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Developing Engineering Ontology
for Information Retrieval
When engineering content is created and applied during the product life cycle, it is often
stored and forgotten. Since search remains word based, engineers do not have the effec-
tive means to harness and reuse past designs and experiences. Current information re-
trieval approaches based on statistical methods and keyword matching do not satisfy
users’ needs in the engineering domain. Therefore, we propose a new computational
framework that includes an ontological basis and algorithms to retrieve unstructured
engineering documents while handling complex queries. The results from the preliminary
test demonstrate that our method outperforms the traditional keyword-based search with
respect to the standard information retrieval measurement. �DOI: 10.1115/1.2830851�
Introduction

Engineering design is a decision making process in which the
asic sciences, mathematics, and engineering sciences are applied
o convert resources optimally in order to develop a product �1�.
uring this process, a large amount of knowledge is generated in
rder to describe the product and the process: Some of this knowl-
dge is captured in the form of documents such as reports, note-
ooks, memos, emails, sketches, and 2D/3D computer-aided de-
ign �CAD� drawings, while other knowledge is retained in the
emory of the engineers. Some important roles of the documen-

ation include legal issues, patent applications, international stan-
ard certifications, internal practices, and sales catalogs. These
ngineering documents can be classified into internal resources
nd external resources. Internal resources include documents from
roduct specifications and memos to final project reports and
AD drawings. External resources include online catalogs of sup-
liers and patents. A major portion of the engineering documents
re �1� textual descriptions and �2� CAD drawings that have em-
edded drawing notes, bill of materials �BOMs�, and texts, which
escribe shape and assembly information �2–4�. The number of
igital documents being generated for product development has
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exploded. For example, there are approximately 40,000 docu-
ments produced in the design of a single engine in an aerospace
company �2�. In Boeing, digital documents have accumulated up
to the scale of petabytes, a number which is expected to double
over the next two years �5�.

Engineers are dependent on retrieving and using these docu-
ments in order to fulfill various engineering design tasks, such as
the following.

�1� Acting as “memory extension” for individual engineers and
enabling information sharing among them �6�.

�2� Exploring design concept alternatives during the early stage
of the development. This helps engineers avoid the ten-
dency to take their first idea and start to refine it into a final
design �6�.

�3� Learning from the original design process and understand-
ing the rationale behind the decisions made. This is espe-
cially important for novice engineers since they are not
always aware of what they need to know during the design
process �7�.

�4� Searching for past designs when working on a similar prod-
uct or problem in order to gain insight from past design
scenarios and experiences. This is known as design reuse
�8�.

In fact, today’s engineers simply do not make an effort to find
engineering content beyond doing mere keyword searches �9�.

However, current information retrieval approaches either retrieve

ring MARCH 2008, Vol. 8 / 011003-1
08 by ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t
t
e
i
o
t
a
c
e
t
f
s
e

s
a
p
t
t
m
n
a
t
o
t
v
t
d
o
o
t
p
q
s
T
g
k

g
s
a
i
t
h
a
r
a
a

2

d
t
r
i

p
l
t
t
t
m
b
s
c
s
c
q

0

Downlo
oo much or irrelevant results for engineering or are not in a form
hat users can navigate and explore. It was reported that design
ngineers spent 20–30% of their time retrieving and communicat-
ng information �10�. Current engineering practices ignore reuse
f previous knowledge because appropriate engineering informa-
ion retrieval tools have not been developed. As a result, a large
mount of time is spent reinventing what is already known in the
ompany or is available in outside resources �11�. The redundant
ffort per employee is increasing and causing enormous cost as
he complexity of enterprises and products increases. It is, there-
ore, imperative to minimize such overhead by developing the
cience base for contextual retrieval and then using this knowl-
dge to create effective computer-aided tools.

