
Computational Resiliency: 

Reliable Heterogeneous Applications 

by 

Joohan Lee 

M.S. Sogang University, Korea. 1995 

B.S. Sogang University, Korea. 1993 

 

 

DISSERTATION 

Submitted in partial fulfillment of the requirements for the 

Degree of Doctor of Philosophy in Computer and Information Science 

in the Graduate School of Syracuse University 

October 2001 

 

Advisor: Professor Steve J. Chapin 

 



 vi

Abstract 

 

This thesis presents the notion of computational resiliency to provide reliability in 

heterogeneous distributed applications. The notion provides both software fault tolerance 

and the ability to tolerate information warfare (IW) attacks. This technology seeks to 

strengthen a military mission, rather than protect its network infrastructure using static 

defense measures such as network security, intrusion sensors, and firewalls. Even if a 

failure or successful attack is never detected, it should be possible to continue 

information operations and achieve mission objectives.  

Computational resiliency involves the dynamic use of replicated software structures, 

guided by mission policy, to achieve reliable operation. However, it goes further to 

automatically regenerate replication in response to a failure or attack, allowing the level 

of system reliability to be restored and maintained. Replicated structures can be protected 

through several techniques such as camouflage, dispersion, and layered security policy. 

This thesis examines a prototype concurrent programming technology to support 

computational resiliency in a heterogeneous distributed computing environment. The 

performance of the technology is explored through two example applications, concurrent 

sonar processing and remote sensing.  

We develop the associated performance analytical model and verify the model against the 

experimental results. Overhead of computational resiliency over homogeneous and 

heterogeneous systems are investigated. Load balancing techniques are used to improve 

the overall performance of the system especially on heterogeneous computing 

environments. 



 vii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2001 Joohan Lee 

All rights Reserved 



 viii

 

 

Committee Approval Page 

 



 ix

Table of Contents 

 
1   Introduction         1  

1.1 General Approach        1 

1.2 Thesis Statement        3 

1.3 Contribution        4 

1.4 Metrics of success        5 

1.5 Overview         5 

2 Related Research        7 

2.1 Fault Tolerance        7 

2.2 Heterogeneous Resource Management     15 

2.3 Message Passing Model       17 

2.4 Performance Modeling       22 

2.5 Summary         24 

3 Computational Resiliency       26 

3.1 Introduction        26 

3.2 Prototype Implementation       29 

3.2.1 Membership Protocol      32 

3.2.2 Liveness Checking Protocol     35 

3.2.3 Flow Control Protocol     42 

3.3 Software Architecture       44 

3.4 Summary         46 



 x

4 Concurrent Sonar Processing      48 

4.1 Introduction        48 

4.2 Computational Resiliency       49 

4.3 Analytical Model        56 

4.3.1 Communication Model     58 

4.3.2 Computation Model      60 

4.3.3 Model Parameters      62 

4.4 Experimental Results       64 

4.4.1 Scalability       65 

4.4.2 Variation in Network Performance    66 

4.4.3 Variation in Resiliency     67 

4.4.4 Variation in Frequency of Liveness Checking  71 

4.5 Summary         72 

5 Remote Sensing Application      73 

5.1 Introduction        73 

5.2 Computational Resiliency       75 

5.3 Analytical Model        79 

5.3.1 Communication Model     80 

5.3.2 Computation Model      80 

5.3.3 Model Parameters      83 

5.4 Experimental Results       83 

5.4.1 Scalability       84 

5.4.2 Variation in Network Performance    84 



 xi

5.4.3 Variation in Resiliency     85 

5.4.4 Variation in Frequency of Liveness Checking  88 

5.5 Summary         88 

6 Heterogeneous Systems       90  

6.1 Load Balancing Algorithm      90 

6.2 Heterogeneity in Data Representation     94 

6.3 Experimental Testbed       96 

6.4 Heterogeneous Modeling       98 

6.5 Concurrent Sonar Processing      99 

6.6 Remote Sensing Application      108 

6.7 Summary         113 

7 Conclusion and Future Work      114 

Appendix A Message Logging Based Approach    117 

Appendix B Technology Demonstration      119 

Bibliography          127 



 xii

List of Illustrative Materials 

Figures 

 Figure 2.1: Distributed Memory Architecture    18 

 Figure 2.2: SCPlib Node Structure       21 

 Figure 3.1: Replication of Threads      27 

 Figure 3.2: Computational Resiliency using a Cluster of Multiprocessors 28 

 Figure 3.3: Fault-Tolerance vs. Computational Resiliency   29 

 Figure 3.4: Resource Allocation and Mapping    31 

 Figure 3.5: Hierarchy of Groups during Liveness Checking   37 

 Figure 3.6: Recreation of the Crashed Thread    38 

 Figure 3.7: Failure and Reconfiguration     40 

 Figure 3.8: After Liveness Checking      41 

 Figure 3.9: Group Channel Implementation     43 

 Figure 3.10: Flow Control       44 

 Figure 3.11: Software Architecture for Computational Resiliency  45 

 Figure 4.1: Communication Model for Sonar Processing   49 

 Figure 4.2: Application View       50 

 Figure 4.3: Resilient View       50 

 Figure 4.4: Before Failure       53 

 Figure 4.5: After the First Failure and Recovery    54 

 Figure 4.6: After the Second Failure and Recovery    55 

 Figure 4.7: Scalability of Concurrent Sonar Processing   66 

 Figure 4.8.Predicted Performance for Gigabit Network   67 



 xiii

 Figure 4.9: Overhead of Resiliency      70 

 Figure 4.10: Overhead of Liveness Checking     71 

 Figure 5.1: Concurrent Remote Sensing     74 

 Figure 5.2: Manager/Worker Communication Model   75 

 Figure 5.3: Application View       76 

Figure 5.4: Resilient View       76 

Figure 5.5: Scalability of Concurrent PCT     84 

Figure 5.6: Predicted Performance for Gigabit Network   85 

Figure 5.7: Overhead of Resiliency      87 

Figure 5.8: Overhead of Liveness Checking     88 

 Figure 6.1: Load Balancing in Computational Resiliency   91 

 Figure 6.2: Endian Byte Ordering      94 

 Figure 6.3: Flow Control in Heterogeneous Environments   96 

 Figure 6.4: Heterogeneous Network Architecture    98 

 Figure 6.5: Utilization for Each Load Balancing Technique   102 

 Figure 6.6: Overhead of Resiliency      106 

 Figure 6.7: Overhead of Liveness Checking     107 

 Figure 6.8: Overhead of Resiliency      111 

 Figure 6.9: Overhead of Liveness Checking     112 

 Figure A.1: Performance Chart      118 

 Figure B.1: Dirichlet Boundary Problem and Its Parallelization  121 

 Figure B.2: Screenshots of Dirichlet Application Demonstration  122 

 Figure B.3: Performance Charts      126 



 1

Chapter 1    Introduction 

Any system that operates in highly adverse environments, such as battlefield command 

and control, must be able to operate reliably by tolerating failures and attacks. Many 

distributed systems have sought to use state replication, either in hardware or software, as 

a mechanism to provide fault-tolerance and recovery. These approaches provide graceful 

degradation of performance to the point where no further replicas are available and then 

system failure occurs. This is not sufficient to assure information operations in adverse 

military situations where networked resources may become available dynamically 

through retasking. 

 

1.1 General Approach 

We are investigating an alternative model of distributed computation termed 

computational resiliency. This model combines real-time attack assessment with process 

reconfiguration, dispersion, camouflage, on-the-fly replication, and layered security 

policy to reliably maintain information operations. To visualize how these concepts might 

operate, consider a distributed application as analogous to an apartment complex 

inhabited by a new strain of roach (a process or thread)1. The roaches are highly resilient: 

you can stamp on them, spray them, strike them with a broom but you never kill them all 

or prevent them from their goal of finding food (resources). To foil your eradication 

                                                           
1 Thanks to Cathy McCullum for providing this analogy. 



 2

efforts, they use several techniques: (1) they are highly mobile moving from one place in 

the apartment complex (network) to another with speed and agility. (2) they continually 

replicate to ensure that it is not possible to kill them all. (3) they sense their environment 

(attack assessment) to obtain clues that mobility is necessary; if a light is turned on, they 

scurry away in all directions to hide behind cupboards in places of known safety (secure 

network zones). (4) if a new roach killer is invented they learn from it, and adapt their 

behavior to compensate. However, this new strain is particularly aggressive and seeks to 

live in the daylight (wide-area operation); thus it adopts techniques for camouflage as a 

form of protection and disinformation. 

 

To support this model, we have developed an application-independent programming 

technology that operates in heterogeneous distributed computing environments. The 

technology can be applied either to an entire application or a small number of selected 

components that are crucial to reliable operation. It incorporates the notion of resiliency 

into an application through a novel message-passing library. The library hides the details 

of the communication protocols required to achieve automatic on-the-fly replication and 

reconfiguration. It operates on a broad variety of networked architectures that include 

commercial-off-the-shelf computer systems and networking components, shared-memory 

multiprocessors and clusters of homogeneous machines. The library distinguishes these 

architectural differences for the purpose of performance improvement. For example, 

when communicating within shared memory, pointer copying is used; when 

communicating within a homogeneous cluster, no byte or machine translations are 

needed.  



 3

 

Since machines in the environment may have widely different performance and memory 

characteristics, load balancing techniques are required. These techniques must disperse 

replicated structures to realize improved reliability. To explore the performance issues 

associated with these concepts, we have incorporated the technology into two prototype 

distributed applications: a towed-array sonar and a hyper-spectral remote sensor. In this 

thesis we outline the applications, and show how resiliency is applied to them. 

Performance measurements are provided that quantify the overhead of resiliency, under 

normal operating conditions, using a network architecture of both homogeneous multi-

processors and heterogeneous computers connected with both Gigabit and Fast Ethernet 

technologies. 

 

Analytical models have been developed to understand the performance characteristics of 

the example applications with computational resiliency, and they can be used to predict 

the runtimes of the applications with respect to different reliability requirements. 

 

1.2 Thesis Statement 

THESIS 

Scalable, transparent, and automated reconfiguration and recovery from 

failures and attacks can be achieved by strengthening applications using 

replicated structures in heterogeneous distributed environments. 

 



 4

Three principles were used to guide the development of the mechanisms described by the 

thesis statement. Each principle addresses part of the thesis statement, and together they 

form a basis for constructing resilient support mechanisms that fulfill the thesis. 

 

Transparency The methods to provide computational resiliency should be transparent to 

the applications. Application Programming Interface (API) provides the abstract 

definition of the required reliability and its realization is transparent to the applications in 

the presence of the failures or attacks. 

 

Scalability The supported mechanism to provide computational resiliency should be 

scalable. Use of replication mechanisms and local area network as an interconnection 

network can prevent the system from scalability. Overhead associated with replication 

and network communication should be reduced to make the system scalable, which can 

be achieved by load balancing. 

 

Portability The distributed computing environments consist of wide range of computers 

ranging from shared memory multiprocessors, distributed memory multicomputers, to a 

cluster of workstations. The developed software library should be portable to these 

various computing systems efficiently recognizing the underlying hardware capability for 

optimized implementation. 

 

1.3 Contribution 

The contributions of this research are: 



 5

1. A novel approach to provide fault tolerance and automatic recovery from attacks and 

failures. 

2. A flexible software architecture that is application and platform independent.  

3. Heterogeneous load balancing of replicated structures for performance improvement. 

4. Demonstration of technologies using typical real-world applications in various fields. 

5. An associated analytical model expressed in terms of application-dependent 

parameters and resiliency requirements. 

6. Experimental studies to reveal the associated overhead for computational resiliency. 

 

1.4 Metrics of Success 

The following matrices are used in assessing the quality of the suggested approach in this 

thesis: 

1. Overhead of Resiliency: Investigation of the overhead of replication and how to 

reduce it by means of load balancing. 

2. Overhead of Recovery: Investigation of how fast the system can recover from failure 

and attacks and how to reduce the overhead of recovery process.   

3. Accuracy of predictive models: Investigation of how accurately the analytical model 

can perform when the number of processors, application dependent factors, reliability 

factors, etc. are varied. 

 

1.5 Overview 

This thesis consists of seven chapters. 



 6

Chapter 1 provides an introduction to the thesis. 

Chapter 2 provides background material and related research in the fields of fault 

tolerance, parallel and distributed computing, and performance modeling. 

Chapter 3 describes the prototype implementation methods of computational resiliency. 

Chapter 4 presents the application of computational resiliency to a prototypical 

application, concurrent sonar processing over a homogeneous testbed, and its analytical 

model.  Experimental study and performance prediction are also described. 

Chapter 5 presents another application, remote sensing. Same experimentation and the 

analytical model are described. 

Chapter 6 extends the applications presented in Chapter 4 and 5 to a heterogeneous 

system. Various load balancing methods and corresponding experimental results are 

described.  

Chapter 7 describes the directions of future research and contains concluding remarks. 



 7

 
 

Chapter 2    Related Research 

This chapter presents background study and related research in the fields of fault 

tolerance, heterogeneous resource management, message passing model, and 

performance modeling. The first section discusses the taxonomy of the fault tolerance 

techniques, related issues, and survey of the existing systems. The second section 

examines the various approaches to balance the utilization of the processors and load 

balancing techniques that are aware of reliability of the distributed systems. The third 

section describes the message passing programming model and three frequently used 

message passing tools. The fourth section presents the various approaches to performance 

modeling. 

 

2.1 Fault Tolerance 

Generally, fault tolerance means the system’s ability to tolerate the failures of the system 

in order to complete the mission assigned transparently. Without the fault tolerance, even 

a single processor failure can cause the entire application running on the parallel and 

distributed computing environment to stop and restart from the beginning. In most of the 

distributed applications, fault tolerance is highly desirable for commercial applications, 

i.e., distributed banking systems and E-commerce servers, for mission-critical 

applications, i.e., nuclear power plant control and military command and control, and 

scientific applications, i.e., long running weather simulation applications. Fault tolerance 



 8

and recovery techniques can be implemented in hardware, software, or a combination of 

both. Here we are concerned primarily with software based techniques that can be applied 

to distributed real-time applications. Fault tolerance researches have focused on different 

aspects of the distributed systems, thus used different acronyms to emphasize those 

aspects. In this subsection, we investigate the taxonomy of the fault tolerance research 

and the related issues.  

 

Capability of the fault tolerance techniques can be classified according to the types of 

failures they can handle. The types of failures can be categorized as three basic models 

[Schneider 1984, Lamport 1982]. In fail-stop failure model, in response to a failure, the 

component changes to a state that permits other components to detect that a failure has 

occurred and then stops. In omission and timing failure model, the component fails by not 

responding to an input or by giving an untimely response. In Byzantine failure model, the 

component fails by exhibiting arbitrary and even malicious behaviors, perhaps involving 

collusion with other faulty components. It is even impossible to tell whether a component 

is faulty or not. 

 

Any system that can tolerate Byzantine failure would be the most fault tolerant. Providing 

more complex failure models requires higher expenses. A system is told to be t-fault 

tolerant if it can detect and mask t failures. For fail-stop failure model, 1+t  fold 

replication is required to detect and mask the failures. With t failures, the 1+t th replica 

can continue the operation. But, for Byzantine failures, 12 +t  fold replication is needed. 

When t processors become faulty and produce faulty outputs, another 1+t  correct 



 9

processors are required to decide the correct outputs among them. Depending on the 

target environments and the application requirements, the supported failure model should 

be selected. 

 

A useful taxonomy of recovery techniques for information warfare has been developed 

by Jajodia [Jajodia 1999, Resnick 1996]. Recovery process involves reinitializing the 

system and replacing the failed components. Depending on the degree of transparency of 

a recovery process to the applications, recovery techniques can be categorized as cold-

start, warm-start, and hot-start. Cold-start recovery involves a complete restart in the 

event of a severe attack or failure. No previous state of the system is available and the 

system has to restart from the beginning. The recovery times are the slowest. Warm-start 

involves non-transparent but automated recovery. Some knowledge about the previous 

state of the system is available and the system can start from the last known state. Fault 

detection times takes as much as cold-start, but the recovery times are lower than cold-

start because of the partial initialization and state sharing. Hot-start technique is by far the 

more sophisticated and provides transparent recovery. Failure is completely masked and 

the recovery is immediate. Hot-start strategy is desirable for real-time distributed 

systems, leading to the fastest recovery times to the failures. 

 

Recovery techniques can be also categorized depending on the direction of recovery, roll-

backward and roll-forward recovery techniques [Randell 1979]. In roll-backward 

recovery techniques, when the failure happens, the system rolls back to the previously 

saved state and starts from there. The last available state can be saved in stable storage 



 10

for later references periodically. In contrast to roll-backward recovery, roll-forward 

recovery schemes always advance the sate of their work even in the presence of the 

failure. Usually, roll-forward recovery techniques are desirable since the system can 

continue the operation transparently without interruption in the presence of the failures 

while roll-backward techniques cause the system to interrupt the current operation and 

start from the past state. However, roll-forward recovery techniques may incur more 

overhead to maintain the alternative processes consistent and synchronized. 

 

Most of the fault tolerance techniques developed to date are based on notion of process 

replication to provide high levels of system availability [Guerraoui 1997]. Unfortunately, 

the use of replication introduces additional problems such as the need to maintain 

consistency between replicas, detect the failure of a compromised process, and 

transparently recover system function. In many client-server style applications, the 

techniques employed to provide recovery can be divided into two general categories 

based on passive [Budhiraja 1992] or active [Schneider 1990] replication.  

 

In passive replication (primary-backup aproach) [Budhiraja 1992], there is a single 

primary source and all other replicas are maintained purely as backups. Only the primary 

source receives requests from clients and guarantees the ordering and atomicity of 

message delivery. Although easy to implement, this method is slow to transfer control to 

a backup in the event of failure; this can lead to significant degradation in system 

response.  

