is 0, the enhancement layer is completely excluded from the MCP loop,
resulting in a codec that has the least coding efficiency and best error resilience performance. If, however, a = 1,
then the codec has the best coding efficiency and least error resilience. For intermediate values of «, the codec
has intermediate coding efficiency and error resilience performance.

A deficiency inherent in the LPLC structure was described in [7], namely that LPLC cannot guarantee
that the decoded video quality obtained from both the enhancement layer and the base layer will always be
superior to that offered by the base layer alone. Larger leaky factors, especially when « is close to 1, might
yield worse coding efficiency than smaller leaky factors. This deficiency was analytically and experimentally
demonstrated, and confirmed by addressing the similarity between LPLC and a specific multiple description
coding (MDC) scheme, namely MDMC [8]. A general framework, which applies to both LPL.C and MDMC, was
further established. Based on this framework, maximum-likelihood (ML) estimation, which was originally used
in MDC [9], was utilized, and a new approach, referred to as ML-LPLC, was proposed to ameliorate the specified
deficiency. It was emphasized in [7] that the leaky factor is critical for the LPLC approach, which determines
three types of the performance of LPLC: the coding efficiency, the prediction drift (or in another sense, the error
resilience performance), as well as the superiority of the enhancement layer as opposed to the base layer. In [10],
the dual-leaky prediction framework was proposed, which introduces nested scalability into each description of
the MDC stream, and multiple description scalable coding (MDSC) was achieved.

The analysis of the MCP based video coding, derived from rate distortion theory, was presented in [11].
Essentially, the analysis characterized the properties of the MCP operation by a stochastic filter, which fulfills
the operations of time delay, motion compensation, and spatial filtering, combined with the optimum forward
channel that yields the rate distortion (in the mean-square-error (MSE) sense) for Gaussian stationary signals
[12]. Tt was shown that the power spectral density (PSD) of the MCP error signal is related with the PSD of
the input signal as well as the distribution of the estimated motion vector errors.

The rate distortion analysis of conventional layered scalable video coding, which excludes the enhancement
layer from the MCP loop, is described in [13]. The MCP rate is first defined, which denotes the data rate (in
bits) that is incorporated into the MCP loop at the encoder. The work in [13] is advanced by first developing the
rate distortion analysis for the MSE optimal layered image codec, as well as the cascaded optimal image codec.
The rate distortion analysis of layered video coding is then presented, with two scenarios derived in closed form,
where the bitstream is decoded above and below the MCP rate.

When a scalable coded bitstream is decoded above the MCP rate, the base layer at the decoder is consistent
with that at the encoder and no drift occurs. In this case, the well-accepted fact, that layered scalable coding
always demands more or at least as much data rate as required by the non-scalable coding approach to achieve
the same distortion, was theoretically confirmed. When the bitstream is decoded below the MCP rate, the base
layer is truncated upon decoding and thus drift occurs. It was theoretically demonstrated that the distortion in
this case steeply increased with the decrease of the decoding data rate. The theoretical analysis in [13] is shown
to agree with operational rate distortion results published in the literature.

In this paper, we present the rate distortion analysis of LPLC by extending the work in [13]. First, we
describe a block diagram that features the leaky prediction but is amenable to theoretical analysis. We derive
the rate distortion functions for LPLC in closed form for one scenario where the enhancement layer is intact
and the other where it has drift. We demonstrate that the leaky factor is critical in the performance of coding
efficiency, and validate that with the partial or full inclusion of the enhancement layer in the MCP loop, LPLC
does improve the coding efficiency as opposed to the conventional layered scalable coding. We also show that
the leaky factor is critical in the error resilience performance when the enhancement layer in LPLC suffers from
data rate truncation.
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Figure 1. Optimum forward channel that yields the Gaussian MSE rate distortion function

2. RATE DISTORTION FUNCTIONS FOR TWO-DIMENSIONAL IMAGE CODING

As background knowledge to this paper, we first summarize the fundamental results of the analysis of two-
dimensional (2D) image coding derived from rate distortion theory.