Most engineering documents are unstructured, in contrast to
tructured data resources such as database tables. Their formalities
lso vary. Formal documents, such as project proposals and re-
orts, are written to comply with grammars or specific regula-
ions; informal documents, such as engineers’ notebooks and some
extual descriptions in the drawings, on the other hand, are frag-

entary descriptions. In contrast to general text documents, engi-
eering documents are different because of the syntax variations
nd semantic complexities of their contents �3�. The syntax varia-
ions refer to the usage of abbreviations, e.g., SLA for stere-
lithography, acronyms, e.g., AL ALY 6061, which stands for a
ype of aluminum alloy, and synonyms, e.g., hardened way slides
ersus rectangular way slides, of the regular terms. They reflect
he company-specific or domain-specific naming conventions, the
iverse background of the authors, and the compositional nature
f the designs. The semantics complexities denote the wide range
f domain-specific issues and the relationship among these issues
hat must be considered and documented during the life cycle of
roduct development. Examples of these issues are customer re-
uirements, specifications, functions, performances, structure de-
ign, material selections, and manufacturing process selections.
herefore, it is necessary to consolidate and contextualize hetero-
eneous engineering documents in order to reconstruct the prior
nowledge in a more explicit and structured manner.

This research addresses the task of retrieving unstructured en-
ineering documents with textual descriptions or having texts as-
ociated in CAD drawings using an engineering ontology based
pproach. In general, an ontology can be used as a sophisticated
ndexing mechanism in order to structure an information reposi-
ory such as unstructured documents, and specifically to achieve
igh precision and recall in text retrieval systems �12�. It entails
dding semantic annotations to the documents themselves. Past
esearch has been done to carry out comparisons between queries
nd documents via concept distance measures �13,14�, and to en-
ble query expansion with semantically related terms �15,16�.

Related Work

2.1 Document Analysis. The analysis of general unstructured
ocuments has been studied mainly by researchers from informa-
ion retrieval �IR� and information extraction �IE�. There is also
esearch and development in the engineering domain though lim-
ted. Below, we explain these three areas.

Statistics-based methods and keyword-based input have been
revalent in IR research such as vector space �VS� model �17�,
atent semantic analysis �18�, language modeling �19�, probabilis-
ic model �20�, and many variants. They can be viewed as sophis-
icated stochastic techniques for matching terms from queries with
erms in documents. These approaches have the advantage that

inimal effort is required to adjust it into different domains and
ehaves reasonably effective, hence their wide adoptions in web
earch engines and other general IR applications. However, a
ommon limitation of many retrieval models is that similarity
cores are solely based on exact word matching. Words alone
annot capture the semantics or meanings of the document and

uery intent due to their ineffectiveness in understanding the con-
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text of domain-specific content. Following are the examples of
queries through which users want to investigate the designs that

• lock a car door with a curvilinear slot sliding along a cylin-
drical pin in the assembly, and

• have a dc motor with an output speed of 100–1000 rpm.

The first query is for a desired function of a mechanism and its
components. In the second example, the main concern is the exact
value of a property attributed to a specific component. It is impos-
sible to represent these semantic descriptions accurately by using
a few keywords. Google’s Brin and Page �21� pointed out that
approaches using the VS model work well only with small and
homogeneous collections such as literature or news releases under
a common topic. However, recall that engineering documents usu-
ally describe various complex design processes and specifications,
and are rich in specific technical terms and abbreviations, which
end users are usually not familiar. Another issue in applying the
current IR in the engineering domain is the ambiguities. The same
term may represent different meanings in different contexts, or
multiple terms may be used to mean the same thing �22�. To put it
differently, the search results should satisfy the users, who are
looking for something that matches their understanding of a per-
tinent text—an understanding that includes, among other things,
the relations among the terms and the ability to disambiguate and
to infer. This is where the statistical keyword-based techniques
fail the users and defeat their purposes.

IE approaches bring together natural language processing
�NLP� tools with domain knowledge to extract meaningful sen-
tence constituents from unstructured texts for retrieval or for
knowledge mining purposes �23�. The domain knowledge can ei-
ther be formalized as expression patterns by experts �24� or
learned from a large training corpus �25�. However, the research
in IE usually deals with short texts such as news of terrorism
reports or extracts very specific information such as name entity
recognition �23�. Engineering documents are more diversified.
Therefore, it is very labor intensive to form expression patterns
manually. It is also unfeasible to use the training approach because
both writing style and terminology usage change over time, tasks,
and departments/companies.