 



 11

In active replication (state machine approach) [Schneider 1990], all replicas have the 

same level of control. Any viable replica may receive a message from a client and 

collectively the replicas maintain message ordering and atomicity. This approach is 

attractive for real-time systems because it provides a more transparent view of the system 

to client processes and is relatively fast to transfer control in the event of failure 

[Sussman 1996].  

 

Two most popular implementations of software-based fault tolerance techniques are 

checkpointing and group communication that operate through a combination of above 

techniques. Checkpointing techniques can be characterized by warm-start, roll-back 

recovery, and passive replication. Group communication is an approach based on hot-

start, roll-forward recovery, and active replication.  

 

Group communication approach is based on replication strategy. To implement 

replication it is useful to organize processes into groups and provide communication 

mechanisms between groups. The concept of a process group was first introduced in the 

V-kernel to express one-to-many communication structures [Cheriton 1985]. A group is a 

set of processes sharing common application semantics, as well as the same group 

identifier and multicast address. Each group is viewed as a single logical entity hiding its 

internal structure from other groups. The processes in a group cooperate to provide a 

single service. In order to maintain and share a consistent process state, the processes use 

multicast communication primitives that guarantee every process in the group receives 

the same messages in the same order. The group concept has been extended to many 



 12

fault-tolerant distributed systems such as Isis [Birman 1994], Horus [Renesse 1996], 

Transis [Amir 1992], Totem [Agarwal 1994], and Ameoba [Kaashoek 1993].  

 

Horus system [55] provides a flexible group communication model to the application 

developers. It provides an architecture whereby the protocol supporting a group can be 

varied, at runtime, to match the specific requirements of its application and environment. 

Group communication support is provided by stacking protocol modules that have a 

regular architecture, and in which each module has a separate responsibility. Basically, 

Horus supports the virtually synchronous execution model introduced by Isis[51]. 

 

Transis system [56] considers the problems that arise in diverse network setting such as 

network partitioning.  It provides a larger-scale multicast service to solve the problems. 

For network partitions, Transis provides tools for recovery from them and describes how 

different components of a partitioned network can operate autonomously and then merge 

operations when they become reconnected.  

 

Totem system [57] supports a reliable, totally ordered multicasting service over local area 

network and exploits the hardware broadcasts to achieve high performance. Totem is 

intended for the application where fault tolerance and real-time performance are critical. 

The characteristics of Totem include high throughput and low predictable latency, rapid 

detection and recovery from faults, systemwide total ordering of messages despite the 

network partitioning, and scalability of the underlying networks. 

 



 13

Ameoba [59,60] is a distributed operating system based on client/server model and uses 

the group communication to provide the fault tolerant operating system services, such as 

distributed directory service, to the users transparently. In order to tolerate the arbitrary 

faults, group communication is used within the distributed operating system. Group 

communication protocol in Ameoba uses hardware multicast capability, if on exist, for 

the application that needs high performance. 

 

These systems all allow members of a group to fail thereby providing graceful 

degradation of performance to the point of system failure. Although not used for fault-

tolerance, the process group has also been used widely as a concurrent programming 

paradigm through libraries such as PVM [Sunderam 1990] and MPI [Gropp 1995].  

 

On the other hand, checkpointing is usually referred to the method to save the 

intermediate state of the system, checkpoint, in the stable repository such as hard disk or 

a separate server periodically. When the failure happens, the system restarts from the last 

saved checkpoint. Checkpointing generally requires more time to recover than process 

group approach since it involves restoring previous state and launching a new process.  

 

There are tow approaches to implement checkpointing, synchronous and asynchronous. 

In asynchronous checkpointing, checkpoinits are taken by each process independently 

and no synchronization of the their actions are needed [Juang 1991]. Lack of 

synchronization leads to less overhead but when the failure happens the system has to 

search for the most recent consistent checkpoint among the processes. Sometimes, 



 14

processes may have to roll back to the initial state in the worst case, which is known as 

domino effect [Deconinck 1993]. In synchronous checkpointing, all the processes 

involved in checkpointing coordinate their actions to maintain the consistency of the 

checkpoints in the system. Koo and Toueg [Koo 1987] proposed an algorithm that uses 

synchronous checkpointing and roll-back recovery. Their algorithm solved the problem 

of domino effect problem that may happen in asynchronous checkpoinitng. It can also 

tolerate the failures that occur during the checkpointing with use of a two-phase commit 

protocol.  

 

Usually, asynchronous checkpointing takes less times for checkpointing actions but may 

lead to unpredictably long recovery times. Synchronous checkpointing incurs more 

overhead for checkpointing actions but less recovery times. Therefore, if failures rarely 

happens, synchronous checkpointing technique places additional burden on the system 

[Singhal 1994]. 

 

In efforts to remove the domino effect in asynchronous checkpointing and reduce the 

recovery time, checkpointing with message logging approach was presented [Johnson 

1989]. In this approach, the messages received are logged in the stable storage as well as 

the normal checkpoints. When the failures happen, a failed process is restored using the 

previous checkpoint and the log of messages received by that process after the last 

checkpoint and before the failure. With use of message logging in checkpointing, each 

process can be checkpointed infrequently, and no global coordination is required during 

execution. Checkpointing mechanisms can sometimes be used transparently and a variety 



 15

of techniques have been developed to reduce the associated overheads [Plank 1995, 

Ramkumar 1997, Scales 1996].  

 

Choosing the right recovery techniques depends on the requirements of the applications. 

Scientific parallel programs may choose cold-start and roll-back recovery techniques. 

However, life-threatening applications like command control applications should choose 

a hot-start and active replication based strategy. This may increase the requirements for 

the systems for replicated servers, however, it guarantees the highest level of reliability 

and the fastest recovery time.  

 

2.2 Heterogeneous Resource Management 

The use of networks of personal computers, workstations, and symmetric multiprocessors 

as a computing platform requires load balancing techniques. Computers in a typical 

network often differ in processor performance, memory characteristics, and operating 

system. Basic concept of load balancing is to transfer load from heavily loaded 

processors to idle or lightly loaded processors. Many load balancing techniques over 

parallel computers and distributed multi-computers have been developed [Heirich 1994, 

Kumar 1994a, Li 1997, Watts 1998a]. These typically assume that attacks or faults are 

unlikely and focus on the optimal allocation of resources.  

 

Load balancing algorithms can be characterized as static or dynamic [Shivaratri 1992]. 

Static load balancing decides the allocation of the workload to the system before the 

execution [Barnard 1994]. The algorithm cannot cope with the changes in the system at 



 16

run time. However, dynamic load balancing is done while processes are in running state 

and can adapt to the changes dynamically [Cybenko 1989, Evans 1993, Watts 1998a]. 

Dynamic load balancing algorithms, on the other hand, causes more overhead to collect 

and analyze the system runtime state information continuously. 

 

Load balancing techniques are also required for fault tolerant distributed systems, 

especially those based on active replication strategy. Use of active replication strategy 

requires the processes to be replicated on several processors. Unbalanced utilization of 

the processors leads to degradation of the overall performance. Literature on load 

balancing techniques for efficient allocation of the replicated processes can be found in 

[Nieuwenhuis 1990, Kim 1997, Bannister 1983, Shatz 1992].  

 

Nieuwenhuis [Nieuwenhuis 1990] has proposed a static model to represent the reliability 

of a replicated processes and the transformation rules that derive an optimal allocation of 

the replicated processes from an allocation of nonreplicated processes.   

 

Bannister [Bannister 1983] has presented an algorithm that balances the load of replicated 

processes over a homogeneous system and subsequently analyzed the performance of the 

algorithm. An upper bound of error is provided for their heuristic algorithm. In this 

model, no explicit system reliability measures were presented and they did not consider 

the failures of the communication links. 

 



 17

Schatz [Shatz 1992] proposed a model that expresses the reliability of the system in terms 

of the probability that the system can run an entire task successfully. This model 

introduces a process allocation algorithm that maximizes the reliability over 

heterogeneous systems. The model uses a cost function to represent the unreliability 

caused by execution of modules on processors of various reliability, and the unreliability 

caused by interprocessor communication. They converted the problem of task allocation 

problem into state search problem and applied A* algorithm [Nilsson 1971] to obtain the 

optimal value of the cost function. 

 

Kim [Kim 1997] studied static load balancing techniques for fault tolerant multicomputer 

systems using passive replication model. Their model is to find a static process allocation 

algorithm that balances the CPU load of every processor in the fault-free situation and 

also balances the CPU load in the presence of the failure. To avoid expensive searching 

time for the optimal allocation solution, they proposed a heuristic algorithm to find a sub-

optimal solution. 

 
2.3 Message Passing Model 

Message passing is one of the parallel programming paradigms used widely on certain 

classes of parallel machines, especially those with distributed memories depicted in 

Figure 2.1. Several systems have been developed to demonstrate that a message passing 

system can be efficiently and portably implemented [Geist 1994, Gropp 1995, Taylor 

1996].  

 



 18

P PPPP

M MMMM

Interconnection Network

 

Figure 2.1: Distributed Memory Architecture 

 

Message passing paradigm is favored for its portability. Programs developed in message 

passing paradigm can be ported to wide range of parallel and distributed architectures 

including shared memory multiprocessors, distributed memory multiprocessors, and 

network of workstations. It also supports various types of parallelism. It is suitable for 

both multiple instruction multiple data (MIMD) and single instruction multiple data 

(SIMD) style parallelism. 

 

In the message passing programming model, one parallel program consists of several 

sequential programs that run on each processor. Each sequential program uses message 

passing to synchronize with and access memory contents of other processors. Each 

sequential program can run the different stream of instructions or the same instruction 

stream. The mechanism of how the messages are formatted, how they are transferred to 

communication devices, and how they are sent across the network should be transparent 

to the applications. There is a wide variety of message-passing libraries available in most 

of the distributed architectures.  These libraries provide the applications with the 



 19

capability to run on distributed architectures initializing and managing the 

communication environment.  Common functions provided in those libraries include 

synchronization, point-to-point communication, broadcast/scatter data, and gathering data 

from a group of processes.  Three frequently used message passing libraries are described 

as follows. 

 

The Parallel Virtual Machine (PVM) is a message passing tool that supports the 

development of parallel and distributed applications for a collection of heterogeneous 

computing elements [Geist 1994]. This tool was designed and developed by the Oak 

Ridge National Laboratory.  The intention of this message-passing library is to create a 

single virtual machine using a group of heterogeneous computers.  The library is 

supported by a wide variety of machines from MPPs to PCs.  PVM selects a computing 

element to run a process on by using a process description file. Each process description 

file consists of a list of execution program names, locations, object file locations, and 

architectures. Each process is initiated in the virtual machine by the PVM daemon and 

spawned to the requested machine.  Each task will have its own unique identifier by 

which it is referred to when communication requests are made. In PVM, some levels of 

fault tolerance are provided.  The processes can ask for notification when other processes 

are abnormally terminated.  This information can be used for the remaining processes to 

take action in recovery. PVM provides heterogeneous communication capability that 

allows data to be exchanged between different types of machines. The library emphasizes 

the portability issue and thus sometimes provides a lower performance compared to other 

packages [Koniges 2000].  



 20

 

The Message-Passing Interface (MPI) is a standard portable message-passing library 

designed through the cooperation of academia, government laboratories, and industries 

[Gropp 1995].  It provides an extensive collection of routines with which to create 

common communication schemes and is constructed from a group of communicators (a 

set of user-defined processing resources).  Each task is ranked within each communicator, 

and the rank is used as a task’s identifier.  MPI provides many features intended to 

improve performance on scalable parallel computers with specialized interprocessor 

communication hardware. High-performance implementations of MPI that utilizes native 

communication services on specific machines have been provided. MPI implementation 

on top of standard Unix interprocessor communication protocols based on TCP/IP 

provides portability to heterogenous networks of workstations.  

 

Scalable Concurrent Programming Library (SCPlib) is a designing and implementing 

effort of the Scalable Concurrent Programming Laboratory at Syracuse University 

[Taylor 1996, Watts 1998b, Watts 1998c].  This library provides a heterogeneous 

concurrent programming technology and has been applied to a variety of irregular, large-

scale, industrial simulations such as particle simulations [Rieffel 1997, 1998], and 

continuum fluid flow solver [Watts 1998b, Taylor 2000]. The library is portable to a wide 

range of platforms, from distributed-memory multicomputers to networks of 

workstations, PC’s and multiprocessors. It provides a mobile thread abstraction in which 

threads may move between processors to accommodate for changes in resource 

requirements (e.g. processor speed, memory, bandwidth). The communication structure 



 21

of an application is represented explicitly and can thus be changed transparently as a 

thread migrates. The library is based on a concurrent graph model, in which 

computational nodes are connected through arcs that correspond to communication paths.  

Each node consists of named states, named communicators, and execution threads 

(Figure 2.2). 

 

my_proc ()

"my_state"

my_comm

 

Figure 2.2: SCPlib Node Structure 

 

The mapping of nodes to computers is transparent to the user’s application, thus the 

library is able to move, split, and merge nodes dynamically during runtime.  These 

capabilities enable a variety of load balancing and granularity control techniques based 

on thread migration. Applications based on SCPlib are MPI-standard compatible. In 

contrast to MPI and PVM message passing systems, SCPlib supports multithreading in its 

computation model. Computation model supported in SCPlib can easily fit in shared 

memory multiprocessors and distributed memory multiprocessors with multithreading. 



 22

 

2.4 Performance Modeling 

Predicting the runtime of a parallel program is useful for determining the optimal values 

for the parameters of the implementation and the optimal mapping of data on 

processors[Rugina 1998]. It is also useful for analyzing the scaling behavior of parallel 

programs. However, deriving an explicit formula for the running time of a certain parallel 

program is a difficult task.  

 

The metrics by which we measure performance can be as diverse as execution time, 

parallel efficiency, memory requirements, throughputs, design costs, hardware costs, 

portability, reliability, and so on [Foster 1994]. The relative importance of these diverse 

metrics will vary according to the natures of the problem at hand. For example, the 

design specification for reliable distributed real-time systems may specify maximum 

execution time and hardware costs within theses constraints. 

 

Many techniques have been developed to predict the performance of parallel programs. 

They are statistical model, simulation model, analytical model [Fahringer 1996, Serrano 

1994, Rugina 1998, Reiffel 1998]. All of these techniques have their own strengths and 

weaknesses, and their own classes of applications for which they are particularly suited. 

These models can be used to compare the efficiency of different algorithms, to evaluate 

scalability, and to identify bottlenecks and other inefficiencies, before we invest 

substantial effort in an implementation. 

 



 23

Statistical model is a performance prediction method based on statistical and probability 

theory. Distribution functions, random variables, probability theory, stochastic processes, 

Markov processes and chains, queueing networks are used to model the performance of 

parallel machines and programs [Fahringer 1996, Serrano 1994]. This model presents 

input and output data of parallel systems, analyzes the performance indices, and interprets 

these data by closed form formulas or distribution functions. The drawback of this model 

is that it is difficult to validate the statistical performance estimators against a real 

problem because of many simplifying assumptions. 

 

The simulation model uses simulation techniques such as Monte Carlo, Petri net, and 

emulation [Baer 1990, Rugina 1998]. This model can simulate the execution of a parallel 

program without actually executing it on the system. This model can be used to analyze 

and estimate the performance of a complex system. However, it also has some problems. 

A detailed model requires many input parameters to describe certain aspects of both 

target machine and program, which may not be always available. Simulations are slow 

and requires a lot of computing resources[Fahringer 1996]. 

 

The analytical model is primarily concerned with predicting the performance and 

resource scaling characteristics on a variety of architectures. Analytical modeling 

techniques abstract the features of a parallel system as a set of parameters or 

parameterized functions in order to make the modeling task tractable [Meira 1995]. 

Advantages of this method include that it is usually inexpensive and provides abstract 

view of the hardware and software, and that it is easier to tune and validate the accuracy 



 24

of individual parameters. However, the methods are usually not accurate when compared 

to real executions due to simplifications in the modeling process. For example, it is 

unclear how to model dynamic behavior such as adaptive load balancing and the changes 

of network traffic loads. Examples of analytical models developed for real systems can be 

found in a particle simulation model [Reiffel 1998]. 

 

Each model described has its own advantages and disadvantages. Choosing among the 

models is highly application-dependent. In our work, we are primarily interested in 

predicting the maximum execution time of distributed real-time applications that can be 

expressed as application dependent parameters, and the required system resources for 

various reliability parameters on a variety of computer architectures. We thus use the 

parameterized algebra-based analytical model for prediction. 

 

2.4 Summary 

In this chapter, we have surveyed and investigated various approaches to build scalable 

and fault tolerant distributed applications. Approaches to be taken are highly dependent 

upon the characteristics of target applications. For those applications as distributed real-

time applications, that this thesis is targeted for, following strategies are desirable for: 

• Fault Tolerance and Recovery Techniques 

Hot-start, roll-forward, and active replication based fault tolerance and recovery 

techniques are desirable to provide faster response and recovery time. However, use 

of these techniques may make design and development more complicated and 

difficult. 



 25

• Heterogeneous Resource Management 

Dynamic load balancing techniques are desirable to cope with the dynamic changes 

of the distributed computing environments. 

• Concurrent Programming Paradigm 

Our approach uses the Scalable Concurrent Programming Library (SCPlib). This 

library provides a basic concurrent programming technology on a wide range of 

platforms. 

• Performance Modeling 

Analytical performance modeling methods are used to predict the runtime of the 

applications. 