Theorem 1. [12][11]: The parametric representation of the MSE rate distortion functions for a 2D stationary
Gaussian source {s} is given by

1 .
A / [ min{o. .,(4)}A. (1)

R = 8;//}\max{0,log2((I)S‘;(A))}dA, (2)

where ®.,(A) denotes the PSD of the signal {s} at the spatial frequencies A = (wg,w,), and 6 denotes the
parameter ranging over [0, ess sup ®(A)], with ess sup ®45(A) indicating the essential supremum of ®4s(A).

The following proposition makes eases of further analysis of the rate distortion performance of image and
video signals.

Proposition 1. [12][11] The optimum forward channel yielding the MSE parametric rate distortion functions for
a Gaussian process {s}, as given by (1) and (2), is composed of a non-ideal bandlimit filter over {A : ®44(A) > 0},
plus the addition of an independent non-white bandlimit Gaussian noise over {A : ®4,(A) > 6}, as shown in
Figure 1.

It is easy to show Proposition 1 with the help of the following lemma:

Lemma 1. [14] Assume {s} and {s’'} are jointly 2D stationary Gaussian processes, with @4 (A), Py s (A),
and @4 (A) denoting the PSD of {s}, the PSD of {s'}, and the cross spectral density between {s} and {s'}
respectively. The mutual information rate between {s} and {s’} is then given by

1(S;8") // log [1 — % dA, (3)

where each integral extends over [—, 7| for discrete time processes, and [—oo, oo] for continuous time processes.
Two scenarios of 2D image coding are further analyzed in [13]:

Scenario I for 2D image coding: The rate distortion functions by both layers in the scalable image coding
structure, as described in Figure 2 where the base layer is parametric with 6 and the enhancement layer with 6,
are

Dg,e,e _ 47r2/ min{min{#é, 9} D (A)}dA, (4)

RLOS - = / / max{O log, (mm{(eAZJ}>}dA' (5)

It is straightforward to show (4) by noting that s — s, = § — 5, and to show (5) by summing the mutual
information between {s} and {s}} plus the mutual information between {5,} and {5}}.
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Figure 2. Block diagram of a scalable image codec
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Figure 3. Block diagram of a cascaded image codec

Scenario I for 2D image coding: The rate distortion functions of the cascaded non-scalable image codec, as
described in Figure 3, where the first codec is parametric with 6 and the second codec with 6, and let 8 = 6 + 6,
are

- 1 ~
pred _ L / / min{d, ®,,(A)}dA, (6)
A

RILOG — # / /A max{O,logQ(q)ssé(A)>}dA. (7)

Note that (6) can be derived by noticing that {§,£s — s;} and {5,£s} — s}/} are uncorrelated [13], and (7) can
be derived using the following proposition:

Proposition 2. The cascaded Gaussian MSE optimum forward channel is still optimal in the rate distortion
sense. Furthermore, the parameter of the equivalent optimum forward channel is the sum of the parameters
featuring each of the cascaded channels.

Proposition 2 can be proved in a similar way as the proof of Proposition 1, which is derived from Lemma 1.

3. RATE DISTORTION FUNCTIONS FOR CONVENTIONAL LAYERED CODING

The rate distortion analysis of conventional layered video coding is presented in [13] by extending the work on
the rate distortion analysis of the non-scalable MCP video coding derived in [11]. We summarize the major
results [13].

Scenario I for conventional layered video coding: As shown in Figure 4, two optimum forward channels are
included, yielding the rate distortion optimized 2D signal compression of the base layer and the enhancement
layer respectively. Referring to the rate distortion analysis in Scenario I for 2D image coding, we have the rate
distortion functions for both layers of the conventional layered video coding as follows when the parameters
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Figure 4. Block diagram of a conventional layered video codec when the base layer is decoded above the MCP rate

satisfy 6 < 0:

~ l -
1,0,6 __ : 0
piod = = [[ mingdaf,., (A)an, )

; 1 @0 (A)
106 _ eve
R, = 32 //A max {0, log, < ”é’ dA. 9)