In the engineering domain, there has been very limited research
aimed at analyzing unstructured engineering documents for re-
trieval purposes. Most of them have been based on IR or IE ap-
proaches. Farley �26� extracted the equipment and the repair ac-
tion on them from aircraft maintenance logbooks for case-based
retrieval. This method was based on the IE approach and used
existent domain vocabularies. Dong and Agogino �27� proposed to
use VS model and belief networks to represent design manuals.
Ahmed et al. �22� developed taxonomies in order to index corpo-
rate documents. The VS model was also used to classify the docu-
ments against the terms in the taxonomies. Yang et al. �28� at-
tempted to automate the population of a thesaurus from notebooks
by using the latent semantic analysis. The same method was also
applied by Song et al. �29� to improve the search performance of
a digital library of engineering education resources. McMahon et
al. �9� employed a predefined taxonomy to classify documents by
rule-based matching. Their method supports keyword searching
and browsing.

Commercial development in engineering such as product data
management �PDM�/product lifecycle management �PLM� sys-
tems relies on manual processes to upload the metadata �e.g., file
names and date of creation� as well as the content �e.g., part
names, material used, and property-value pairs� of the documents
into databases. In recent commercial software such as ENOVIA

MATRIXONE
2 and Autonomy Co. �30� statistical IR approaches for

document retrieval have been used. However, there are often too
few or too many results and these approaches are not used fre-

2
www.matrixone.com/.
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uently in practice �9,31�.
In summary, current approaches �1� do not attempt to provide a

emantics-based representation of engineering documents or pro-
ide for engineers’ information needs; �2� do not provide a fea-
ible and scalable computational framework in order to retrieve
eterogeneous engineering documents; �3� do not deal with the
elationships among various engineering taxonomy classes and
he syntactic and semantic ambiguities, which are prevalent in
ngineering documents and user queries; and �4� do not utilize
ngineering knowledge in the organization of the search results in
rder to accelerate the information seeking process.

2.2 Structured Representation. Different from analyzing
nd retrieving unstructured engineering documents to assist the
esign process, the structured and semantics-based representation
f designs has been studied in fields such as product modeling and
ntology modeling. In product modeling, such as Refs. �32,33�,
esign and development information are recorded by engineers
hrough complying with formalized templates and rules. Ontology

odeling, e.g., Refs. �34,35�, systemizes semantic relations be-
ween elements of specific designs such as pumps and motors, as
ell as represents the functions and behaviors of design decom-
ositions. Research in product modeling and ontology modeling
as made significant progress in establishing complex models as
ell as in standardizing terminologies to describe the details of

he design. In many cases, however, establishing the knowledge
haring agreements or mapping out the design decomposition is
otentially less feasible �12�. Therefore, in our opinion, it is
qually important to develop a strategy that is comprehensive and
ffective at retrieving valuable content about the design and de-
ign process from unstructured documents. Meanwhile, this strat-
gy should cause less cognitive burden on engineers in generating
nd maintaining the model that understands the engineering
ontext.

We propose a new, content-oriented knowledge and meaning
ased computational framework to form the ontological basis of
he search, browsing, and learning tasks in the engineering do-

ain. The cumulative domain knowledge is formalized. This
nowledge must be brought to bear in developing an industry-
ide, constantly upgradeable ontology for engineers, and is for-
ulated in a single standard format. The framework intends to

• develop an engineering ontology �EO� and its associated
engineering lexicon �EL� in design and manufacturing and
use them to index the documents and interpret users’ queries
at the concept level,

• extract a structured and semantics-based representation from
the unstructured documents based on the knowledge con-
ceptualized in the EO,

• overcome the difficulties of regular search engines in not
understanding the engineering context of a query, and

• design a novel user interface, which reflects the semantics-
based representation of the documents and the EO interpre-
tation with respect to users’ queries. The purpose is to fur-
ther improve the information seeking effectiveness. This is
especially important for novice engineers since they require
more support in identifying what they need to know, instead
of just what they want to know �7�.

Overview of the Approach
Figure 1 shows the overall architecture of interactions between

he ontological basis, i.e., the domain knowledge source, and other
unctional modules applied to engineering information retrieval. It
omprises six portions: preprocessing, knowledge source, knowl-
dge source acquisition and maintenance, concept tagging, con-
ept indexing, and document retrieval, i.e., query processing. The
enterpiece of the architecture is the EO and EL models.

1. Preprocessing: The task of preprocessing is to convert engi-

neering documents into a unified format, such as.txt files,
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which can then be processed by the system. The inputs may
include catalog descriptions, drawings, technical reports, and
notebooks.