 26

 

Chapter 3    Computational Resiliency 

Computational resiliency provides higher level of fault tolerance by sustaining operation 

and dynamically restoring the level of assurance in system function in response to an 

attack and failure. This approach is intended to assure that full operational readiness and 

robustness of the system are restored within a quantifiable finite time, subject only to the 

constraints imposed by available resources. This chapter describes the concepts of 

computational resiliency and its prototype implementation. Software architecture to 

realize the concepts is also presented. 

 

3.1 Introduction 

To tolerate information warfare (IW) attacks, applications may choose to statically 

replicate mission critical threads, thereby forming thread groups, as shown in Figure 3.1. 

Each thread in a group is allocated to a different computational resource so as to sustain 

operation. This provides a graceful path of performance degradation to the point of 

failure. Unfortunately, it is not resilient in that it does not assure continued operation of 

the system when sufficient resources are available elsewhere in the network. In any 

realistic system, there will never be sufficient resources to replicate all threads, therefore 

some policy-based methods for controlling replication are required. In addition, resources 

may become available, or unavailable, dynamically, during the course of a conflict.  

 



 27

Threads Group

 

Figure 3.1: Replication of Threads 

 

An alternative approach is to dynamically recreate the level of thread replication in the 

face of attack. This assures that operational readiness is eventually restored, subject only 

to the constraints imposed by the time-dependent availability of resources. Obviously to 

be successful, the replacement thread must be mapped to an alternative location in the 

network with sufficient resources. Protocols are required to dynamically reconfigure 

communication between residual thread groups and newly created replicas. These 

protocols deal with race conditions inherent in the reconfiguration process, ensure that no 

communication is lost, that the integrity of state is maintained, and that where possible 

locality of communication is preserved.  

 

Figure 3.2 shows how resiliency is layered into a distributed application. The application 

programmer simply describes the required thread structure and states the level of 

resiliency for each crucial thread. In the diagram there are three threads, the first and 

second are resilient to level three, while the third is resilient to level two. Communication 



 28

between threads at the application level is replaced by group communication at the 

resilient level. Threads are subsequently mapped, through indexing, to appropriate 

processors such that replicas in a single group are placed in different processors at the 

architectural level.  

 

3 1

Architectural
View

Processor 1

Processor 3

2

Processor 2

Processor 4

Switch

1
32

Application View

Resilient View
1 1

1
2 2

2

33

1 3
2

1

2

 

Figure 3.2: Computational Resiliency Using a Cluster of Multiprocessors 

 

Figure 3.3 compares the fault-tolerant model of computation with computational 

resiliency. In a fault-tolerant implementation (dashed line), as threads are compromised, 

graceful degradation occurs and eventually, when no replicas are available, the 

application is unable to proceed.  

 



 29

Resiliency
(# replicas)

Time

Attack Attack Attack Attack

Liveness
Checking

Liveness
Checking

Liveness
Checking

Liveness
Checking

Fault
Tolerance

Computational
Resiliency

Failure

 

Figure 3.3: Fault-Tolerance vs. Computational Resiliency 

 

Using resiliency, periodic liveness checks are performed. These checks are not designed 

to detect an IW attack, but rather, they seek to determine if an application is not 

performing as expected. If an application thread is detected as compromised during a 

liveness check, it will be destroyed and replaced using the uncompromised residual 

members of the group. This hot-start recovery mechanism [Jajodia 1999] ensures that the 

newly recreated thread begins execution from the most recent state rather than a state 

where the compromise occurred. No message logging or intermediate state is saved either 

in stable storage such as a hard disk, or at a remote server. Therefore, network file system 

failure does not affect robustness.  

 

 

3.2 Prototype Implementation 

To provide highly mobile threads with the ability to reconfigure and replicate in a 

heterogeneous computing environment, it is necessary to have an explicit representation 



 30

of the communication structure used by the application.  We have developed a concurrent 

programming library that provides this basic functionality [Taylor 1996, Watts 1998c, 

Watts 1998b]. Distributed applications are composed of a collection of threads that 

communicate and synchronize either through shared memory or by sending messages. 

Each thread has an associated state, which is operated on by application specific routines 

e.g. in a remote sensing application this may involve matrix algebra for image 

manipulation. A thread also has a machine independent description of its communication 

structure. In general these systems are reactive [Seitz 1985] in that the important 

transitions between data states occur at the receipt of messages. This provides a natural 

mechanism to synchronize each thread, detect an information warfare attack, and initiate 

appropriate recovery. 

 

To dynamically recover replication, a mechanism is required to recreate a compromised 

thread with the appropriate communication structure at a new location in the network. 

This mechanism is implemented by replicating a residual thread from the compromised 

group and subsequently moving the new thread to its desired location. Unfortunately, it 

may not be efficient, either because of memory disparities or thread granularity (i.e. ratio 

of computation to communication) to move the new thread directly. Thus additional 

mechanisms are needed to allow thread granularity to be increased, by merging, or 

decreased, by splitting, the associated computation. Armed with these basic techniques: 

thread move, merge and split, it is possible to build concepts for resource management 

[Watts 1998b].  These basic operations are outlined in Figure 3.4. There exists no general 

solution to the resource management problem, thus each application must employ an 



 31

appropriate technique [Bokhari 1981].  For simplicity, in this thesis a Manager-Worker 

approach is used to demonstrate the ideas [Chandy 1992]. 

 

Move
0

1 2

0 1

2

0

1-2

3

0

1-2

3

Split

Merge

Before After

0 3

1 2

0 3

1 2

 

Figure 3.4: Resource Allocation and Mapping 

 

The crucial issues associated with use of a dynamically reconfigurable group of 

replicated threads include describing and managing the group, detecting a compromise, 

and ensuring valid program state and communication structure. From a programming 

perspective we seek to hide the implementation details associated with these issues in a 

programming library and so relieve the application programmer from the complexities 

associated with resiliency. A programmer may simply specify the level of resiliency (i.e. 

number of thread replicas required) when initially spawning a thread. This level of 

resiliency will then be maintained automatically throughout the runtime of the 

computation provided that there are sufficient resources. Resiliency will gracefully 

degrade when resources are stretched beyond their capacity. The programming library 



 32

implements three protocols that address these crucial issues by providing group 

membership, liveness checking and recovery, and flow control. We use two prototypical 

applications to demonstrate how those protocols are used and quantify the associated 

performance in the subsequent chapters. In the following sub-sections, we describe three 

protocols in detail. 

 

3.2.1 Membership Protocol 

The membership protocol provides mechanisms to create threads and cause them to join 

or leave a group. At the beginning of program execution, groups are constructed by 

creating replicas and causing each to join the group. During failure and recovery, when a 

thread is compromised, it is forced to leave its group; a new replica is then created that 

joins the group to take its place. Groups are numbered for addressing purposes and the 

organization of communication is keyed to this numbering. Programmers follow the 

standard Application Programming Interfaces (APIs) that allow them to specify the 

required resiliency for a thread and create communication channels between groups. At 

the user level, following APIs are used to specify their computation and communication 

structures. Here we use simplified abstract expressions for those APIs and the detailed 

description of each API will be presented in Appendix A. 

 

• thread_create (groupid, thread_fn, resiliency) 

Creates a thread that will belong to a group with groupid and has a replication degree 

of resiliency. 

• channel_create(group1, group2) 



 33

Creates a communication channel between group1 and group2. 
 
 

Program 3.1 shows abstractly how these functions are used to implement the process 

structure shown in Figure 3.2. Three groups are created (1,2,3), each designated by an 

appropriate unique identifier (g1,g2,g3). When the first group is created the programmer 

specifies resiliency of three, meaning three replicated threads in the group g1 (1). 

Similarly, the second thread has three replicas and the third has two.  The mapping of 

threads in this example occurs abstractly through the @ notation. After groups are 

created, architecturally independent communication channels are created between groups 

(4,5,6). Communication between threads that are not replicated, i.e. resiliency 1, involves 

no overhead associated with group representation. 

Program 3.1: Abstract Code for Figure 3.2 

 

Application program doesn't start until the initial resiliency requirements specified by the 

user are met. Once resiliency requirements are met and the application program starts 

running, the computational resiliency protocols takes care of keeping those resiliency 

requirements until the end of the program.  

 

main () {                  
   g1 = thread_create (1, thread1_fn, 3) @ C1, C2, C3  // 1  
   g2 = thread_create (2, thread2_fn, 3) @ C2, C3, C4     // 2  
   g3 = thread_create (3, thread3_fn, 2) @ C1, C4        // 3  
   channel_create (g1, g2)                                // 4  

   channel_create (g2, g3)      // 5  

   channel_create (g3, g1)      // 6  
} 



 34

Our implementation of computational resiliency depends on the notion of group 

[Cheriton 1985]. It is important to maintain a well-defined service semantics. Application 

developer can rely on the semantics when designing correct applications using this group 

communication service [Amir 1995]. The semantics specify both the assumptions taken 

and the guarantees provided. Groups supported in our model have the following 

semantics and properties. 

 

Group addressing Group addressing refers to how to identify a group and how to 

address a group. Each group is identified with its groupid that is an unique non-negative 

integer. Users specify the groupid when they create a thread whenever needed. 

 

Group locality Since we replicate threads for better fault tolerance and survivability, the 

replicated nodes cannot be created in the same computer. Each replicated thread is 

scattered around the system. 

 

Group membership Each thread can only belong to a single group, i.e. overlapping 

groups are not allowed. Each member of a group is identical and serves as a replicated 

thread. Therefore, there is no reason to let a node belong to more than one group. 

 

Delivery semantics Our model provides the ordered delivery of the message on per-

channel basis. A thread has a named communicator that consists of ports of various types 

and a communication channel is established between two ports in each group. Reliable 



 35

ordered delivery of the messages between two groups is guaranteed in the presence of 

failures. 

 

Open group A member of a group can send a message to other group. 

 

Failure model The failure models supported are fail-stop, and omission and timing 

failure models. In these types of failure, the crashed threads just stop after crash. Crashed 

threads neither perform any unpredicted activities nor generate malicious messages to the 

other members. A group of n members is 1−n  fault tolerant since it can tolerates 1−n  

member crashes until they are recreated. 

 

3.2.2 Liveness Checking Protocol 

The liveness checking and recovery protocol provides an interface to application specific 

routines for detecting a compromise and implements the recovery mechanism. The 

frequency of liveness checking is determined by the programmer and is application 

dependent. Liveness checking is performed globally across the application and the 

protocol uses the underlying mechanisms for thread movement to recreate compromised 

threads and reconfigure group communication. Since this involves both reconfiguring a 

group and its inter-group communication, all threads must be involved. When a liveness 

check occurs, the members of each group communicate, and one of the uncompromised 

threads is selected as the group leader. The leader then coordinates dynamic replication 

and changes to the group communication structure to both exclude compromised threads 

and include the new replicas. Bounds on latency and timeouts are used to circumvent 



 36

compromised threads that simply fail to respond during the protocol. The application 

programmer is simply required to determine at what point a liveness check is to be 

performed. 

 

Liveness checking protocol includes four steps; 

1) Detect failures 

Detection of the crashed members in each group is based on timeout. Each member of the 

group broadcasts a liveness checking message to every member in the group to indicate 

that it is alive. Everyone listens to the broadcasted livenss checking messages from other 

members until the timeout period. After the timeout, the members that failed to notify the 

others of its livenss are regarded as crashed. After detection of the crashed members, a 

group leader is elected to represent the group to and represents its group during the 

liveness checking, which is called a Local Group Leader (LGL). Global Group (GG) is a 

group that has the lowest groupid and Global Group Leader (GGL) is the group leader of 

GG. In order to synchronize and coordinate the actions of each group and dissemination 

of crash and reconfiguration information, a hierarchy of groups is constructed. Figure 3.5 

shows the hierarchical structure of the groups and members. In computational resiliency, 

each thread is identified with a pair, (compid, nodeid), that is unique throughout the entire 

system. A member with lowest (compid, nodeid) among the surviving members is 

selected as a group leader.  



 37

Group 1
(GG) (1,2) (2,1) (3,0)

(2,0)

(3,2)

(3,1)(0,1)

Group 2

Group 3

Group 4

(1,1) (0,0) (1,0)

(2,3) (3,3)

GGL

LGL LGL LGL

 

Figure 3.5: Hierarchy of Groups during Liveness Checking 

 

Failure detection based on timeout mechanism cannot distinguish slow threads from 

crashed threads. Threads that run on slow processors may fail to broadcast its liveness 

message in time, which yields to omission and timing failures. In order to overcome this 

impossibility to distinguish slow threads from crashed threads, slow threads that caused 

omission and timing failures are intentionally kill by LGL. This aggressive approach may 

waste the computing resources but allow the system tolerate omission and timing failures. 

Crashed members are forced to leave the group. 

 

2) Reconfiguration and Recreation 

Each group leader reports its member status to GGL to build a global snapshot of the 

system. GGL collects member information of each group and broadcasts this information 

to every group leader and down to each member of the group. With this information, each 

thread removes the communication channels to the crashed threads and membership 



 38

information. Each group leader recreates crashed members at another location. Current 

computation states are copied to created threads from the group leader. Communication 

states are also copied and the actual communication links are established accordingly. In 

this recreation and reconfiguration process, the newly recreated threads will have the 

most recent computation and communication states, which prevents the system from 

rolling back to the previous states. Another important issue is to preserve locality of the 

communication. When a thread is recreated at another location, its communication states 

should be maintained consistently. Figure 3.6 shows that when thread 5 crashes on 

computer 1, it is recreated at computer 2 while preserving the same communication 

structures. 

 

1
2

3
4

5

6

Computer 0 Computer 1

Computer 3Computer 2

1

2

3
45

6

Computer 0 Computer 1

Computer 3Computer 2

5

 

Figure 3.6: Recreation of the Crashed Thread 

 

3) Synchronize the membership information  

Exchange the information about the newly created threads in each group. After this 

operation every member in every group has the same view about the entire system. The 



 39

same group hierarchy is used for collecting and broadcasting the membership 

information. 

 

4) Resume operation 

Every thread in the system is notified that the reconfiguration is ready and resumes its 

operation. 

 

For liveness checking, following abstract API is provided to the application 

programmers. Once again we used simplified version of APIs to represent the abstract 

codes. 

 

• liveness_check (user_states) 

Performs livenss checking for a group 
 

 

Program 3.2 illustrates how liveness checking is used. Assume that the process structure 

in Figure 3.2 is used to simply circulate a token among the threads. The first thread is 

responsible for injecting the token (1,2). The basic action of each thread is to repeatedly 

receive a token from the left (3), and send it to the right (4). The programmer organizes 

the application such that periodically liveness checking is performed (5). At that point, 

compromised threads are detected and recreated as long as there are available resources.  



 40

Program 3.2: Abstract Code for Threads in Figure 3.2 

 

Figure 3.7 depicts the state of the example application when either processor 3 or its 

network connection is compromised. As a result of this compromise, two threads, one 

from group 1 and one from group 2 are compromised.   

 

3
1

Architectural
View

Processor 1

Processor 3

2

Processor 2

Processor 4

Switch

1
32

Application
View

Resilient View
1 1

1
2 2

2

33

1 3
2

1

2

2

1

 

Figure 3.7: Failure and Reconfiguration 

 

thread_fn (left, right) { 
   if(my group_id ==1)    // 1 
       group_send(right, token)    // 2 
   while(true) { 
       token = group_recv (left)           // 3  
       group_send (right, token)    // 4  
       if (time_expired)     
           liveness_check (states)    // 5 
   }       
}      



 41

At the next liveness check, these threads are recreated at processor 1 and 4, respectively 

as shown in Figure 3.8. The new threads have the same computation state and 

communication structure as the residual, uncompromised, threads in their groups. As a 

result, the required level of resiliency is re-established and the application can tolerate 

further attacks in future. Notice that the reconfiguration of the compromised threads is 

transparent, as there are no changes at the application layer.  

 

3
1

Architectural
View

Processor 1

Processor 3

2

Processor 2

Processor 4

Switch

3
2

Application
View

Resilient View
1 1

1
2 2

2

33

1 3
2

12

1

 

Figure 3.8: After Liveness Checking 

 

In our approach, coordinated liveness checking method was used. Coordinated 

checkpointing methods prevent the entire program from rolling back to previous states 

and avoid domino effect [Toueg 1987]. This approach also enables roll-forward and hot-

start recovery scheme, which leads to faster response to the failures. In contrast to most 

checkpointing approaches, stable repository or separate server is not used to retrieve the 

more recent state. Information warfare attacks or failures may include Network File 



 42

System (NFS) crash. Saving and retrieving intermediate states in NFS may prevent the 

system from retrieving the saved states on NFS failure. Another reason to avoid saving 

intermediate states in hard disk is that saving intermediate states or messages may take 

much longer time for certain applications. For example, most of client-server applications 

use small message size. However, remote sensing applications to be introduced in 

Chapter 5 may use more than hundred MBytes messages, which causes tremendous 

overhead for I/O operations if message logging or checkpointing is used. 

 

3.2.3 Flow Control Protocol 

The flow control protocol ensures reliable, ordered delivery of messages between the 

groups in the presence of a compromise. Figure 3.9 shows the impact of replication on 

the communication structure in Figure 3.2. At the application layer, threads 2 and 3 

communicate directly through a single point-to-point channel. At the resilient layer, the 

sender has replication level 3 and is represented by group 2, while the receiver has 

replication level 2 and is represented by group 3. The actual communication structure 

implemented to achieve this group communication is shown on the right. Each thread in 

group 2 replicates its communication to group 3. This communication is hidden from the 

programmer in that it is provided by virtue of the implementation of group 

communication. For sending and receiving messages through the communication 

channel, following abstract APIs are provided. 