Similar to the analysis in [11], the PSD of the MCP error signal in the base layer, ®¢ . (A), can be approxi-
mated as

e = 920 = { ) oo () Ao 0 10
where
g%, (M) = Pus(A)[L = 2Re{F(A) P(A)} + [F(A)]*] + 0| F(A)]%, (11)

where P(A) denotes the characteristic function of the probability density function (p.d.f.) of the estimated
motion vector error. It is discussed in [11] and [13] that the spatial filter F/(A) can be chosen as 0 for intra-frame
coding, or 1 for inter-frame coding without spatial filtering. The optimal F(A) that minimizes ®2:¢ (A) in (11)

epep
1S

D (A)

Fopi(A) = P (A)—————, for A: ®g5(A) > 0, 12
(8 = PG for A (4) > (12

which results PA) 2. ()
olo A) =P (AN [1 - —L 7 ) 13
) = ) (1= HR ) (13)

Moreover, by (10), the distortion function in (8) can be simplified to
~ 1 -
1,00 _ .
D% = 2 //A min{f, ®,(A)}dA. (14)
Note that the PSD of the input signal to the enhancement layer forward channel, {é,}, satisfies that

®z,z,(A) = min{h, ¢ . (A)} = min{h, D,,(A)} < 6. (15)

Thus when @ > 6, the filter in the enhancement layer in Figure 4, G.(A), becomes zero. As a result the data rate
consumed by the enhancement layer is zero, and no distortion is further caused beyond that by the base layer.
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Figure 5. Block diagram of a conventional layered video codec when the base layer is decoded below the MCP rate

The rate distortion function of the MCP layered codec described in Figure 4 is then fixed at one point that is
specified by the base layer, when 6 is fixed and 6 varies between 6 and infinity:

D = gz [[ min{o. 0., (16)

0
RS = é;rszl\max{o,logQ (W)}dA. (17)

Scenario II for conventional layered video coding: The block diagram of the layered video coding when the
base layer is decoded below the MCP rate is shown in Figure 5.

As discussed in Section 2, the cascaded optimum forward channel linking {e;} and {e} } is equivalent to one
optimum forward channel with the parameter of § + 6. The rate distortion functions are then given by [13]:

42

; 1 o0 (A)
mes - — 1 — o | b dA 1
R - //Amax{o, og2< ; dA, (19)

where 6 = 0+ 0 > 0.

pired _ L / /A min{f, ®,,(A)} + ﬁ min{f — 0, max{0, ®% _ (A) — 6} }dA, (18)

4. RATE DISTORTION FUNCTIONS FOR LEAKY PREDICTION LAYERED
CODING

Unlike the conventional layered coding structure described in Figure 4, LPLC introduces a second MCP loop in
the enhancement layer that uses the same motion vectors as the base layer, and buffers a(s.,(t) — s, (t)) + s}, (t) as
the reference for the encoding of the video signal sampled at time ¢+ At. The mismatch signal, {t'}, which is the
difference between the MCP error signal in the enhancement layer, {e.}, and the encoded MCP error signal in
the base layer, {e}}, is coded and carried by the enhancement layer. Equivalently, a linear combination of the two
reconstructed signals, {s,} yielded by both layers and {s}, } by the base layer alone, namely as.(t)+(1—a)sj(t), is
utilized as the reference signal in the MCP loop of the enhancement layer. The framework of LPLC is described
in Figure 6.

It is shown in [11] that since ®:¢ (A) represents the value of ®¢ . (A) for A : ®¢ . (A) > 6, the optimal

€p€h €p€h €p€h

spatial filter given in (12) can be approximated by
Fopi(A)=P*(A). (20)