2. Knowledge source: It provides domain knowledge and lexi-
cal knowledge, i.e., the EO and its associated EL, respec-
tively. They are used to assist in recognizing and indexing
technical terms at the concept level and to understand user
queries.

3. Knowledge source acquisition and maintenance: PROTÉGÉ

3.1
3 is used to build and update the knowledge source. The

output scripts from PROTÉGÉ record the content of the EO
and EL. These frame-based XML scripts are then read into
the system to generate the EO and EL in the memory.

4. Concept tagging: The documents in unified format are trans-
formed into an XML and concept-based representation. Us-
ing EO and EL makes the tagging process less dependent on
NLP techniques in understanding the texts. Metadata, such
as names of the original documents, are also stored.

5. Concept indexing: An index file is generated to index the
XML documents. The file names and the locations where the
concept �tag� appears are listed along with the concept. This
index is accessed when the system ranks the documents in
query processing.

6. Query processing: EO plays an important role in interpreting
the user’s query accurately, and therefore improves retrieval
performance. Ontology-based query processing algorithms
are developed to fulfill this task.

4 Proposed Approach

4.1 Ontology Definition. An ontology is a constructed model
of reality. In more practical terms, it is a highly structured system
of concepts covering the processes, objects, and attributes of a
domain as well as all their pertinent complex relations. The grain
sizes of the concepts are determined by considerations such as the
need for an application or computational complexity.

From one aspect, an ontology can be viewed as a decomposi-
tion of a domain: It is a tangled hierarchy of conceptual nodes,
each of which can be represented as

3

Fig. 1 System architecture and functional modules
http://protege.stanford.edu.
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property-slot �CONCEPT-NAME,PROPERTY-VALUE/FILLER

-CONCEPT-NAME+

very concept but the root of the ontology has the property-slot
s-a, and the value of this property is the parent of this concept. A
oncept may have multiple parents and multiple inheritances.

From the other aspect, an ontology reflects the correlations
mong concepts across subdomains: The PROPERTY-VALUE of
concept refers to its filler concept, i.e., these two concepts are

onnected by the specific property slots, i.e., �binary� relation-
hips. This is similar to the predicate rule representation used in
rtificial intelligence research.

Ontologies share the inheritance feature with the object-
riented programming languages, which are indeed suitable for
mplementing ontological procedures. However, the object-
riented approach lacks the conceptual content of ontologies, and
t is not sufficient for addressing the rich knowledge modeling
eeds discussed here. The distinction between form and content is
rucial for understanding the proposed ontology model. It is the
ontent of ontologies that makes them useful in this application,
ndependent of the choice of format. Currently, there is also con-
usion between taxonomy-based and ontology-based applications.
ne of the major differences between taxonomies and ontologies

s that an ontology represents much richer domain contexts than a
axonomy or a list of taxonomies. A taxonomy is a hierarchical
lassification of concepts in a subdomain. These concepts are con-
ected only by domain-independent, i.e., taxonomic, relationships
uch as is-a. An ontology, however, consists of several taxono-
ies, along with multiple domain-specific, i.e., non-taxonomic,

elationships to connect concepts across taxonomies. See Ref. �12�
or comparisons between ontologies and database schema, as well
s those between ontologies and knowledge representation; See
ef. �36� for an extended view of what a full-fledged ontology
ust be and how to bring it about.
The recently proposed ontology development in engineering

an be categorized based on its intended usages, such as knowl-
dge sharing �34,37,38�, CAD interoperability �examples are
TEP API 224 and �39,40��, design analysis and simulation
41–43�, and product design and configuration �44,45�. Ahmed et
l. �22� intended to design an ontology development process,
hich can be customized for a particular manufacturing company.
owever, their process does not explicitly explore the domain-

pecific relationships between concepts. Therefore, their acquisi-
ion result is a list of independent taxonomies, not an ontology.

Although significant progress has been made in ontology devel-
pment in engineering, very little effort has been made to system-
ze the established knowledge in design and manufacturing by
eveloping the correspondent ontological representation. No at-
empt has been made to formalize the associated lexical knowl-
dge in order to bridge the concept-based representation of the
ntology and the word-based representation of documents and
ueries. The proposed EO and its associated EL formalize engi-
eering domain knowledge as well as general lexical knowledge
n order to achieve more effective engineering IR. Examples of
he domain knowledge are the classification of mechanical ele-

ents and their function, design, and manufacturing knowledge.
he EO employs aforementioned concept definition to represent
ach class within a classification/taxonomy, formulates the hierar-
hy between classes in the same taxonomy by using an is-a rela-
ionship, and constructs other domain-specific correlations among
oncepts either in the same taxonomy or across taxonomies
hrough relationships such as has-part �D-MOTOR, D-ROTOR�
nd has-function �D-MOTOR, F-ROTATE�. The proposed EO de-
elopment also distinguishes itself by incorporating semiauto-
atic tools into the practical acquisition process.