 

 

 



 43

 
• group_send (groupid, message) 

Sends a message to groupid 

• group_recv (groupid, message) 

Receives a message from groupid 
 

Thread 2 Thread 3 Group 2 Group 3

 

     (a) Application View                (b) Resilient View  

Figure 3.9: Group Channel Implementation 

 

Figure 3.10 shows how the flow control protocol effects message transport. Notice that 

the sending group on the left has three members (resiliency of level 3) and the right hand 

side shows one of the receiving threads. The receiving thread may receive the same 

message three times without error or less than three due to compromises. In this picture, 

the third channel has failed and no more messages are transmitted after the fourth 

message over this failed channel. The receiver discards the duplicated messages, reorders 

the incoming messages, and delivers them to the application level thread. The shaded 

messages in the picture are duplicates that are received but discarded. 



 44

Sender

4 2 1 3 2 1 1

4 3 2 1

Receiver

3
4

5
6

567

23
4

 

Figure 3.10: Flow Control 

 

3.4 Software Architecture 

In order to support the above functionality comprising heterogeneous distributed 

multiprocessing, fault-tolerance and resiliency, and resource management, a general 

software architecture is needed that can integrate these concepts and concerns.  Figure 

3.11 shows what this software architecture involve. At the bottom there is a hardware 

dependent layer that consists of network layer, thread layer, and device layer. Underlying 

networking technology may vary like Gigabit Ethernet, switched Fast Ethernet, or ATM 

network. Thread library layer provides various thread packages such as IRIX threads, 

Solaris threads, Quick, Pthreads, and Windows threads depending on the computing 

platforms. Device layer provides a specific device drivers for the sensors in real-time 

distributed applications. For example, in real-time multi-spectral image processing 

application, the multi-spectral image sensors are used in the system. Heterogeneous 

computing layer provides services to transforming the data representation that may vary 

on heterogeneous computing environment. Reconfigurable thread layer provides basic 



 45

primitive operations relating to computation threads and communication channels. Above 

that, three higher level services are provided: a secure heterogeneous computing layer, 

resource management layer, and resilient computing layer. Each of these layers deals 

with specific application concerns. Secure heterogeneous computing layer provides the 

necessary security services to applications. Resource management layer provides 

functionality to manage competing resources efficiently. Resilient computing layer 

provides the transparent failure masking and recovery schemes.  

 

Resilient Computing Layer

Resource Management Layer

Secure Computing Layer

Network Layer Threads Layer Devices Layer

Applications and
Algorithms

Heterogeneous Computing Layer

Reconfigurable Threads Layer

 

Figure 3.11: Software Architecture for Computational Resiliency 

 
This architecture is highly reconfigurable and programmable in that different service 

layers can be structured dynamically to provide necessary services depending on the 

application’s requirements. Applications can simply use reconfigurable threads layer 

directly for better performance in fault-free environment. For an application that runs in 



 46

hostile environment and needs fault tolerance and security, fault tolerance and secure 

computing layers can be used collectively to ensure desired level of security and fault 

tolerance. One of the topics in this thesis is how the constraints imposed by differing 

services affects application performance. This thesis examines the tradeoffs involved to 

determine analytic models that give insight into the general principles behind such 

architectures. 

 

3.3 Summary 

This chapter has presented the concept of computational resiliency and the prototype 

implementation. Computational resiliency is distinguished from the fault tolerance in that 

it restores the degree of replication back to the required level in the presence of failures 

and attacks. Computational resiliency addresses three major issues: clustered 

multiprocessing, resource management, and fault tolerance. Prototype implementation 

includes message passing for concurrent processing and three basic protocols for fault 

tolerance, membership, liveness checking, and flow control protocols.  

 

Characteristics of developed prototype implementation include: 

• Novel software architecture for flexible and programmable services. 

• Message passing model for concurrent programming. 

• Roll-forward and hot-start recovery scheme. 

• Active replication to reduce the response time to the failures and attacks. 

• Independent of Network File System (NFS) for recovery. 

• Does not save the intermediate computation. 



 47

• No message logging to save the communication states. 

 

Our approach may require more computing and communication resources than non-

replication based approaches. However, providing faster response time and increased 

reliability justifies use of more resources for certain class of applications, for example, 

real-time distributed applications. 

 



 48

 

Chapter 4    Concurrent Sonar Processing 

This chapter presents how computational resiliency can be applied to one of the 

prototypical applications, concurrent sonar processing. Experimental studies and an 

analytical model for the application are presented.  These studies utilize the model to 

predict the scalability of the algorithm and a variety of other useful characteristics. 

Performance issues associated with resiliency are also investigated. 

 

4.1 Introduction 

Sonar systems detect, locate, and classify underwater targets by acoustic means [Nielsen 

1991, Curtis 1980]. One of the most important processes in sonar operations is 

beamforming. This process combines the outputs from a number of omni-directional 

transducer elements, arranged in an array of arbitrary geometry, so as to enhance signals 

from some defined spatial locations. It also suppresses signals from other non-target 

obstacles. Beamformers must be capable of forming and processing large numbers of 

narrow beams simultaneously to give reasonable angular cover, as well as good angular 

resolution. In addition, beams must be independently steered and stabilized to 

compensate for the effect of a ship’s motion.  

 

In collaboration with the Ocean, Radar, and Sensor Systems Division at Lockheed 

Martin, we have developed a concurrent towed array sonar application based on 

conventional beamforming techniques [Lee 2001, Barnard 1998]. In this section, we 



 49

describe how to implement concurrent sonar processing application using computational 

resiliency. Experimental results on homogeneous systems will be discussed and the 

analytical model is presented. 

 

4.2 Computational Resiliency 

The general concurrent structure of this application is shown in Figure 4.1. A sensor 

thread is constructed to simulate the signals emanating from a towed array sonar, 

containing NE sensor elements. This simulation creates the sonar returns that would 

emanate from a generic submarine. The 360 degrees of sonar resolution is partitioned 

among M beamformer threads. Each thread fifo-buffers NS partial returns and repeatedly 

computes a covariance matrix and a partial beamforming result for the set of angles in the 

partition. The partial results are combined at a separate thread that performs analysis 

based on triangulation to determine the track and speed of the target. This thread also 

presents a waterfall display of the result.  

 

Sensor
1

Sensor
2

Sensor
NE

Beamformer
1

Beamformer
2

Beamformer
M

Analyze &
DisplaySensor

Input
Sensor
Signal

Bearings
Segment

Beamform
Output

 
Figure 4.1: Communication Model for Sonar Processing 



 50

Figure 4.2 shows how this application is implemented with computational resiliency and 

shows the application layer. In this communication structure, five threads corresponding 

to the sensor, analysis, and beamformers, are connected through communication 

channels. 

S A

BF 1

BF 2

BF 3

S A BF nSensor
Thread

Analysis/Display
Thread

Beamformer
Thread  

Figure 4.2: Application View 

 

Figure 4.3 shows the resilient view of the same application in computational resiliency. 

In this picture, the beamformer threads are replicated with degree two. 

 

BF 3

BF 2

BF 1

S A

BF 1

BF 2

BF 3

S A BF nSensor
Thread

Analysis/Display
Thread

Beamformer
Thread  

Figure 4.3: Resilient View 



 51

Program 4.1 shows the abstract code for initializing the sonar application. The user 

constructs the thread structure by specifying the required resiliency, one for both sensor 

(1) and analysis (2) threads and two for each beamformer thread (3). Each beamformer is 

associated with a communication channel to the sensor (4) and the analysis thread (5).  

Program 4.1: Abstract Code for Sonar Initialization 
 

Program 4.2 shows the abstract code for the beamformer threads. Sonar returns are 

received from the sensor (1) and stored in a fifo buffer (2). A partial covarience matrix 

pcm is then formed by each beamformer (3) and sent to the analysis thread (4). 

Eventually, the analysis thread responds with a complete covarience matrix cm (5). The 

beamforming calculation can then be performed to build a partial beamformed result pbf  

that corresponds to the returns processed by the beamformer (6). This partial result is 

then sent to the analysis module for waterfall display (7). Prior to the processing of the 

next set of returns, if it is the appropriate time, a liveness check is performed (8) to 

provide survivable operation. 

 
 
 
 
 
 
 

sonar () {       
   gs = group_create (sensor_fn, 1) @ C0                // 1 
   ga = group_create (analysis_fn, 1) @ C0             // 2 
   for (i=1; i<=3; i++) {    
      gbf[i] = group_create (beamform_fn, 2) @ Ci, Ci+1  // 3 
      channel_create (gs, gbf[i])                                   // 4 
      channel_create (gbf[i], ga)     // 5 
   } 
} 



 52

 

Program 4.2: Abstract Code for Beamformer Threads 

 

Next three figures, Figure 4.4 to 4.6 show the sequence of captured screenshots of the 

demonstration program for the example program in Figure 4.2 and 4.3. It was developed 

on Windows NT/2000 platforms for simple technology demonstration. This 

demonstration program shows the current mappings of the threads to the computers, 

accumulated sonar processing results in the waterfall display, current sonar processing 

result for 360 degrees, source and target submarines cruising a random path in the Persian 

Gulf. Figures also show the corresponding three layers of views. Along the sequence of 

failures, application view doesn’t change at all providing transparent fault tolerance and 

recovery to the users. Resilient view changes when a failure occurs but restores the 

original shape after recovery. Architectural view changes permanently as the failure 

happens and the recreated threads are mapped to new locations. 

 

beamform_fn (sensor, analysis) {    
   fifo = create_fifo()     
   while (tracking) {     
      bearing_segment = group_recv (sensor)         // 1 
      add (bearing_segment, fifo)   // 2 
      pcm = covariance_matrix ()   // 3 
      group_send (analysis, pcm)    // 4  
      cm = recv (analysis)                               // 5 
      pbf = beamform (fifo, cm)   // 6 
      group_send (analysis, pbf)                                    // 7 
      if (time expires)   

liveness_check ()                              // 8 
   } 
} 



 53

 

(a) 

1

Architectural
View

Processor 1

Processor 3

Processor 2

Processor 4

Switch

1

2

Application View

Resilient View

S A

2

1

3

2

S A

11

33

22

S A

3 3

 

(b) 
Figure 4.4: Before Failure 

 

 

 

 



 54

 

(a) 

1

Architectural
View

Processor 1

Processor 3

Processor 2

Processor 4

Switch

1
2

Application View

Resilient View

S A

2

1

3

2

S A

11

33

22

S
A

3

3

 

(b) 
Figure 4.5: After the First Failure and Recovery 

 



 55

 

(a) 

1

Architectural
View

Processor 1

Processor 3

Processor 2

Processor 4

Switch

1
2

Application View

Resilient View

S A

2

1

3

2

S A

11

33

22

S
A 33

 
(b) 

Figure 4.6: After the Second Failure and Recovery 



 56

4.3 Analytical Model 

This section describes the computational requirements of the concurrent sonar processing 

algorithm in terms of its algorithm characteristics, application dependent properties, and 

various level of computational resiliency. A predictive model for runtime performance is 

developed based on these concepts. We also discuss the experimental results to assess the 

associated overhead of computational resiliency. The model indicates how the changes in 

application and resiliency parameters affect the total execution time. The motivation in 

building a performance model is to assess the impact of changes in technology and 

problem size associated with different applications, allowing cost-performance tradeoffs 

to be assessed. An analytical model that models the behavior of concurrent computation, 

sequential computation, and communication overhead based on weighting factors is 

developed. A linear equation is used to describe the gross behavior of the algorithm 

executed on a network of shared-memory multi-processors.   

 

The basic notations used in parallel performance measurement are speedup (sp) and 

efficiency (e) [Pardalos 1992]. Speedup is a measure that captures the relative benefit of 

solving a problem in parallel and is defined as the ratio of the time taken to solve a 

problem on a single processor to the time required to solve the same problem on a 

parallel computer with P identical processors. Speedup can be defined as 

P
TT

Tsp
os

s

+
=  

or 



 57

os

s

TT
PTsp
+

=
 

where Ts is the sequential run time and To represents the sum of the overhead that 

includes communication, idling, or work that is not performed by a sequential algorithm. 

Only an ideal parallel system can deliver a speedup equal to P. In practice, ideal speedup 

is not achieved because while executing a parallel algorithm, the processors cannot 

devote 100 percent of their time to computations of the algorithm [Kumar 1994b]. 

Efficiency is a measure of the fraction of time for which a processor is usually employed 

and is defined as the ratio of speedup to the number of processors. 

s

o

T
TP

spe
+

==
1

1  

Another common observation regarding parallel processing is that every algorithm has a 

sequential component that will eventually limit the speedup that can be achieved on a 

parallel computer. Amdahl’s law indicates: if the sequential component of an algorithm 

accounts for 1/s of the program’s execution time, then the maximum possible speedup 

that can be achieved on a parallel computer is s [Amdahl 1967]. 

 

The total time for concurrent execution in each processor, concT , is the sum of 

computation time, communication costs, and idle time in each processor. 

idlecommcompconc TTTT ++=  

The average computation required in each processor, compT , is equal to the time used to 

solve the problem sequentially, Ts, divided by number of processors in the system, P. A 

sequential program to be parallelized has two components, the part that can be 



 58

parallelized and the part that cannot. Therefore, Ts consists of two times for each 

component, Tpar, the time for the part to be parallelized, and Tseq, the time for the part to 

remain sequential. 

seqpars TTT +=  

Hence, the average computation time required in each processor is: 

seq
pars

comp T
P

T
P
T

T +≈=  

Idle time occurs only in the fastest computers and can be further avoided by overlapping 

communication and computation. The total execution time, Ttot, can then be defined as 

the sum of computation and communication time of the slowest processor, ignoring idleT . 

commseq
par

commcomptot TT
P

T
TTT ++=+=  

In this application seqT  can be ignored since the ratio of seqT  to parT  is small, which was 

2% in our experimentation. Then, the efficiency of the algorithm can be modeled as 

follows: 

comp

commcommcomp

comp

tot

comp

tot

s

T
TTT

T
T

T
PT

T
P
spe

+
=

+
====

1

1  

We extend this formula to express computational resiliency in the following subsections. 

 

4.3.1 Communication Model 
The cost of sending a message between two processors can be represented by two 

parameters: the message startup time and the transfer time [Foster 1994]. The message 

startup time, Tstart, is the time to initiate the communication. Usually, this includes the 



 59

time spent in the communication library, system call overhead, and the time for the 

hardware to begin transmitting [Clement 1993]. The transfer time, Ttrans, is the time for a 

message to travel from source to destination across the network, determined by the 

physical bandwidth of the communication channel. The former cost depends on the speed 

of the communication hardware and software of each processor.  The latter cost depends 

on how processors are connected.  In our experiments we are primarily interested in low-

cost, high-performance local area networks based on switched-Ethernet, 100BaseT, and 

Gigabit. The communication time, Tcomm, can be modeled as follows: 

transstartcomm TTT +=  

where Tstart is the message initialization time and Ttrans is the transport time. 

 

The transport time is the product of message size (in bytes) and network throughput, Tw, 

(transport time per byte).  Depending on the type of interconnection network and the 

topology, Tstart and Ttrans can be specified differently. In our experiments, modern high-

performance network switches were used to connect multiprocessors. With this 

technology, several multiprocessors can send and receive messages without 

compromising the network throughput.  Thus, assuming the total data of size N is to be 

divided evenly among P Processors, the communication can be described in the 

following equation: 

 

P
NTTT Wstartcomm +=  

 



 60

Above equation can be extended to express resiliency. Depending on how resiliency is 

applied in the concurrent sonar processing application, we have two different 

representations: 

(i) If all the threads have resiliency r, then communication messages have to be sent 

from the all the replicas in the source group to all the replicas in the destination group. 

Therefore, the communication is: 

2r
P
NTTT Wstartcomm +=  

(ii) If only the beamformer threads are replicated with degree of r is used: 

r
P
NTTT Wstartcomm +=  

In our experiment, the sensor and analysis threads are not replicated while the sub-

beamformer threads are replicated, thus we use the formula (ii) to represent the 

communication time.  

 

4.3.2 Computation Model 

To develop the computation model we need to be able to determine the computational 

complexity of each step in a concurrent algorithm.  The complexity of a step is taken to 

be the time used to complete the step as a function of the problem size [Cormen 1990] 

and is expressed using weighting factors that represent the relative importance of each 

step.  Recall that the computation time, Tcomp, is defined as 

P
T

T s
comp =  



 61

With computational resiliency, it is multiplied by resiliency r since the computing time 

will be increased by the fold of resiliency. Therefore, the new equation is:  

r
P
T

T s
comp =  

 

In concurrent sonar processing, a beamformer is decomposed into a set of sub-

beamformers. Let bT  be the computation time in each sub-beamformer and k the number 

of sub-beamformers, then bpar kTT = . For a sonar with n sensors, buffer size m for a sub-

beamformer, and d angular resolution, each component of the algorithm can be analyzed 

as follows where Ci represents the weighting factors: 

 

1. Sonar Input Signal Generation: Sonar input signal is calculated for n sonar 

elements. The time required, T1, is: 

nCT 11 =  

 

2. Covariance Matrix: The cost of covariance matrix computation takes m 

multiplications for a mn×  matrix. Thus, the total computation can be defined as 

follows: 

mnCT 2
22 =  

  

3. Beamforming: This step involves the n2 multiplications for d bearings. Thus, the 

time required is: 

2
33 dnCT =  



 62

 

4. Analyze and Triangulation: The outputs of beamforming operation is analyzed for d 

angular resolutions. The time required, T4, is: 

kdCT 44 =  

 

The total time to compute one sonar return in parallel, Tpar, is thus T2 + T3. The total time 

for sequential computation, Tseq, is T1 + T4. The total execution time for a sonar with n 

sensors, m buffer size, kd angular resolution, r resiliency, and  p processors can then be 

defined as: 

r
P
nTTTr

P
T

TTT wstartseq
par

commcomptot

2

+++=+=  

The performance model can thus be described as: 

startWtot Tr
P
nTCkdCnCdnCmnC

P
rkT +++++=

2

541
2

3
2

2 )(  

The parallel efficiency can also be predicted with: 

( )

1

2
3

2
2

2
5 /

1
/1

1

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
+=

+
=

dnCmnC
P
r

PrnTCT
TT

e wstart

compcomm

 

 

4.3.3 Model Parameters 

We have presented the performance model of the sequential algorithm using application 

dependent parameters and resiliency parameters. Next step of analytical modeling is to 

decide the weighting factors C1 through C5. We utilize linear regression and the least-

square fitting method for that purpose [Anton 1994, Noble 1988, Nicholson 1986]. The 



 63

least-squares method establishes the qualitative relationship between multiple input 

variables and one output variable.  