If the same spatial filter is used in both MCP loops in Figure 6, the 3D filters combining spatial filtering and
motion compensation in the base layer and the enhancement layer, Hy(Q2) and H (), become identical, which
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Figure 6. Block diagram of an leaky prediction layered video codec (LPLC)

is referred to as H () hereafter. We then have

Se(Q) = Eg(Q)+5.(Q) = Ey(Q) + ¥'(Q) + 5.(2)
= Ep(Q) + V() + HQ)[(1 - a)Sh(Q) + aSL(Q)],

which derives

sue) = BEEEQE BT 500+ e VO o)
Moreover, we have
_ _ _ _ 3 ol _ o _ aH () /
W(©) = El) - BY) = () - $(2) - EYQ) = (S0) - () - 17 e V(@)
Since
S() = 54(2) = Ep(Q) — Ep(Q)2E,(Q), (22)
then
W) = Bu(0) - s (GO + V(D)
hence
() Sl By() o) N(®). (23)

T 1= aH(Q) + G(A)(aH(Q)) 1= aH(Q) + G.(AN) (aH(Q))

We observe that the Fourier transform of the mismatch signal {1} in (23) has exactly the same form as that of
the base layer MCP error signal {e,} that is related to {s} and {n,} [11]. Here {é,} acts as the input signal to
the MCP loop as opposed to {s}, {n.} serves as the additional Gaussian noise in the optimum forward channel
as opposed to {ny}, and (aH(2)) the MCP 3D filter that combines spatial filtering and motion compensation
as opposed to H(Q). Therefore, we obtain an alternative diagram for LPLC as in Figure 7.

Next we complete the rate distortion analysis of two scenarios for LPLC: with and without drift in the
enhancement layer.

Scenario I for LPLC: Following a similar manner as the analysis developed for ®¢ , (A), as given by (10)
and (11), we obtain an approximation of the PSD of the mismatch signal {¢} as

~ (I,appr,é(A) _ { (I)ébéb (A) A (I)ébéb (A)

o9 (A | 5 ol o
v (A) = @yl max{f, By (A)} A e, (A)

(24)
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Figure 7. Alternative block diagram of the LPLC codec

where

%’3(1\) = Dz,5, (A)[L — 20Re{ F(A)P(A)} + a?|F(A)|?] + 0a®|[F(A) P, (25)

and ®g, ¢, (A) is given by (15). When F'(A) is chosen as the optimum spatial filter for the base layer in (20), we
have

Q0 (8) = Pee, (AL — a2 — @) | P(A)P] + 6o | P(A) . (26)

Note that only when o = 1, F/(A)=~P*(A) is also approximately optimized for the minimization of @{pfi (A) for
A (I)ébéb (A) > g
Moreover, according to Figure 7, we have

S(2) = 5.(Q) = S(Q) — S5(2) — (S.() = 55(Q) = Ep(Q) — E(Q) = ¥(Q) — V() £ ¥(Q).  (27)
Similar to the way we derived ®s,z,(A) in (15), we have

®;;(A) = min{,%,,(A)} = min{d, ®z,z,(A)}. (28)

Similar to the discussion for Scenario I for conventional layered video coding in Section 3, we choose 6 < @ first.
Thus according to (15), we simplify (28) as
@5 (A) = min{f, ®,,(A)}. (29)

Therefore, the distortion in the MSE sense between the input video signal and the decoded signal by both layers
in LPLC is

DL0O — B{(s—§/)?} = ﬁ //A 5 (A)dA = ﬁ //A min{0, ,,(A)}dA. (30)

Note that the distortion function given in (30) for LPLC has the same form as in (14) for the conventional layered
video coding structure.

The data rate in units of bits consumed by the LPLC framework described in Figure 7 is the sum of the
mutual information between {e,} and {e;} plus the mutual information between {¢} and {¢)'}. Therefore,

_ 1 of A (I)é A
RESO — 5z // max {O,IOgg <ebe§()) } + max {0,105%2 ( dﬂg( )) } dA, (31)
T JJa
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Figure 8. Block diagram of an LPLC codec when the enhancement layer is decoded below the MCP rate

where @f;w(A) can be approximately obtained by (24), and ®¢ _ (A) approximately by (10). Note that when

€p€Ep
a = 0, LPLC reduces to the conventional layered coding structure. At this time, @Z,¢(A) equals to ®z,z, (A)
according to (24) and (25), and the rate function given by (31) reduces to the same form as in (9).