4.2 Developing Engineering Ontology and Engineering
exicon. To build the EO, we specialize the ontological semantics

ethod proposed by Nirenburg and Raskin �36� in developing
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large scale ontologies for machine translation. This method is
similar to the ontology acquisition methods such as methontology
�46� in that it uses a handcrafted acquisition process guided by
ontological considerations. However, our method leverages the
manual acquisition process by employing computer-assisted tools.

The first step is to identify the scope or themes of the EO.
These themes are determined based on the discoveries by cogni-
tive studies in the engineering domain, such as Refs.
�3,22,47–49�. Prior studies investigated what types of information
are requested by engineers as well as what domain-specific issues
are documented during the product design process. The results of
these studies are categorized and used to determine the themes of
the EO. They include designed devices �products and compo-
nents�, functionalities and properties of the devices, common ge-
ometry and assembly information used in modeling the devices,
the material selections and �design and manufacturing� processes
applied in designing and making the devices, environmental ob-
jects which may interact with the devices in their working status,
and the standards or specifications that certain design or manufac-
turing comply with. Measurement unit and value types are, in
general, related to how device properties are described in the
document. The overall schema of the EO is shown in Fig. 2.

In the second step, taxonomies under these themes are con-
structed. Concepts of each taxonomy are acquired from various
engineering knowledge resources. These concepts are used in tag-
ging �Sec. 4.3� and query processing �Sec. 4.4�.

Then, �inter� relationships are formed between concepts across
taxonomies. For example, has-material �D-PLAIN-WASHER,
M-STAINLESS-STEEL�: where D-PLAIN-WASHER represents
a device concept �in device taxonomy�, M-STAINLESS-STEEL is
a material concept �in material taxonomy�, and has-material is a
relationship which associates a device concept with a material
concept. The prefix in each concept represents the taxonomy
which this concept belongs to. Table 1 lists more details of the EO
and the acquisition resources. Definitions of the relationships are
given in Table 2. The acquisition of relationships between con-
cepts is important for query processing, as discussed in Sec. 4.4.

Note that the device taxonomy includes classifications of engi-
neering catalog components and proprietary products. The latter
needs to be customized for each specific company including prod-
uct line classifications, subassembly classifications, and part in-
ventory classifications, usually by referring to the BOMs or by
product dissection �44�. The properties of the device concepts are
conceptualized in the property taxonomy and connected with the
device concepts through the has-property relationship.

The resultant EO is organized in a directed graph: Each node
represents a concept; each arc represents a relationship. A portion
of the EO is shown in Fig. 3.

The last step is to acquire the EL, which is a list of lexical terms
in descendant order. They are used to match with word in docu-
ments or queries. Each lexical term is the actual word/phrase rep-
resentation of the corresponding concept in the EO. Morphology
forms, abbreviations, acronyms, and synonyms of the word/phrase
are also lexical terms and share the same concept as the original
lexical term. For example, move and moving are lexical terms of
the functional concept F-MOVE.

The EO and EL lend themselves easily to an expansion, such as

Fig. 2 The schema of the knowledge source
the addition of a new relationship or new concept. Then, the
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hole system can be updated automatically. In PROTÉGÉ, concepts
re modeled as classes while relationships are slots. An attribute
unary relationship� slot named lexical terms is assigned to each
lass. This attribute contains all the lexical terms of the pertinent
oncept.