 

The general linear model is expressed as mm xaxaxaay ++++= ...22110  where ia , 

mi ≤≤0 , is the regression parameter, jx , mj ≤≤1 , is the known constants, and y is the 

output of the linear equation. With n experimental data, the equation can be represented 

in matrix: 

Xay = , 

where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mnmnn

m

m

n a

a
a

a

xxx

xxx
xxx

X

y

y
y

y
:

,

1
::::

1
1

,
:

1

0

21

22221

11211

2

1

 

 

We want to choose a so that immii xaxaxaa ++++ ...22110  is close to iy  for all ni ≤≤0 . 

The residual error for ith data set, ir , is then represented as 

)...( 22110 immiiii xaxaxaayr ++++−=  

and the overall error in reproducing the data by the sum of the squares of the residuals is 

{ }∑∑
==

++++−=
n

i
immiii

n

i
i xaxaxaayr

1

2
22110

1

2 )...(  

The solution that minimizes the overall error can be given by following equation [Anton 

1994, Nicholson 1986] : 

yXXaX TT =  

or 



 64

yXXXa TT 1)( −=  

 

In our model m = 5 represents the number of weighting factors and n = 15 is the number 

of experiments executed to resolve these factors. In our experiments, the threads in this 

program were partitioned to execute on up to 64 processors. The architecture was 

organized as 32 Pentium 400 MHz dual-processor computers running the Linux operating 

system, and connected with 100BaseT networking technology. It forms the isolated 

homogeneous testbed where all the computers have the same characteristics and 

capability. The sensor and display were mapped to one machine, while each of the 

remaining machines executed beamformers. Resiliency was applied uniformly to harden 

the application by replicating the beamforming elements. Network throughput was 

measured with Netperf network performance measuring tool [Netperf 1995]. The time 

used to transfer one byte through the network, Tw, was measured at 0.1 microsecond. The 

obtained weighting factors are:  

 

Tstart=1.0e-9, C1=1.394979e-2, C2=1.168368e-6, C3=1.0e-9, C4=1.0e-9, C5=3.587773e+1 

 

4.4 Experimental Results 

In this sub-section we study the algorithm’s scaling properties for all the primary 

variations of interest, comparing measured and predicted performance results. Figures 

4.7, 4.9, and 4.10 show representative experimental results from a broad set of 

experiments that we have conducted to measure the overhead caused by resiliency and 

liveness checking. The beamformer was executed once for Figures 4.7 and 4.9, and 100 



 65

iterations for Figure 4.10. Each iteration processed a single set of buffered returns. Three 

parameters were varied in the experiments: the number of processors (1 to 64), the level 

of replication (1, 2, 3, or 7), and the frequency of the liveness checking (0 to 20 checks 

over the course of the 100 iterations). The number of sonar elements and the number of 

buffered returns were fixed to 382 and 2000 respectively. 

 

4.4.1 Scalability 

Although resiliency rather than scalability of the concurrent algorithms is the subject of 

this thesis, it is valuable to ensure that the use of resiliency does not dramatically impact 

scaling properties. Figure 4.7 shows the scalability of the concurrent algorithm by 

measuring the execution time of a single beamformer operation with respect to the 

varying number of processors and differing levels of replication. Uniform decomposition 

was used, i.e. the number of partitions is equal to that of processors. As with all 

applications, eventually the effects of diminished granularity outweigh the performance 

improvement associated with concurrency; each component of work is reduced to the 

point where the cost of communication dominates. For this particular application and 

decomposition, the algorithm does not scale linearly after 16 processors. Beamformer 

threads suffer from communication overhead at this point, for example, the ratio of 

communication to total execution time increases from 4% with 8 processors to 54% with 

64 processors. Predicted execution time for 128 processors shows that the application 

does not benefit from concurrent processing even with no resiliency. 

 



 66

1.00

10.00

100.00

1000.00

1 2 4 8 16 32 64 128

# Processors

E
xe

c.
 T

im
e 

: L
og

(T
) R3-Predicted

R3-Measured
R2-Predicted
R2-Measured
R1-Predicted
R1-Measured
Ideal

 

Figure 4.7: Scalability of Concurrent Sonar Processing 

 

4.4.2 Variation in Network Performance 

Figure 4.8 shows the predicted execution times with gigabit networking technology as a 

function of number of processors and the resiliency. From the Figure 4.7 and its analysis, 

communication overhead was the major bottleneck for the scalability. Using our 

predictive performance model, we can estimate the performance of the application on 

different networking technology to see the impact of reduced communication overhead. 

Time used to transfer one byte through the gigabit network we tested was measured at 

0.02 microsecond, approximately four times faster than 100BT network. Predicted results 

shows that the use of gigabit networking technology increases the scalability of the 

application further up to 64 processors, but after that point its scalability doesn’t improve. 

 



 67

1

10

100

1000

1 2 4 8 16 32 64 128

# Processors

Ex
ec

. T
im

e 
: L

og
(T

)
Resiliency 3
Resiliency 2
Resiliency 1

 

Figure 4.8: Predicted Performance for Gigabit Network 

 

4.4.3 Variation in Resiliency 

Figure 4.9 shows the overhead of resiliency with respect to the number of processors (8, 

16, 32, and 64) in terms of measured time, predicted time, and linear time. Our 

expectation was that since replication of a thread doubles its computational requirements, 

level 2 and level 3 resiliency would execute with a two or three-fold decrease in speed 

respectively. The results indicate however, that in fact performance did not decrease 

linearly with the level of replication and was less than expected for all the 

decompositions. The execution time of resiliency 2 increased only 78% over resiliency 1. 

For resiliency 3, it was as much as 175%.  

 

This artifact resulted from the overlapping of communication and computation in the 

resilient application: Idle time in the application allowed cycles to be used in completing 

replicated tasks that would have otherwise been wasted. Obviously, this phenomenon is 



 68

highly application dependent, however, idle cycles can occur for many reasons in 

distributed applications, e.g. file I/O, synchronization, global operations, etc. Therefore it 

is not unreasonable to assume that resiliency may often be achievable without significant 

computational costs. 

 

By studying the experimental results and the analytical model, we can choose the 

resiliency level for the allowed range of execution time of the application. For example, 

using 4 processors and no resiliency, the execution time is 84 seconds, but we can 

achieve the less execution time, 73 seconds, with 64 processors and resiliency 4. 

Therefore, given the range of the desired response time of the sonar application, we can 

choose the appropriate resiliency level and the number of processors needed to achieve 

that. With use of predictive model, we can choose the required number of processors to 

achieve the allowed response time, if we absolutely need higher reliability. Or, when the 

number of available processors are limited, we can choose the appropriate level of 

reliability. 

 

The graph also shows that the plots demonstrate that the accuracy of the predictive model 

is within 7.2 % for the overall problem size. 



 69

 

 8 processors

0

50

100

150

200

250

1 2 3 4

Resiliency

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

) 

Linear
Predicted
Measured

 

(a) 

16 processors

0
20
40
60
80

100
120
140
160
180

1 2 3 4

Resiliency

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

) 

Linear
Predicted
Measured

 

(b) 

 

 

 

 



 70

 

32 processors

0
20
40
60
80

100
120
140
160

1 2 3 4

Resiliency

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

) 

Expected
Predicted
Measured

 

(c) 

64 processors

0
20
40
60
80

100
120
140
160
180

1 2 3 4

Resiliency

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

) 

Expected
Predicted
Measured

 

(d) 

Figure 4.9: Overhead of Resiliency 

 



 71

4.4.4 Variation in Frequency of Liveness Checking 

Example results concerning the frequency of liveness checking are presented in Figure 

4.10. For these results, the problem was decomposed in to 32. The lower three lines show 

the performance of resiliency 1, 2, and 3 using 32 processors. The top line represents 

resiliency 7. It used more processors, 56, for the same number of decompositions to avoid 

excessive load of computation per processor. Even though resiliency 7 may seem to be a 

high level of replication, we consider this case interesting to since it more closely 

approximates the computational model presented in chapter 3.  These results show that 

the use of liveness checks does not incur noticeable overhead for all cases. The overheads 

never exceeded 1% even when liveness checking is frequent (once every 5 iterations of 

the beamformer) and the level of resiliency is high, i.e. 7. In addition, the overhead of 

resiliency for level 7 was only 410 % over resiliency 1, indicating that very high levels of 

survivability may be possible without a direct linear cost. 

 

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

No Check 5 10 20

# Liveness Checks

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

) Resiliency 7  
(56 processors)

Resiliency 3   
(32 processors)

Resiliency 2  
(32 processors)

Resiliency 1   
(32 processors)

 

Figure 4.10: Overhead of Liveness Checking 



 72

We have also measured the recovery overhead during the liveness checking in the 

presence of failure. Time required to recover from the failure and recreate a new thread 

consists of times to create a new thread at another location, to transfer some system 

information, and to transfer user specified data structures. The first two components are 

common overhead regardless of the applications while the third component may vary 

depending on the applications. We measured the amount of time needed for the first two 

components, which was 3 ms in our experimentation environment.  

 

4.5 Summary 

This chapter has developed concurrent sonar application that uses computation resiliency 

and the associated performance models. The experimental results revealed the associated 

overhead due to resiliency and the frequency of liveness checking. The model was 

validated against experimental data on homogeneous distributed computing environments 

where all the processors are identical. Using this model, a wide range of practical design 

questions can be answered. For example: 

• For a given fixed cost, what performance and reliability can be expected from the 

applications? 

• What level of resiliency can be achieved without compromising the performance of 

the application? 

• How often a liveness checking can be performed to assure the level of system 

operability? 

• What network speed will realize my cost-performance objectives? 



 73

 

Chapter 5 Remote Sensing Application 

This chapter presents another application, remote sensing application, to which 

computational resiliency can be applied. Experimental studies and an analytical model for 

this applications are also presented.  The same methods of experimentation and analysis 

in chater 4 are used. 

 

5.1 Introduction 

A second application to which we have applied resiliency is a concurrent spectral-

screening PCT algorithm (s-PCT) that can be used for remote sensing applications 

[Achalakul 2000]. The algorithm takes as input a large number of grey-scale images 

emanating from a hyper-spectral sensor. Each image corresponds to a particular 

wavelength of light, for example, Figure 5.1a shows the image taken at 1998nm using a 

210-channel hyper-spectral image collected with the Hyper-spectral Digital Imagery 

Collection Experiment (HYDICE) sensor, an airborne imaging spectrometer. The 

HYDICE image set corresponds to foliated scenes taken from an altitude of 2000 to 7500 

meters at wavelengths between 400nm and 2.5 micron. The scenes contain mechanized 

vehicles sitting in open fields as well as under camouflage. The s-PCT algorithm removes 

redundancy in the image set and presents a single color composite image that shows the 

important spectral contrast. For example, Figure 5.1b shows the output of the algorithm 

in which the mechanized vehicles are clearly visible in the lower left of the figure due to 

spectral contrast. 



 74

 

 

 

        

(a) 400 and 1998 nm 

 

 

(b) Color-Composite Image 

Figure 5.1: Concurrent Remote Sensing 



 75

 

5.2 Computational Resiliency 

The distributed version of the s-PCT algorithm uses the standard manager/worker 

decomposition technique [Chandy 1992] as shown in Figure 5.2. A sensor thread 

generates and partitions the 210-frame image cube into sub-cubes and distributes the sub-

cubes to worker threads. A manager synchronizes the actions of these workers, 

accumulates partial results, and displays the resulting image.  

 

Sensor

Worker I

Worker 2

Worker N

Manager

Color
Image

Original
Image
Cube

Sub-cube RGB

 

Figure 5.2: Manager/Worker Communication Model 

 

Figure 5.3 shows the application view without resiliency. There are six threads 

corresponding to the sensor, manager, and workers connected through communication 

channels. 



 76

S M

W 1

W 4

W 2

W 3

S M W nSensor
Thread

Manager
Thread

Worker
Thread  

 Figure 5.3: Application View 

 

Figure 5.4 shows the resilient view of the same application in computational resiliency. 

In this picture, worker threads are replicated with degree of three. 

 

S M

W 1W 1W 1

W 4W 4W 4

W 2W 2W 2

W 3W 3W 3

S M W nSensor
Thread

Manager
Thread

Worker
Thread  

Figure 5.4: Resilient View 

 

Program 5.1 shows the abstract code for initializing remote sensing application. The user 

specifies the required resiliency, one for both sensor (1) and manager (2) threads and 



 77

three for each worker thread (3). Each worker is associated with a communication 

channel to the sensor (4) and the manager thread (5).  

 

Program 5.1: Abstract Code for Initializing Remote Sensing Application 

 
Each worker thread executes the algorithm shown in Program 5.2 and maintains a set of 

sub-cubes (1,4) to operate on. An initial request is sent to the sensor to obtain the first 

sub-cube (2). After this initial request, the processing of each sub-cube is overlapped with 

communication of the remaining the next sub-cube from the sensor (3). This represents 

the primary communication step in the algorithm and corresponds to distributing 1/nth of 

the image cube to each of n worker threads. 

 

The spectral screening algorithm produces a set of unique spectra. Although each sub-

cube contributes to this set through an appropriate abstract operation (6), the set must be 

accumulated across all sub-cubes. This accumulation is performed through 

communication with the manager. Each worker sends a prospective subset of the spectra 

to the manager (7) and overlaps this communication with computation of the next subset. 

When all sub-cubes have been processed, the manger transmits the resulting unique set to 

remote_sensing () {      
   gs = group_create (sensor_fn, 1) @ C0                // 1 
   gm = group_create (manager_fn, 1) @ C0             // 2 
   for (i=1; i<=4; i++) {    
      gw[i] = group_create (worker_fn, 3) @ Ci, Ci+1, Ci+2  // 3 
      channel_create (gs, gw[i])                                   // 4 
      channel_create (gw[i], ga)     // 5 
   } 
} 



 78

all workers (8). Typically, the amount of communication in this step is orders of 

magnitude less than the size of an image cube. 

 

When the spectral screening is completed globally, the algorithm proceeds to compute a 

set of statistics (mean-vector and covariant-sum) that give a measure of the variation in 

images at each spectra. Although, once again, the statistics can be largely computed on a 

per sub-cube basis using an appropriate abstract operation (9), the manager is again 

involved in assembling the statistics to form a transformation matrix A and mean-vector 

m (10,11). The communication involved in this step is on the order of n2 where n is the 

number of spectra, again typically significantly smaller than the size of the image cube. 

 

With the matrix A and mean-vector m available, a PCT (12) and human-centered 

mapping (13) can be computed on each sub-cube independently to produce a patch of the 

final color image.  The patches are accumulated at the manager for display (14).  Thus, 

the final communication is only m2, where m is the size of the image.  Periodic liveness 

checking is performed when appropriate (15). 

 



 79

Program 5.2: Abstract Code for Worker Thread 

 
5.3 Analytical Model 

We apply the same linear regression and least-squares method to develop the analytical 

model for remote sensing application. The predictive model describes the performance of 

the distributed algorithm in terms of the number of spectra, the image size, network 

bandwidth, the number of processors, and the replication level. The model is represented 

as a linear equation of terms for each step of the algorithm with weighting factors. We 

calibrate the weighting factors from the actual experimental data. 

 

 

 

worker_fn() { 
cubes = {}        // 1  
group_send(request,sensor)     // 2  
while(numsubcubes <= numcubes/numworkers) { 
 subcube = recv(sensor)     // 3  
 cubes = cubes U subcube      // 4  
 group_send(request,sensor)     // 5 
 ssubset = spectral_screening(subcube)   // 6  
 group_send(ssubset, manager)    // 7  
} 
sset = group_recv(manager)     // 8  
substats = statistics(sset)      // 9 
group_send(manager, substats)     // 10  
[A, m] = group_recv(manager)     // 11 
subcomponents = PCT(A, m, cubes)    // 12  
subimage = human_centered_mapping(subcomponents) // 13  
group_send(subimage, manager)     // 14  
      if (time expires)   
          liveness_check ()                                // 15 
     } 
} 



 80

5.3.1 Communication Model 

Recall that the communication cost can be modeled as 

r
P
NTTT wstartcomm +=  

since the sensor and manager threads are not replicated.  

 

5.3.2 Computation Model 

Recall that the computation time, Tcomp, is defined as 

seq
par

comp Tr
P

T
T +=  

In the concurrent algorithm the original hyper- or multi-spectral image cube is 

decomposed into a set of sub-cubes where each sub-cube is distributed to a worker. The 

parallel time, Tpar, can then be defined as follows: 

bpar kTT =  

where k is the number of sub-cubes and Tb is the time used to compute one sub-cube. 