When 6 > 6, we have @iw (A) = ®z,5,(A) < 0 < 6. It is easy to show that the rate distortion functions for

both layers of LPLC, Dg’g’é and RL?? as given by (30) and (31), reduce to the functions of the base layer that
are parametric with 6, and have exactly the same form as in (16) and (17).

Scenario II for LPLC'": As we mentioned, LPLC is designed to balance coding efficiency and the error resilience
performance. The use of the leaky factor, when less than 1, is targeted to ameliorate the effect of error propagation
that is caused by the truncation or destruction of the enhancement layer in the MCP loop. The rate distortion
functions are next derived for LPLC when drift occurs in the enhancement layer. Hence evaluate the error
resilience performance of LPLC with respect to a.

Based on the ideas used in Scenario II for conventional layered video coding in Section 3 where drift occurs
in the base layer in the MCP loop, we introduce a third optimum forward channel taking the coded mismatch
signal {¢'} as its input. This channel models the scenario where the mismatch signal carried by the enhancement
layer is decoded below the MCP rate, as described in Figure 8.

For the convenience of analysis, we change the parameter that yields the rate distortion functions between
{4} and {¢'} to 6, and let £ 0 + 6. Since

_oqn _ ! 1 ’ T A 7 1 T,
S(9) — SU(@) = (V@) ~ V() + Ty (W)~ W) £ U + prn b@), (32)
and the two terms in the right hand side of (32) are uncorrelated with each other’, we have
; 1 1 2
DIe.o  — 7//<1>~~A E{|————| »®, (A)dA
e A2 A wu)( ) + 1— O/H(Q) ww( )d ) (33)
where
1 2 1
E{‘ 1—aH(Q) } T 1-aF(A)) (34)
which is derived in a similar way as in [13],
<I>1M‘(A) = min{0, @Z,w(A)}, (35)

"This can be proved in a similar way as in [13].
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and

®;5(A) = min{d, @y (A)} = min{d — 0, max{0, 8, (A) — 4}}. (36)

When F(A) is evaluated as P*(A), we have the distortion between the input video signal and the decoded signal,
when the mismatch signal carried by the enhancement layer is decoded below the MCP rate, as

;1 T 1 R ; )
DH.0.6 — ype) / A min{0, @fpw(A)} + T a? P min{f — 6, max{0, <I>?W(A) — 0} }dA. (37)

The rate consumed by the LPLC framework in Figure 8 is the sum of the mutual information between {e,}
and {e;} plus the mutual information between {¢} and {¢"}, therefore,

~ 1 @9 A (I)é A
RI16:9 — 52 //A max {0,log2 (ebeé’()> } + max {0,log2 <W2()> } dA. (38)

Note that if @ is fixed for the base layer optimum forward channel, and 0> 0, then no information is carried
by the enhancement layer. The rate distortion functions given by (37) and (38) reduce to a fixed point that is
parametric with 6, which is the same as (16) and (17). The PSD of the output signal from the first channel in
the enhancement layer, ®y (A), is zero, and no drift occurs in the enhancement layer. If the encoded bitstream
still suffers from data rate truncation, it will be the base layer that suffers from drift, which yields Scenario 11
in Section 3 where the base layer is decoded below the MCP rate. Therefore, we have 6 < 6 for modelling the
case where the base layer is intact while the enhancement layer is likely to suffer from drift.

If 6 is fixed, namely o satisfying 0y < 0, the parameter of the second optimum forward channel in the
enhancement layer, 6, which models the drift that affects the enhancement layer, ranges between 0 and 6 — 0o.
When 0 > 0 — g, i.e., 6 > 0, the rate distortion function specified by (37) and (38) also stays at a fixed point.
Given the above and cornblmng (24), (25), and (15), we have

8% (A) < Bsye, (M) < 0 < 6, (39)

thus the rate function in (38) reduces to the same form as (17), but the distortion function reduces to

~ 1 . o 1 y §
110,606 __ _— . 0 I 4 B
De — 4’/T2 / N mln{907 @¢0¢ (A)} + l — QQ‘P(A)P maX{O’ (b¢0¢ (A) ao}dA,

for 6y <0 and 0> 6. (40)