Currently, there are 10 taxonomies, 2629 concepts and 13 types
f relationships in the EO, and more than 10,000 lexical terms in

Table 1 The EO concept

axonomies
No. of
concepts Examples of concepts

evice Engineering
component

451 D-LOCK-WASHER,
D-LINEAR-SLIDE

Proprietary
product

N/A N/A

unction 246 F-SUPPORT, F-LOCK
aterial 1017 M-STAINLESS-STEEL,

M-2008-T4 AL
rocess 252 R-CASTING,

R-DESIGN-REVISION
roperty 378 P-SHAFT-DIAMETER, P-

DUCTILITY
easurement unit 64 MU-MILLIMETER,

MU-FT-LB/SECOND
hape feature 47 SF-LINEAR-SLOT,

SF-TOOTH
nvironment object 135 E-HEAT,

E-AXIAL-LOAD
tandard 31 S-MIL-STD-130
alue type 8 V-FLOAT �numerical�,

V-HIGH �symbolic�

www.globalspec.com.
www.matweb.com.
www.ex.ac.uk/cimt/dictunit/dictunit.htm.
WordNet2.1.
www.nssn.org.

Table 2 Definition

Relationship Concepta
Filler

concept Definitions of th

is-a Child Parent Describes the generalization
parent concepts or the specifi
concept to its child concepts

has-part DC DC Represents the part-whole be
DC

has-function DC FC Refers to the connection betw
FCs

interface-with
and

interact-with

DC DC
EC

Complement the has-function
an “object” in the function de
��objects�.” Together, they re
between a DC and the other

has-material DC MC Describes the type of materia
has-process DC RC Describes the type of process

manufacturing the DC
use-material RC MC Describes the type of possibl

manufacturing processes act o
has-property DC/MC PC Each DC has several PCs cha

such as various physical attri
attributes; each MC may also
specifying its characteristics
mechanical attributes

as-measurement PC MUC Most of the PCs have one or
has-value PC/MUC VC Each PC may have numerica

while MUC only has numeric
has-feature DC SFC Describes the significant shap

have
has-standard DC/MC/RC SC Specifies the standard a DC/M

DC: device concept; FC: function concept; EC: environment concept; MC: materia

roperty concept, MUC: measurement unit concept; VC: value type concept.

ournal of Computing and Information Science in Enginee
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the EL. We developed formatted worksheets as templates to �1�
direct the acquisition of the EO and EL, and �2� improve the
efficiency of the acquisition process �in the process of full deploy-
ment, the ontological semantic toolbox �36� will be utilized�.
These worksheets enable automatic uploading of the acquired data
into the PROTÉGÉ editor. They have been used extensively by the
undergraduate students who have design and manufacturing expe-

nd acquisition resources

Acquisition resources
Examples of acquisition

resources

ineering texts, handbooks,
ine catalogs

�51�a

Ms, product dissection N/A

sting taxonomies �52,53�
ineering texts, handbooks, online catalogs �54�b

ineering texts, handbooks,
pany regulations

�54,55�

e as device taxonomy Same as Device taxonomy

line resources c

sting taxonomies STEP AP224, vocabularies
of major CAD packages

ineering texts, linguistic
urces

�49�d

ndard libraries e

ineering common sense; Online catalogs N/A

f the relationships

lationship Examples

a child concept to its
on from a parent

is-a �D-ELECTRICAL-MOTOR, D-MOTOR�

n a DC and the other has-part �D-LINEAR-SLIDE, D-BALL-
BEARING�

a DC and one of its has-function �D-LOCK-WASHER, F-LOCK�
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iption of “subject+verb
sent the interactions
or EC

interface-with �D-LOCK-WASHER, D-
FASTENER�;
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w materials that certain user-material �R-COATING, M-
NONFERROUS-METAL�

terizing its attributes
s and geometry
e several PCs
as physical and

has-property �D-PLAIN-WASHER, P-INSIDE-
DIAMETER�;
has-property �M-METAL, P-HARDNESS�

eral MUCs has-measurement �P-DIAMETER, MU-MM�
or symbolic VC
C

has-value �P-DIAMETER, V-NUMERICAL�

atures a device may has-feature �D-SCREW, SF-THREAD�

RC may comply with has-standard �D-WASHER, S-ASME B18.13�

cept; RC: process concept; SFC: shape feature concept; SC: standard concept; PC:
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ience and conduct the acquisition task in our group. The total
mount of time spent for acquisition is about 500 h.