 

Let m be the width and height of each sub-cube in the hyper-spectral image, n be the 

number of spectral band, s be the number of unique spectra per sub-cube, and p be the 

number of processors. Considering each component of the algorithm in turn: 

 

1. Spectral screening: The computation associated with this step involves a calculation 

taken over all pixel vectors concurrently, m2 at each worker. Each computation (the 



 81

arccosine of the dotproduct of the pixel vectors pair) involves the calculation between a 

new vector (of size n) and all vectors in the unique set (s).  Thus the time required, T1, is:  

snmCT 2
11 =  

2. Merge unique sets: This step is computed sequentially at the manager.  The computation 

involves an angle calculation associated with each pixel vector (of size n) in p-1 sets, 

where each set contains s pixel vectors.  The time required, T2, is: 

snpCT )1(22 −=  

3. Mean vector: This step involves taking an average of the pixel values in a unique 

spectral set at the manager.  The number of operations is related to the number of unique 

spectra (s) and the number of frames (n).  The time required, T3, is: 

            snCT 33 =  

4. Covariance sum: The computation associated with the covariance sum is performed over 

the pixels in a unique set of size s at the worker.   Each computation on a pixel involves 

matrix multiplication (complexity of n2).  The time required, T4, is: 

         snCT 2
44 =  

5. Covariance matrix: This computation involves forming the matrix sum of the matrices 

returned from the previous steps at the manager.  There are p matrices of size nxn. The 

time required, T5, is: 

         pnCT 2
55 =  

6. Transformation matrix: The time used in this step is dominated by the time used to 

calculate eigenvectors at the manager. The time required, T6, is:  

         3
66 nCT =  



 82

7. Transformation of the data: The computation in this step is performed over the pixels 

in an image of size m2.  Each computation on a pixel involves matrix multiplication with 

the complexity of n2 at the worker.  The time required, T7, is: 

         22
77 mnCT =  

8. Color mapping: This step of the algorithm involves linear transformation of the first 

three principal components in achromatic, red-green, and blue-yellow opponency at the 

worker. The time required, T8, is directly proportional to the size of the sub-cube: 

2
88 mCT =  

 

The total time to compute one sub-cube, Tb, is thus T1 + T3 + T4 + T7 + T8.  The total 

time for sequential computation Tseq, is T2 + T5 + T6.  The total execution time, Ttot, for an 

n-band image cube of size mxmxp, can then be defined as:  

r
p

nkmTTTr
p

T
TTTT wstartseq

par
seqcommcomptot

2

+++=++=  

  startwseq
b Tr

p
nkmTTr

p
kT

+++=
2

 

 

The performance model can thus be described as: 

+++++= )( 2
8

22
7

2
43

2
1 mCmnCsnCsnCsnmC

p
krTtot  

startw T
p

nkmTCnCpnCsnpC ++++−
2

9
3

6
2

52 ))1((  

 

  



 83

The parallel efficiency can also be predicted with: 

1

2
8

22
7

2
43

2
1

2
9

)(

/
1

/1
1

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++++

+
+=

+
=

mCmnCsnCsnCsnmC
p
kr

pnkrmTCT
TT

e wstart

compcomm

 

 

5.3.3 Model Parameters 

On a 100 baseT network the network throughput, Tw, was measured at 0.1 microsecond. 

The associated experiments were performed on the same homogeneous testbed as with 

concurrent sonar processing. After approximately 15 experiments, the value of the 

weighting factors were obtained, and the final values are listed below:  

 

Tstart  =1.0e-009, C1  = -7.0523573e-001, C2  = -1412.1185, C3  =350.61074, 

C4  =3.2096624e-007, C5  =1.0e-009, C6  =1.0e-009, C7  = 1.3325618e-005 

C8  = -1.8525113e-006, C9  = 21.119059 

 

5.4 Experimental Results 

The performance of the algorithm was measured on the same distributed environment 

used for concurrent sonar processing in the previous section. The same experiment was 

conducted with all workers replicated up to the level of seven; the manager and sensor 

were not replicated. 

 

 



 84

5.4.1 Scalability 

Figure 5.5 shows the speedup gained as a function of the number of processors both with 

and without resiliency. Once again, as we would expect, eventually granularity concerns 

begin to reduce the speedup of the algorithm. For example, from 2 processors to 4 

processors, the performance improved 97% while from 32 processors to 64 processors 

only 38% improvement was observed. 

 

1.00

10.00

100.00

1000.00

1 2 4 8 16 32 64 128

# Processors

E
xe

c.
 T

im
e 

: L
og

(T
) R3-Predicted

R3-Measured
R2-Predicted
R2-Measured
R1-Predicted
R1-Measured
Ideal

Figure 5.5: Scalability of Concurrent PCT 

 

5.4.2 Variation in Network Performance 

Figure 5.6 shows the predicted execution time with gigabit networking technology. 

Predicted results indicate that the use of faster networking technology can improve the 

scalability of the application a lot even with higher resiliency. 



 85

 

1

10

100

1000

1 2 4 8 16 32 64 128

# Processors

Ex
ec

. T
im

e 
: L

og
 (T

)
Resiliency 3
Resiliency 2
Resiliency 1

 

Figure 5.6: Predicted Performance for Gigabit Network 

 

5.4.3 Variation in Resiliency 

Once again, when resiliency was applied the expected result was that performance would 

decrease by a factor of two or three depending on the specified resiliency since the 

replicated processes require both memory and processor resources. Figure 5.7 shows the 

overhead of resiliency with respect to the number of processors. Notice that the overhead 

caused by resiliency 2 is only 82% over resiliency 1, and 186% for resiliency 3 

respectively. As in the sonar application, we observe that resiliency is able to utilize idle 

cycles in the concurrent algorithm to reduce the cost of replication. 

 

The graph also shows that the plots demonstrate that the accuracy of the predictive model 

is within 5.4 %. 

 



 86

8 Processors

0
100

200
300
400

500
600

700
800

1 2 3 4

Resiliency

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

)
Expected
Predicted
Measured

 

(a) 

 

16 Processors

0

100

200

300

400

500

1 2 3 4

Resiliency

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

)

Expected
Predicted
Measured

 

(b) 



 87

 

32 Processors

0

100

200

300

1 2 3 4

Resiliency

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

Expected
Predicted
Measured

 

(c) 

64 Processors

0

100

200

1 2 3 4

Resiliency

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

)

Expected
Predicted
Measured

 

(d) 

Figure 5.7: Overhead of Resiliency 



 88

 

5.4.4 Variation in Frequency of Liveness Checking 

Figure 5.8 shows the overhead caused by the liveness checking. In each case, the 

overhead was less than 1%. It indicates that the resiliency is the primary source of 

overhead, and the frequent use of liveness checking would not add noticeable. This is 

beneficial in that frequent use of liveness checking allows an application to recover from 

the possible failure more quickly. The overhead of replication for resiliency 7 was 414% 

over resiliency 1, a considerable improvement over the expected factor of 7. 

 

0

5000

10000

15000

20000

25000

30000

No Check 5 10 20

# Liveness Checks

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

) Resilinecy 7 
(56 Processors)
Resiliency 3 
(32 Processors)
Resiliency 2 
(32 Processors)
Resiliency 1 
(32 Processors)

 

Figure 5.8: Overhead of Liveness Checking 

 

5.5 Summary 

This chapter has developed a prototypical application, remote sensing, that can benefit 

from computation resiliency. The associated predictive analytical model was presented. 



 89

Various experimentations were used to validate the model that can be used to make 

predictions.  

 

Throughout chapter 4 and 5, the thesis showed how the concepts and library can be 

applied in the context of two realistic military applications: a towed array sonar and a 

remote sensing application. The implementations of these applications were studied to 

ascertain the overheads associated with the technology on a moderately scaled, 

homogeneous architecture consisting of 32 high-performance dual-processor PC’s 

connected with 100Mbit/sec Ethernet technology. 

 

For both applications, ability to utilize idle cycles to reduce the cost of increased 

survivability was evident, especially at higher levels of redundancy than one normally 

considers practical. This higher level is directly motivated by the computational model 

which provides strength in numbers. Although initially, the use of group based liveness 

checking was considered to be a significant defect with the current implementation 

strategy, it has proved to be less problematic than expected accounting for less than a 1% 

overhead in both applications. In both applications, reducing the frequency of checking 

could have reduced the overhead still further.  

 

Many aspects of computational resiliency remain to be explored and several alternative 

implementation strategies have yet to be tested. However, the results in this thesis 

indicate that the general concept is both practical and has less cost than originally 

anticipated.  



 90

 

Chapter 6    Heterogeneous Systems 

Since machines in the networked environment usually have widely different performance 

and memory characteristics, load balancing techniques are required. These techniques 

must disperse replicated structures to realize improved reliability. To explore the 

performance issues associated with heterogeneity of the distributed computing 

environment, we have incorporated the technology into two prototype distributed 

applications: a towed array sonar and a hyper-spectral remote sensor. In this chapter we 

outline the load balancing techniques, and show how they are applied to the applications. 

Performance measurements are provided that quantify the overhead of resiliency, under 

normal operating conditions, using a network architecture containing 21 heterogeneous 

computers connected with both Gigabit and Fast Ethernet technologies. 

 

6.1 Load Balancing Algorithm 

Efficient allocation of the replicas in computational resiliency improves the performance 

and reliability of the application. Traditional load balancing techniques address the 

optimal allocation of resources to tasks. We augment this process with reliability 

constraints.  

 

Figure 6.1 shows that load balancing strategy in computational resiliency. Each compute 

has different capability and the workload of the systems is balanced through allocating 

the replicas of threads considering the utilization of the computers. For example, three 



 91

threads are allocated to processor 1 while only one is allocated to processor 4. 

Application view and resilient view don’t change while the actual mapping of the threads 

to the system realizes load balancing. 

 

Architectural
View

Processor 1

Processor 3

2
Processor 2

Processor 4
Switch

3

2

Application View

Resilient View
1 1

1
2 2

2

33

1 3
2

1

3

2 1

1

 

Figure 6.1: Load Balancing in Computational Resiliency 

 

Time complexity of finding out the optimal allocation of the replicated threads over a 

given set of processors is exponential. Even with moderately sized system, task allocation 

takes too much time to be practical, which results in increasing the recovery time when 

failure occurs. In that sense, allocating replicas on-line and in real-time is desirable. 

Powerfulness of an on-line algorithm is usually represented by competitive ratio, i.e., 

ratio between the performance achieved by the on-line algorithm and that of off-line 

algorithm. Azar [Azar 1992a, 1992b] proved that greedy strategy based on-line load 

balancing technique can achieve a competitive ratio of ⎡ ⎤ 1log2 +n . 

 



 92

Program 6.1 outlines the greedy algorithm used, where jl  represents the load of task j, iL  

the load on processor i, jr  the number of replicas for task j, iT  a set of tasks mapped to 

computer i, and jS  a set of computers to which task j may not be allocated.  

Program 6.1: Load Balancing Algorithm 

 

In determining the load of a task, there are two options. One is to use abstract, 

algorithmic quantities such as the number of operations or data structures. If the load of 

task j is taken to be jl , then the load of computer i is ∑
∈

=
iTj

ji lL . In that case, the 

utilization of computer i is given, 
i

i
i C

LU = , where iC  is the computer’s capacity. 

for all i 
     φ←iT   
end for 
for each task j 
     φ←jS  
     while 0>jr   
          choose processor i that is not in jS  and  
               has the lowest utilization    
          if the reliability constraints are met 

     assign the replica of task j to computer i 
              jii lLL +=  
               Uii TT ←  {task j} 
               1−= jj rr  
          else 
               {}iSS jj U←  
          end if 
     end while 
end for 



 93

Similarly, the utilizations due to the tasks are given by 
)( jM

j
j C

l
u = , where )( jM  is the 

computer to which task j is mapped. As a second option, one can measure the utilization 

using system facilities to get CPU time or amount of memory used by a task. In that case, 

one simply reverses the above formulas to calculate the abstract loads: jjMj uCl )(=  gives 

the load of a task. The resulting task loads and utilizations are summed to yield the 

computer’s total loads and utilizations, respectively. 

 

In both cases, it is assumed that one knows the resource capacity of a given computer. 

The capacity can be determined in a number of ways. If the capacity measured is 

processing speed, a benchmarking program – possibly the target application with a 

smaller test problem – can be used to determine the relative speeds of various machines. 

Theses off-line performance numbers, along with other statistics, such as the machines’ 

memory capacities, can be put into a file which is read at the start of the computation. A 

third measure is to use both invariant algorithmic quantities and system-measured 

utilization numbers. For examples, one might use the number of iterations in an 

application as well as the CPU time required to process those iterations. By dividing 

former by the latter, one can calculate the capacity of the system dynamically during the 

execution. 

 

To assess the load of a task, we measure the execution time of a standard benchmark task 

on the slowest computer in the network, and assess the relative performance of any other 

computers. We assume that faster processors have a larger capacity based on relative 



 94

speeds and this allows the algorithm to determine the processor with lowest utilization. 

 
The reliability constraints assure that each replicated task is assigned to a distinct 

computer since the failure of a computer results in loss of all the replicas in it. In 

addition, if more than one LAN is in use, loss of network connectivity between LANs 

may reduce reliability. Thus we ensure that replicas within a group are allocated to 

different LANs where possible.  

 

6.2 Heterogeneity in Data Representation 

Another aspect of heterogeneity is the data representation scheme of each computer 

architecture. Each computer has different number of bytes to represent the same tyep of 

data. There is also Endian byte ordering problem[Cohen 1981]. Big Endian orders the 

bytes by placing the most significant byte first while Little Endian the least significatn 

byte first. Figure 6.2 shows two data representation mechanisms. 

11111111 10101010 00000000 111111111010101000000000

Big Endian Byte Ordering Little Endian Byte Ordering
 

Figure 6.2: Endian Byte Ordeing 
 

Table 6.1 shows the characteritics of each computer architecture. 

Processor Operating System Byte Ordering Long Integer Bytes 

Intel Pentium III Windows NT Little Endian 4 
Alpha LINUX 2.2.1 Little Endian 8 
R 4400 IRXI 6.4 Big Endian 4 

Table 6.1: Data Representations on Heterogeneous Computer Architectures 

 



 95

These differences in representing data affect the implementation of computational 

resiliency. All the control and data messages in the system have  to be compatible with 

each other. Control messages used in three protocols in computatil resiliency library and 

the data messages sent and received at user level have to be understood in each processor. 

For this purpose, each communication channel should be able to understand different 

representation of the messages. If the communication channel is between homogeneous 

systems, no trasformation is applied. Between heterogneous computers, transformation to 

neural representatoin is enforced. At the reciver side, this neutral format is transformed to 

local data presentation. 

 

Figure 6.3 shows the impact of heterogeneity in flow control protocol of computational 

resiliency. Each replica of a thread may be spawned on different types of processors. 

Then, in flow control protocol, the same message is received by each of those replicas in 

different processor type, and each message may be in different format. Flow control 

protocol in heterogeneous environment need to transform these messages to the 

appripriate format understood locally, discards the duplicates, and deliver them in order 

to upper level. 

 



 96

Sender Receiver

4 3 2 1

SGI
IRIX 6.4

Intel
Windows NT

Alpha
LINUX

6
5

4
3

7 6 5

4
3

2

1 14 1232

  

Figure 6.3: Flow Control in Heterogeneous Environments 

 
6.3 Experimental Testebed 

To explore the feasibility of these concepts, two prototype applications were developed 

and mapped to a network architecture organized as 21 heterogeneous computers 

connected with a 100BT and Gigabit Ethernet switches. These computers included a 

broad range of performance and memory characteristics, operating systems, and byte 

orderings. They were: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 97

 Processor 
Type 

Memory 
Size 

Operating 
System 

Network 
(Mbps) 

Relative 
Speed 

0 450 MHz Pentium III (x4) 1.5 GB Windows NT 4.0 
Enterprise Server

1000  9.3 (x4) 

1 300 MHz Pentium II (x2) 256 MB Windows NT 4.0 
Server 

1000  2.6 (x2) 

2 500 MHz Pentium III (x8) 4 GB Windows NT 4.0 
Enterprise Server

1000  14.4 (x8)

3 500 MHz Pentium III (x8) 4 GB Windows NT 4.0 
Enterprise Server

1000 14.4 (x8)

4 500 MHz Pentium III 128 MB Windows NT 4.0 100 2.6 
5 500 MHz Pentium III 128 MB Windows NT 4.0 100 2.6 
6 533 MHz Celeron 128 MB Windows NT 4.0 100 2.2 
7 533 MHz Celeron 128 MB Windows NT 4.0 100 2.2 
8 533 MHz Celeron 128 MB Windows NT 4.0 100 2.2 
9 533 MHz Celeron 128 MB Windows NT 4.0 100 2.2 
10 200 MHz R4400 128 MB IRIX 6.4 100 1 
11 150 MHz R4400 288 MB IRIX 6.4 100 1.3 
12 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100 3.1 (x2) 
13 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100 3.1 (x2) 
14 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100 3.1 (x2) 
15 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100 3.1 (x2) 
16 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100 3.1 (x2) 
17 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100 3.1 (x2) 
18 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100 3.1 (x2) 
19 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100 3.1 (x2) 
20 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100 3.1 (x2) 

Table 6.2: Heterogeneous Computers Characteristics 

 

The performance of each of these machines was measured relative to the slowest 

machine, the 200 MHz Indigo II, and is shown in brackets. Note that the performance of 

the machines varied by a factor of almost 14.4(x8), and the available memory varies by a 

factor of 32. Figure 6.4 shows the overall networking structure composed of both Gigabit 

Ethernet and Fast Ethernet networking. Machines were grouped into two separate sub-

networks that were connected through the Gigabit Ethernet networking. 

 



 98

 

Figure 6.4: Heterogeneous Network Architecture 

 

6.4 Heterogeneous Modeling 

In chapter 4, we have developed an analytical model for homogeneous collection of 

processors. We extend that model to heterogeneous systems. Consider a collection of p 

processors, each with a different processing speed and memory. Recall that the 

computational time was defined as 

seq
par

comp Tr
P

T
T +=  

Let if  be a distribution function that assigns the workload to each processor such that 

∑ =
p

if 1. Workload assigned to each processor is determined by the load balancing 

techniques used. The relative speed of each processor, is , is given by the computation 



 99

time a processor can execute the workload. The computation time for each processor i, 

i
compT , can then be defined as 

seq
i

bii
comp T

s
rkTf

T +=  

This also correctly reduces to the homogeneous case, for which 
p

fi
1

=  and the relative 

speed is 1 for all i. 