Note that when o = 0,

1

50 n — 50 —
T—Q2P(AE max{0, ®7, (A) — 0o} = @5, (A) = Pz, (A),

min{fo, (Di"w (M)} +

and the distortion given by (40) reduces to that given by (16). When a = 1, for A : ®z,5, (A) > 6y, we have
@Z"w(A) > 0o, and

1 5 y Dge, (M) (1 — |P(A)|2) + bo| P(A))2 — 6, y
=Pl max{O,(I)Z‘Jw(A)—Ho}:max{O, () |1£)]|3()A)|20| (W)l O}Z‘I)ébéb(A)—Qo.

Thus it is easy to show that the distortion given by (40) also reduces to that given by (16) for & = 1. Due to

the approximation we used in (24) for the evaluation of (I)f;w (A), when 0 < « < 1, the distortion (40) is usually
smaller than that for (16).
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Figure 9. Rate distortion functions of LPLC for various leaky factors () (074 = 0.04 for P(A) in (42))

5. RATE DISTORTION PERFORMANCE EVALUATION OF LPLC
Similar to [11] and [13], we model the PSD of the input video signal as
wier;

—3/2
27
(I)ss(A> — q)ss(wxywy) — ? (1 + wg > |U:;31‘ S :frfsz and ‘u)y| S 7Tfsy , (41)
otherwise

where fy; and f,, denote the sampling frequencies when {s} is spatially sampled at the Nyquist rate, and

Tfsx _ Tfsy

wo = 5% = 1515+ We model the p.d.f. of the estimated motion vector error with its characteristic function
034 Tad, 2 2
P(A) = exp {SA . A} = exp {S(wx + wy)} , (42)

where Ui 4 denotes the variance of the estimated motion vector error.

As described in Figure 9, we evaluate the rate distortion performance of LPLC with respect to the leaky
factor, a, according to the closed forms we derived for the two scenarios for LPLC in Section 4.

Results of Scenario I for LPLC are shown in solid lines in Figure 9, where the enhancement layer (denoted as
EL in the figure) does not suffer from drift in LPLC. When 6 is fixed at the point that yields the rate distortion
function at D{ = 15.55 dB in (16) and R{ = 0.066 bits in (17), we vary the parameter  to obtain the rate
distortion functions for different values of o according to (30) and (31). It is shown that when the data rate is
sufficiently large, LPLC achieves better performance in the rate distortion sense, or in coding efficiency (at a
fixed distortion), with increasing leaky factor. To obtain the same amount of distortion, a larger leaky factor

requires less data rate than the smaller ones. For example, to obtain the distortion Dg’é = 35.14 dB as shown in
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the figure, LPLC has a gain of approximately 0.12 bits/pixel in rate whenever « increases by 0.1. It is interesting
to note that when the enhancement layer MCP rate is small, it might be possible that a larger leaky factor yields
a less efficient codec, especially when the leaky factor is close to 1. In our derivations, this arises because the
PSD in (26) can be rewritten as

BL0(A) = (2,5, (A) = 0) [1 — (2 — )| P(A)2] + 0 [1 — 2a(1 — a)| P(A)?].

For a fixed A, the first term of @L’Z(A) achieves its minimum with respect to @ when o = 1 while the second

1
5

Results of Scenario II for LPLC are shown by dotted lines in Figure 9, where the enhancement layer suffers
from data rate truncation. We fix y so that the distortion in SNR is at 35.14dB, and vary 6 between this
value and 6 in (37) and (38). It is observed that larger leaky factors yield a larger drop in the rate distortion
performance when drift occurs in the enhancement layer, which conforms well with the published operational
results. In our closed form expressions, the term m in (37) stands for the effect of error propagation
when drift occurs. The larger «, the larger decrease in fidelity as a result of the amplification of the drift by this
term, implying poor error resilience performance. Notice that a leaky factor of 0.5 is a good choice in balancing
between error resilience performance and coding efficiency.

term achieves its minimum when a = -. We believe this conforms with the operational results in [7].
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