 

Our experimentation testbed includes a set of heterogeneous networking technologies. 

The network topology, Figure 6.4, is arbitrary like Wide Are Network (WAN). In our 

experimentation all the fastest machines were on gigabit network and the slower 

machines were on 100BT network. Since the total execution time is primarily concerned 

with the slowest computer, we can use the network bandwidth of 100BT network in the 

communication model. We use the same communication model, which is 

P
NTTT Wstartcomm +=  

The total execution time then is defined as 

P
NTTT

s
rfkT

T Wstartseq
b

tot +++=  

 

6.5 Concurrent Sonar Processing 

Concurrent sonar processing application and how computational resiliency is applied to it 

on homogeneous computing environment were described in chapter 4. Here, we extend 

the application to heterogeneous computing environment. We explore the performance 



 100

issues associated with various load balancing techniques and the overhead of resiliency. 

We show representative experimental results from a broad set of experiments that we 

have conducted to measure the effectiveness of load balancing and the overhead caused 

by resiliency and liveness checking on the heterogeneous testbed introduced in chapter 

6.3.  

 

The sensor and display were mapped to Machine 0 in the testbed due to memory 

concerns, while each of the remaining 20 machines executed beamformers. Resiliency 

was applied uniformly to harden the application by replicating the beamforming 

elements. The beamformer was executed once for Figures 6.5, 6.6 and Table 6.3, and 100 

iterations for Figure 6.7. Each iteration processed a single set of buffered returns. Three 

parameters were varied in the experiments: the load balancing method, the level of 

replication (1, 3, or 7), and the frequency of the liveness checking (0 to 20 checks over 

the course of the 100 iterations). Even though resiliency 7 may seem to be a high level of 

replication, we consider this case interesting to investigate since it more closely 

approximates the computational model presented in chapter 1. The number of sonar 

elements and the number of buffered returns were fixed to 382 and 1000 respectively. 

 

Three experiments were conducted to evaluate the effectiveness of the different load 

balancing techniques. First, the problem was run without load balancing (No-LB). Next, 

load balancing strategy based on the number of processors in each machine was used 

(Homogeneous-LB). In the third case, a small benchmark problem, roughly 20% as large 

as the full problem, was run on each machine to assess their relative performance. Using 



 101

static capacity estimates, the problem was then balanced (Heterogeneous-LB). 

 

Figure 6.5 shows the relative utilization of the computers based on their relative capacity 

and workload assigned. For resiliency 1, it is permitted that no task is assigned to a slow 

processor, while in resiliency 3 at least one task is allocated to every computer to ensure 

higher reliability. For example, in Figure 6.5(a), machines 3 to 12 were dropped for 

resiliency 1. Heterogeneous-LB technique shows the most balanced utilization. Machines 

1 and 2 have room to take more tasks but cannot due to the reliability constraints.  



 102

 

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Computer #

U
til

iz
at

io
n

No-LB

Homogeneous-LB

Heterogeneous-LB

 
(a) Resiliency 1 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Computer #

U
til

iz
at

io
n No-LB
Homogeneous-LB

Heterogeneous-LB

 
(b) Resiliency 3 

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Computer #

U
til

iz
at

io
n

No-LB

Homogeneous-LB

Heterogeneous-LB

 
(c) Resiliency 7 

Figure 6.5: Utilization for Each Load Balancing Technique 



 103

Table 6.3 summarizes the results of these experiments. With homogeneous-LB, a 1.9 fold 

performance improvement was observed with resiliency 7. With heterogeneous-LB, a 2.7 

fold performance improvement was observed with resiliency 7.  

 

Scenario Step Time (sec) Improvement 

No LB 36.2 N/A 
Homogeneous-LB 22.0 1.65x 
Heterogeneosu-LB 16.1 2.25x 

(a) Resiliency 1 
 

Scenario Step Time (sec) Improvement 

No LB 88.4 N/A 
Homogeneous-LB 50.0 1.77x 
Heterogeneous-LB 35.4 2.5x 

(b) Resiliency 3 
 

Scenario Step Time (sec) Improvement 

No LB 278.9 N/A 
Homogeneous-LB 146.9 1.9x 
Heterogeneous-LB 103 2.71x 

(c) Resiliency 7 
Table 6.3:Results of Load Balancing Experiments for Entire Heterogeneous Testbed 

 

Figure 6.6 shows the overhead of resiliency with respect to each load balancing 

techniques. Our expectation was that since replication of a thread doubles its 

computational requirements, level 3 and 7 resiliency would execute with a three and 

seven-fold decrease in speed respectively. Without any load balancing, Figure 6.6(b), 

execution time for resiliency 7 increased more than a factor of 7. With load balancing, 

however, the results indicate that performance did not decrease linearly with the level of 

replication and was less than expected for all the cases. The execution time of resiliency 3 



 104

increased only 127% and 120% over resiliency 1 for Figure 6.6(c) and (d) respectively. 

For resiliency 7, it was as much as 568% indicating that very high levels of survivability 

may be possible without a direct linear cost. This artifact results from the overlapping of 

communication and computation in the resilient application: Idle time allowed cycles to 

be used in completing replicated tasks that would have otherwise been wasted. 

Obviously, this phenomenon is highly application dependent, however, idle cycles can 

occur for many reasons in distributed applications, e.g. file I/O, synchronization, global 

operations, etc. Therefore it is not unreasonable to assume that resiliency may often be 

achievable without significant computational costs.  



 105

 

0

50

100

150

200

250

300

No LB Homogeneous-
LB

Heterogeneosu-
LB

Scenarios

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)
Resiliency 7
Resiliency 3
No resiliency

 

(a) 

No LB

0

50

100

150

200

250

300

No resiliency Resiliency 3 Resiliency 7

Resiliency

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

Expected
Measured

 

(b) 



 106

Homogeneous-LB

0
20
40
60
80

100
120
140
160
180

No resiliency Resiliency 3 Resiliency 7

Resiliency

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)
Expected
Measured

 

(c)   

     

Heterogeneous-LB

0

20

40

60

80

100

120

No resiliency Resiliency 3 Resiliency 7

Resiliency

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

Expected
Measured

 

(d) 

Figure 6.6: Overhead of Resiliency 



 107

 

Figure 6.7 shows the cost of liveness checking in this application. The overheads never 

exceeded 1% even when liveness checking is frequent (once every 5 iterations of the 

beamformer) and the level of resiliency is high, i.e. 7. 

 

0

2000

4000

6000

8000

10000

12000

No Check 5 10 20

# Liveness Checks

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

)

Resiliency 7
Resiliency 3
No Resiliency

 

Figure 6.7: Overhead of Liveness Checking 

 

While we have shown the effectiveness of the load balancing techniques for the large 

system with 21 computers in two sub-networks as above, it is also interesting to 

investigate the effectiveness of load balancing for a smaller system size. We repeated the 

same experiments on a small system with only 5 heterogeneous computers. Table 6.4 

shows the processor information and Table 6.5 shows the results of load balancing. In 

this small sized system, we were only able to use lower degree of resiliency, 2 in this 

experiment. Experiment results show that the higher performance improvement was 

achieved. This small network case shows that higher performance improvement can be 



 108

achieved when the system is highly skewed, i.e., the difference between the fastest 

processor and  the slowest processor is large. 

 

 Processor 
Type 

Memory 
Size 

Operating 
System 

Network 
 (Mbps) 

Relative 
Speed 

0 450 MHz Pentium III (x4) 1.5 GB Windows NT 4.0 
Enterprise Server

1000 9.3 (x4) 

1 500 MHz Pentium III (x8) 4 GB Windows NT 4.0 
Enterprise Server

1000 14.4 
(x8) 

2 500 MHz Pentium III 128 MB Windows NT 4.0 100 2.6 
3 200 MHz R4400 128 MB IRIX 6.4 100 1 
4 400 MHz Pentium II (x2) 256 MB LINUX 2.2.12 100  3.1 (x2) 

Table 6.4.  Processor Information for small heterogeneous testbed 

 

Scenario Step Time (sec) Improvement 

No LB 180.8 N/A 
Homogeneous-LB 83.5 2.17x 
Heterogeneous-LB 49.0 3.69x 

Table 6.5. Results of load balancing experiments for small heterogeneous testbed 

 

6.6 Remote Sensing Application 

The performance of another distributed application, remote sensing, was measured on the 

heterogeneous testbed environment. The same experiment was conducted with all 

workers replicated up to the level of seven; the manager and sensor were not replicated. 

Table 6.6 shows the results of load balancing experiments; these are consistent with those 

in the sonar application. Performance was improved by a factor of 3.37 for resiliency 7. 

As in concurrent sonar application, higher improvements were achieved with higher 

resiliency, i.e. 7. 

 



 109

 

Scenario Step Time (sec) Improvement 

No LB 122 N/A 
Homogeneous-LB 81 1.5x 
Heterogeneous-LB 54 2.26x 

(a) No Resiliency 

Scenario Step Time (sec) Improvement 

No LB 357 N/A 
Homogeneous-LB 197 1.81x 
Heterogeneous-LB 158 2.26x 

(b) Resiliency 3 

Scenario Step Time (sec) Improvement 

No LB 896 N/A 
Homogeneous-LB 492 1.82x 
Heterogeneous-LB 266 3.37 x 

(c) Resiliency 7 

Table 6.6:Results of Load Balancing Experiments for Entire Heterogeneous Testbed 

 

Once again, when resiliency was applied the expected result was that performance would 

decrease by a factor of three or seven depending on the specified resiliency since the 

replicated processes require both memory and processor resources. Figure 6.8 shows the 

overhead of resiliency with respect to three load balancing techniques. Without any load 

balancing, the execution times for resiliency 7 increased more than a factor of 7 in Figure 

6.8(b). Heterogeneous load balancing reduced the overhead of resiliency significantly. 

With resiliency 7, the overhead was only 393% over resiliency 1 in Figure 6.8(d). As in 

the sonar application, we observe that load balancing improved the performance and 

resiliency is able to utilize idle cycles in the concurrent algorithm to reduce the cost of 

replication. 



 110

 

 

0

100

200

300

400

500

600

700

800

900

1000

No LB Homogeneous-
LB

Heterogeneous-
LB

Scenarios

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

Resiliency 7
Resiliency 3
No resiliency

 

(a) 

 

No LB

0
100
200
300
400
500
600
700
800
900

1000

No resiliency Resiliency 3 Resiliency 7

Resiliency

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

Expected
Measured

 

(b) 



 111

 

 

Homogeneous-LB

0

100

200

300

400

500

600

No resiliency Resiliency 3 Resiliency 7

Resiliency

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

Expected
Measured

 

(c) 

 

Heterogeneous-LB

0
50

100
150
200
250
300
350
400

No resiliency Resiliency 3 Resiliency 7

Resiliency

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

Expected
Measured

 

(d) 

Figure 6.8: Overhead of Resiliency 



 112

 

Figure 6.9 examines the overhead caused by liveness checking. In each case, the 

overhead was less than 1% and is consistent with the results from the sonar application. 

 

0

5000

10000

15000

20000

25000

30000

No Check 5 10 20

# Liveness Checks

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

)

Resiliency 7
Resiliency 3
No Resiliency

 

Figure 6.9: Overhead of Liveness Checking 

 

The same experiment for small network size was conducted for resiliency 2. Figure 6.7 

shows that use of load balancing produces performance improvement, which is better 

than large system case. 

 

Scenario Step Time (sec) Improvement 

No LB 1150 N/A 
Homogeneous-LB 466 2.47x 
Heterogeneous-LB 286 4.02x 

Table 6.7. Results of load balancing experiments for small heterogeneous testbed 

 

 



 113

 

6.7 Summary 

In this section, we have presented the load balancing algorithm to be used with 

computational resiliency. Experimental results show that the load balancing can improve 

the performance of the applications over the heterogeneous distributed environments. The 

load balancing algorithm was designed also towards improving the reliability of the 

system such that it meets reliability constraints. Experimental studies show that 

substantial improvements in performance are possible when one takes into account the 

individual resource capacities of the computers on which a concurrent application is 

running. 



 114

 

Chapter 7    Conclusion and Future Work 

This thesis has described the notion of computational resiliency and presented the 

framework for developing highly reliable distributed computing systems. It discussed the 

implementation issues associated with a prototype-programming library that supports the 

idea. The thesis shows how the concepts and library can be applied in the context of two 

realistic military applications: a towed array sonar and a remote sensing application. The 

implementations of these applications were studied to ascertain the overheads associated 

with the technology on a homogeneous architecture. Then, they were further extended to 

heterogeneous architecture consisting of computers with varying computing capability, 

memory availability, operating systems, and networking technology. 

 

For both applications, ability to utilize idle cycles to reduce the cost of increased 

survivability was evident, especially at higher levels of redundancy than one normally 

considers practical. This higher level is directly motivated by the computational model 

which provides strength in numbers. Although initially, the use of group based liveness 

checking was considered to be a significant defect with the current implementation 

strategy, it has proved to be less problematic than expected accounting for less than a 1% 

overhead in both applications. In both applications, reducing the frequency of checking 

could have reduced the overhead still further.  

 



 115

Use of load balancing techniques improved the performance by efficient allocation of the 

replicated threads on heterogeneous computing environments. Reliability was considered 

in the load balancing algorithm to improve the allocation of replicas. The results in this 

thesis indicate that the general concept is both practical and has less cost than originally 

anticipated 

 

In order to understand the performance characteristics of the algorithm with 

computational resiliency, analytical models have been developed. Application dependent 

parameters and reliability requirements are described in the model for predicting practical 

properties such as runtime and resource requirements for two prototypical distributed 

applications.  The outlined analytical models have been validated against a large set of 

experimental data on homogeneous architecture and heterogeneous modeling was 

developed. 

 

Future work include developing camouflage and decoy technologies to provide higher 

survivability in more adverse environments in the respective of information warfare. In 

those technologies, the system assist processes in hiding themselves and in providing 

likely targets for attack. A simple form of camouflage involves changing the name of 

process in the process table, so that the application process is invisible to a casual 

inspection. More sophisticated camouflage will involve behavior: a process will have to 

take on more of the identity rather than just the name of the process it’s impersonating. 

For example, a camouflaged process should consume roughly the same resources 

(memory, processor time) as the process being mimicked. Sometimes, it is not enough to 



 116

simply hide; it should provide a ready target so that an attacker will be fooled into 

thinking the attack has succeeded. 



 117

Appendix A Message Logging Based Approach 

 

In this thesis, we presented a prototype implementation approach to computational 

resiliency that is characterized by no message logging, no use of network file system, and 

active replication. That provides a hot-start and roll-forward recovery scheme. One of the 

drawbacks of the current approach is global synchronization point during the liveness 

checking. We employed that technique to avoid roll-back in the presence of failure and 

saving intermediate states including messages. Another alternative approach is 

uncoordinated liveness checking with message logging in which the messages sent are 

kept until the destination threads receive them successfully. When failure happens, a new 

thread recreated in the destination thread group can request for the logged messages from 

the sender thread. 

 

The major disadvantage of this approach is that it has to keep the copies of the messages 

until they become unnecessary. In general client/server application, where each 

transaction message size is not huge, this approach is applicable. However, for the 

application in which each message size is huge, for example 10Mbytes in remote sensing 

application, this approach suffers from severe I/O operations. 

 

We have implemented this approach as an alternative implementation solution to 

computational resiliency and studied the performance of this approach. Experimentation 

results show that this approach incurs more overhead than our initial approach. The 

performance of the remote sensing application was measured on a distributed 



 118

environment consisting of 16 Sun Solaris 300MHz.workstations connected with 

100BaseT networking technology. All workers were replicated to a level of two while the 

manager and the sensor were not replicated.  

 

Figure A.1 shows the speed up gained as a function of the number of computers both 

with and without resiliency.  Notice that the overhead caused by resiliency is 

approximately 10% plus the cost of replication uniformly. The concurrent algorithm 

operates within 20% of linear speedup in both cases. Theses preliminary results indicate 

that the message logging based approach causes more communication overhead than our 

initial approach where the resiliency overhead never exceeded the 100%. 

 

0

200

400

600

800

1000

1200

1400

1 2 4 8 16

# Processors

Ex
ec

. T
im

e 
: L

og
(T

)

Resiliency 2
Linear
No Resiliency

 

Figure A.1: Performance Chart 

 

In our previous experimentations, the overhead due to resiliency never increased by the 

fold of resiliency. We believe the excessive overhead observed in this experimentation 

was due to message logging. 



 119

Appendix B Technology Demonstration 

 

We have developed another technology demonstration program in fluid dynamics area, 

Dirichlet boundary problem. The Dirichlet boundary problem is a simple numerical 

simulation problem on a two dimensional grid. Each point on the grid has a ),( yx  

location and a value representing temperature of some material. At each time step, each 

point's temperature is averaged with its neighbor's temperatures to find the point's 

temperature at the end of the time step. The basic transition formula is:  

 

+++++−=+ ),1,(),,1(),1,(()1,,( tyxTemptyxTemptyxTemptyxTemp  

                                 5/)),,(),,1( tyxTemptyxTemp +−  

           where ),,( tyxTemp  represents the temperature of location ),( yx  at time t  

 

This operates for all grid points that are not on the boundary. Boundary grid points are 

assumed to have a constant value. The Dirichlet problem is simple in that the workload is 

uniform. This allows the domain decomposition technique to be used in dividing up the 

workload among processes. A one-dimensional decomposition involves partitioning the 

grid by either rows or columns. A two-dimensional decomposition involves partitioning 

the grid by both rows and columns (i.e. into patches). In our explanation, two-

dimensional decomposition is used. The Dirichlet boundary problem can be parallelized 

reliably using computational resiliency. Program B.1 describes the abstract code of what 

each node performs. 



 120

Program B.1: Dirichlet Boundary Problem and Its Parallelization 

 

Each patch is assigned to a different processor for parallel computation. Figure B.1 shows 

how two dimensional grid is mapped into a matrix of processors, how each workload is 

assigned to a node, and how necessary communication paths are set up. In the right 

picture, each circle represents a node mapped to each processor and the arrows represent 

the communication paths among the processors.  

Entire two dimensional grid is decomposed into the patches 
Computing node is created 
Set up the communication channels among the nodes 
For each node 
begin 
    Each node is assigned a patch with initial boundary condition 
    Initialize each node state 
    while not the norm is converged to an acceptable point 
    begin 
        for all neighbors 
        begin 
            send the edges to the neighbor 
        end 
        for all neighbors 
        begin 
            receive the edges from the neighbor 
        end 
        calculate the new temperature at each grid point of the patch 
        calculate the new norm 
        if (time expires) then perform liveness checking 
    end 
end 



 121

0 1 2

3 4 5

6 7 8
Dirichet Boundary

Problem mapped to
matrix of processors

0 1 2

3 4 5

6 7 8

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

Communication Path
for Dichlet Boundary Problem

 
Figure B.1: Dirichlet Boundary Problem and Its Parallelization 

 

Figure B.2 shows the actual snapshots of the screens. Right panel shows the computing 

status of the entire grid and the left panel illustates the current status of the system. As the 

failures happens, computer status window shows the crashed compyters and where the 

nodes moved. In this example, grid was divided into 2x2 pathes and four computers were 

used. Resiliency 2 was used uniformly. 

 

 

 



 122

 

 

 

Figure B.2: Screenshots of Dirichlet Application Demonstration 



 123

Figure B.3 shows the experimental results with this application. It shows the the 

execution times of the application with varying problem size, the degree of resiliency, 

and the frequency of the liveness checking. It also compares the performance of 

computational resiliency with another frequently used distributed computing middleware, 

Common Object Request Broker Architecture(CORBA). CORBA is a middleware 

technology that provides a standard software specification for distributed object 

computing and seamless interoperability among heterogeneous clients and servers. It 

establishes the client-server relationships between objects such that a client can invoke a 

method on a server object regardless of the location of the object, programming language, 

and operating system. Even though CORBA has been used for many distributed 

computing applications, its performance is limited by communication overhead for 

marshaling/unmarshaling of the messages.  

 

This experimentation was done over a cluster of four PCs running Windows NT with 128 

Mbyte memory, 533MHz Intel Celeron processor, 128 Mbyte RAM, and 100BT network.  

The problem was decomposed into two by two patches and computation for each patch 

was mapped to each thread in each computer. One hundred iterations of computation 

were performed for each experimentation. In this experimentation, CORBA used JAVA 

native compiler for better performance.  

 

In Figure B.3(a), CORBA had 30% overhead compared to computational resiliency with 

no replication in all three problem sizes respectively. Figure B.3(b), (c) and (d) show the 

execution times for varying problem size and resiliency levels. They indicates that the 



 124

execution times didn’t increase linearly with the degree of resiliency applied as we saw in 

other applications in this thesis. The effect of the number of liveness checkings decreases 

as the problem size increases. For example, with resiliency 3 in 4000x4000 grid size the 

overheads for liveness checking for 5, 10, and 20 times were almost the same. For 

reasonably large problem size, the effect of liveness checking diminishes. For rather 

small problem sizes, liveness checking causes observable overhead as in Figure B.3(a). 



 125

0

50

100

150

200

250

1000x1000 2000x2000 4000x4000

Grid Size

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

)
CORBA   
(resiliency 1)
CompRes
(resiliency 3)
CompRes
(resiliency 2)
CompRes
(resiliency 1)

 

(a) 

1000 x 1000 Grid

0

10

20

30

40

50

60

0 5 10 20

# liveness checkings

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

)

resiliency 3

resiliency 2

resiliency 1      
(no checking)

 

(b) 



 126

2000 x 2000 Grid

0
10

20
30
40

50
60
70

80
90

0 5 10 20

# liveness checkings

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

)
resiliency 3

resiliency 2

resiliency 1      
(no checking)

 

(c) 

4000 x 4000 Grid

0

50

100

150

200

250

300

0 5 10 20

# liveness checkings

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

)

resiliency 3

resiliency 2

resiliency 1      
(no checking)

 

(d) 

Figure B.3: Performance Charts 



 127

Bibliography 

1. Achalakul T., J. Lee, S. Taylor, “Resilient Image Fusion”, Proceedings of the 

2000 International Conference on Parallel Processing workshops, Toronto, 

Canada, pp. 291-296, August 2000 

2. D.A. Agarwal, “Totem : A reliable ordered delivery protocol for interconnected 

local-area networks”, Ph.d dissertation, Dept. of Electrical and Computer 

Engineering. University of California, Santa Barbara, 1994. 

3. Amdahl, G. M., “Validity of the single-processor approach to achieving large 

scale computing capabilities”, AFIPS Conference Proceedings, vol. 30, pp. 483-

485, 1967. 

4. Anton H. and C. Rorres, Elementary Linear Algebra: Applications Version, John 

Wiley and sons, Inc., New York, NY, 1994. 

5. Yair Amir, “Replication using group communication over a partitioned network”, 

Ph.d Thesis, Hebrew University of Jarusalem, 1995. 

6. Y. Amir, Dolev., Kramer, S., and Malki, D., “Transis : A communication sub-

system for high availability”, Proc. of the 22nd Annual Internaltional Symposium 

on Fault-Tolerant Computing, pp 76-84, July, 1992. 

7. (a) Yossi Azar, “On-line Load Balancing”, Proc. the 33rd Annual IEEE 

Symposium on Foundations of Computer Science, pp. 218-225, 1992. 

8. (b) Y. Azar, J. Naor, R. Rom, “The competitiveness of on-line assignments”, 

Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, pp. 203-210, 1992. 

9. J.L. Baer, C. Girault, Cache coherence in MIMD systems: A Petri net model for a 

minimal state solution, Van Nostrand Reinhold, New York, pp292-328, 1990. 



 128

10. J.A. Bannister, K.S. Trivedi, “Task Allocation in Fault-Tolerant Distributed 

Systems”, Acta Informatica, Vol. 20, pp. 261-281, 1983. 

11. S. Barnard, H. Simon, “A fast multilevel implementation of recursive spectral 

bisection for partitioning unstructured problems”, Concurrency : Practice and 

Experience, vol 6, pp. 101-117, 1994. 

12. Thomas Barnard, Radar and Sonar Signal Processing, Unpublished, 1998. 

13. K.P. Birman, van Renesse, R., “Reliable Distributed Computing with the ISIS 

Toolkit”, IEEE Computer Society Press, Lod Alamitos, Calif., 1994. 

14. Bokhari, S.H. "On the Mapping Problem, “On the Mapping Problem”, IEEE 

Transactions on Computers Vol C-30, No 3, pp 207-14, March 1981. 

15. Navin Budhiraja, Keith Marzullo, Fred B. Schneider, Sam Toueg, “Primary-

Backup Approach”, Proceedings of the Sixth International Workshop on 

Distributed Algorithms, Haifa, Israel, 1992. 

16. Chandy L. M., Taylor S., An Introduction to Parallel Programming, Jones and 

Bartlett publishers, Boston, 1992. 

17. David R. Cheriton, Willy Zwaenpoel, “Distributed Process Groups in the V-

Kernel”, ACM Transactions on Computer Systems, Vol 3, No 2, pp77-107, Feb. 

1985. 

18. Mark J. Clement, Michael J. Quinn, “Analytical Performance Prediction on 

Multicomputers”, Proceedings of Supercomputing, 1993. 

19. D. Cohen, “On Holy Wars and a Plear for Peace”, Computer, Vol. 14, No. 10, 

October, pp. 48-54, 1981 



 129

20. T. E. Curtis and R. J. Ward, “Digital beam forming for sonar systems”, IEE Proc., 

Vol. 127, Pt. F, No. 4, August, 1980. 

21. G. Cybenko, “Dynamic Load Balancing for Distributed Memory 

Multiprocessors”, J. Parallel and Distributed Computing, vol. 7, pp 279-301, 

1989. 

22. G. Deconinck, “Survery of Checkpointing and Rollback Techniques”, Technical 

Report 03.1.8 of ESPRIT Project 6731 (FTMPS), May 1993. 

23. D. Evand, W. Butt, “Dynamic Load Balancing Using Task-Transfer 

Probabilities”, Parallel Computing, vol. 19, pp. 897-916, 1993. 

24. Thoman Fahringer, “Automatic Performance Prediction of Parallel 

Programming”, Kluwer Academic Publisher, 1996. 

25. Ian Foster, Designing and Building Parallel Programs, Addison Wesley, 1994. 

26. Geist A., A. Beguelin, and J. Dongarra, PVM:Parallel Virtual Machine:A User’s 

Guide and Tutorial for Networked Parallel Computing, MIT Press, Cambridge, MA, 

1994. 

27. W. Gropp, E. Lusk, and A. Skjellum, “Using MPI: Portable Parallel Programming 

with the Message Passing Interface”, MPI Press, 1995. 

28. Rachid Guerraoui, Andre Schiper, “Software-Based Replication for Fault Tolerance”, 

IEEE Computer, pp68-74, April 1997. 

29. Alan Heirich, Stephen Taylor, “A Parabolic Load Balancing Method”, Caltech-

CS-TR-94-13, Computer Science dept., California Institute of Technology, 1994. 

30. Shushil Jajodia, Catherine D. McCollum, Paul Ammann, “Trusted Recvoery”, 

Communications of ACM 42, 7, July 1999. 



 130

31. David B. Johnson, “Distributed System Fault Tolerance Using Message Logging 

and Checkpointing”, Ph.D Thesis, Rice University, 1989. 

32. Juang, T., S. Venkatesan, ‘Crash Recovery with Little overhead”, Proceedings of 

the 11th international Conference on Distributed Computing Systems, pp454-461, 

May 1991. 

33. Kaashoek, M. F., A. S. Tanenbaum, K. Verstoep, “Group Communication in 

Amoeba and its Applications”, Distributed Systems Engineering, vol. 1, no. 1, pp 

48-58, September 1993. 

34. J. Kim, H. Lee, S. Lee, “Replicated Process Allocation for Load Distribution in 

Fault-Tolerant Multicomputers”, IEEE Transactions on Computers, Vol. 46, No. 

4, April, pp. 499-505, 1997. 

35. Koniges A. K., Industrial Strength Parallel Computing, Morgan Kaufmann 

Publishers, San Francisco, CA, 2000. 

36.  Richard Koo, Sam Toueg, “Checkpointing and Rollback-Recovery for 

Disitributed Systems”, IEEE Transactions on Software Engineering, Vol 13, No 1, 

pp23-31, January, 1987. 

37. (a)Vipin. Kumar, A.Y. Grama, N. Rao Vempaty, “Scalable Load Balancing 

Techniques for Parallel Computers”, J. of Parallel and Distr. Comp., vol. 22, pp. 

60-79, 1994. 

38. (b)Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis, “Introduction to 

Parallel Computing”, The Benhamin/Cummings Publishing Company, Inc., 1994. 

39. Lamport, L., Shostak, R., Pease, M., “The Byzantine generals problem”,  ACM 

TOPLAS Vol 4, No.3, pp. 382-401, July, 1982. 



 131

40. (a) Joohan Lee, Stephen Taylor, “Advances in Computational Resiliency”, IEEE 

Aerospace Conference, Big Sky, Montana, March, 2001. 

41. (b) Joohan Lee, Steve J. Chapin, Stephen Taylor, “Reliable Heterogeneous 

Applications”, to appear in IEEE Transactions on Reliability, Dec., 2001. 

42. K. Li, J. Dorband, “A Task Scheduling Algorithm for Heterogeneous Processing”,  

Proc. High Performance Computing, pp. 183-188, 1997. 

43. Jr. Wagner Meira, “Modeling Performance of Parallel Programs”, Technical 

report 589, The University of Rochester, Computer Science Department, 

Rochester, New York 14627, June 1995. 

44. W. Keith Nicholson, Elementary Linear Algebra with Applications, PWS-KENT 

Publishing Company, 1986. 

45. Netperf: A Network Performance Benchmark, http://www.netperf.org, 

Information Networks Division Hewlett-Packard Company, 1995. 

46. Nielsen R., Sonar Signal Processing, Artech House, Inc., 1991. 

47. N. J. Nilsson, Problem Solving Methods in Artificial Intelligence, New York: 

McGraw-Hill, 1971. 

48. Noble B. and J. W. Daniel, Applied Linear Algebra, Prentice–Hall, Englewood Cliffs, 

NJ, 1988. 

49. L.J.M. Nieuwenhuis, “Static Allocation of Process Replicas in Fault-Tolerant 

Computing Systems”, Proc. FTCS-20, June, pp. 298-306, 1990. 

50. Pardalos P. M., A. T. Phillips, J. B. Rosen, Topics in Parallel Computing in 

Mathematical Programming, Science Press, New York, NY, 1992. 



 132

51. James S. Plank, Miach Beck, Gerry Kingsley, Kai Li, “Lipckpt : Transparent 

Checkpointing under Unix”, USENIX Winter 1995 Technical Conference, 1995. 

52. Balkrishna Ramkumar, Volker Strumpen, “Portable Checkpointing for 

Heterogeneous Architectures”, 27th International Symposium on Fault-Tolerant 

Computing, pp 58-67, Seattle, Washington, June, 1997. 

53. Randell, B., “Reliable Computing Systems”, Operating Systems:An Advanced 

Course, Springer-Velag, New York, pp282-391, 1979 

54. van Renesse, R., Birman, K. P., and Maffeis, S., “Horus: A flexible group 

communication system”, Commumunications of ACM 39, 4, Apr. 1996. 

55. Ron Resnick, “A Modern taxonomy of high availability”, 

http://www.interlog.com/~resnick/ron.html, 1996. 

56. Rieffel M., S. Taylor, J. Watts, and S. Shankar, “Concurrent Simulation of Plasma 

Reactors”, Proceedings of High Performance Computing, Society of Computer 

Simulation, pp. 163-168, 1997. 

57.  Rieffel M., S. Taylor, J. Watts, “Automatic Granularity Control for Load Balancing 

of Concurrent Particle Simulations”, Proceedings of High Performance Computing, 

Society for Computer Simulation, pp. 115-120, 1998. 

58. Radu Rugina, Klaus Erik Schauser, “Predicting the Running Times of Parallel 

Programs by Simulation”, International Parallel and Distributed Processing 

Symposium, 1998. 

59. D. J. Scales and M. S. Lam, “Transparent Fault Tolerance for Parallel 

Applications on Networks of Workstations”, Proceedings of the 1996 USENIX 

Technical Conference, January, 1996.  



 133

60. Fred B. Schneider, “Byzantine generals in action: Implementing fail-stop 

processors”, ACM TOCS Vol 2,No. 2, pp 145-154, May 1984. 

61. Fred B. Schneider, “Implementing fault-tolerant services using the state machine 

approach : a tutorial”, ACM Computing Surveys, Vol 22, No. 4, pp 299-319, April 

1990. 

62. Seitz C.L., “The Cosmic Cube”, Communications of ACM, vol 28, No. 1, pp 22-

33, 1985. 

63. Serrano M. J., W. Yamamoto, R. C. Wood, M. Nemirovshy, “A Model for 

Performance Estimation in a Multistreamed Superscalar Processor”, 7th International 

Conference of Computer Performance Evaluation, Vienna, Austria, May 1994. 

64. S.M. Shatz, J.P. Wang, M. Goto, “Task Allocation for Maximizing Reliability of 

Distributed Systems”, IEEE Transactions on Computers, Vol. 41, No. 9, pp. 

1,156-1,168, Sept., 1992. 

65. Shivaratri, N. G., P. Krueger, and M. Singhal, “Load Distributing in Locally 

Distributed Systems”, IEEE Computer, vol 25, no. 12, pp. 33-44, Dec. 1992. 

66. V. S. Sunderam, “PVM: A Framework for Parallel Distributed Computing”, 

Concurrency: Practice and Experience, Vol 2, No. 4, pp 315-339, Dec. 1990. 

67. Jeremy B. Sussman, Keith Marzullo, “Comparing Primary-Backup and State 

Machines for Crash Failures”, Proceedings of the Fifteenth Annual ACM 

Symposium on Principles of Distributed Computing, 1996. 

68. Taylor S., Watts J., Rieffel M., and Palmer M., “The Concurrent Graph: Basic 

Technology for Irregular Problems”, IEEE Parallel and Distributed Technology, 

4(2): pp15-25, 1996. 



 134

69. Taylor S. et al., Industrial Strength Parallel Computing, Morgan Kaufmann, pp 

147-168, 227-246, 267-296, 2000. 

70. (a) Watts J., M. Rieffel, S. Taylor, “Dynamic Management of Heterogeneous 

Resources”, High Performance Computing: Grand Challenges in Computer 

Simulation, April, pp.151-156, 1998.  

71. (b) Watts J., and Taylor S., “A Practical Approach to Dynamic Load Balancing”, 

IEEE Transactions on Parallel and Distributed Systems, vol 9, pp 235-248, 1998. 

72. (c) Watts J., Taylor S., and Nilpanich S., “SCPlib: A Concurrent Programming 

Library for Programming Heterogeneous Networks of Computers”, IEEE 

Information Technology Conference, EX 228, pp 153-6, 1998. 

 

 