Now, the question is how complete are the EO and EL? Since
oth the lower-level concepts and more upper-level concepts and
heir lexical terms are manually acquired from a wide range of
ngineering resources, we believe that the EO and EL cover the
elected scope reasonably well. In addition, we conducted experi-
ents in order to estimate the coverage �50�. In these experiments,
e selected concepts from the tagged documents, which include

uppliers’ catalogs, CAD drawings, and technical reports. We ob-
erved that more than 90% of the documents were associated with
he concepts of the EO, while less than 10% of the documents
ailed to associate with any concepts of the EO due to its incom-
leteness.

4.3 Concept Tagging and Indexing. In order to represent
nstructured engineering documents by using concepts in the EO,
e first convert documents from various resources into unstruc-

ured .txt files, i.e., PartTexts, during preprocessing in Fig. 1. Note
hat .txt format is the only requirement for the input document to
e processed by our prototype. We use XPDF,4 which converts the
DF documents �e.g., catalogs� into a congruent stream of plain

ext while maintaining certain layouts of the documents. Engineer-
ng symbols such as � and Ø are replaced by their textual descrip-
ions. Texts in CAD drawings are extracted by using I-PRAWLER,5

software program that uses various CAD application program
nterfaces �APIs�, such as the APIs of SOLIDWORKS and AUTOCAD.
t converts the textual descriptions such as drawing notes and title
locks �in 2D drawings� as well as shape features and mating
elations �in 3D drawings� into .txt files.

Our method makes use of the EO and EL to recognize concepts
ontained in the documents. By doing so, the PartTexts are con-
erted into a concept-based and XML representation, i.e.,
artXMLs, where each recognized word/phrase is tagged by the
orresponding concept in the EO. Then, the concepts in all
artXMLs are indexed.
In contrast to IE approaches and more recent ontology-based IE

pproaches, e.g., Refs. �56,57�, our method is less dependent on
LP techniques. It has no syntax analysis and no phrase chunking

nd therefore is more robust in analyzing both formal and infor-
al documents.
Figure 4 shows the modules and process of concept tagging and

ndexing.

1. Tokenization: The input character streams of a PartText are
parsed into tokens and punctuation marks.

2. Sentence segmentation: Sentences are formed by using
punctuation marks and symbols such as “\n.”

3. Concept recognition:

4www.foolabs.com/xpdf/.
5

Fig. 3 A po
www.imaginestics.com.
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�a� Cardinal number recognition: The cardinal numbers
such as 3.2, 1:20, and 200 are identified.

�b� Concept matching: Assigning each word/phrase the
concepts it refers to. This process takes two iterations.
The first iteration is full matching, where lexical terms
are retrieved in an orderly manner and matched
against words in each sentence sequentially. Word�s�
that fully match with a lexical term will be assigned
the pertinent ontology concept. Note that multiple
concepts may be assigned to a single word or a series
of words �i.e., a phrase� because different concepts
may have the same lexical term. The next iteration is
partial matching, where each unrecognized word is
matched against lexical terms sequentially. The con-
cept will be assigned if the word matches with part of
its lexical term.

�c� Numerical value recognition: The system recognizes
the numerical values such as 3.2 mm, HRC 55, and
32–212 F. First, it recognizes a single numerical
value by converting the cardinal number recognized
in Step �a� to single numerical value if the number is
adjacent to a measurement unit concept such as “mm”
�MU-MILLIMETER�, a property concept such as “di-
ameter” �P-DIAMETER�, or certain symbols, such as
“�/�.” Next, range values are recognized. Currently,
the system recognizes five types of numerical values:
integer, float �e.g., 3.2 and 1 /2�, percentage �e.g.,
20%�, ratio �e.g., 1:4�, and tolerance �e.g., + /−0.001�.

4. Concept disambiguation: A word or phrase which matches

n of the EO
rtio
Fig. 4 Modules and process of concept tagging and indexing
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with multiple concepts causes ambiguities. There are two
major types of ambiguities.

• Polysemy: for example, the word cylinder may refer to a
shape feature concept, SF-CYLINDER, or a device con-
cept, D-CYLINDER, because both concepts have the
same lexical term cylinder.

• Ellipsis: for instance, the word finish may �partially�
match with the lexical term surface finish, which is as-
sociated with the property concept P-SURFACE-
FINISH, and protective finish, being associated with the
manufacturing process concept, R-COATING.

Ambiguities are resolved by referring to the contexts
of the word/phrase that is ambiguous. The context of a
word refers to the concepts to which its adjacent words/
phrases are tagged. For example, if the untagged word
finish is followed by a phrase tagged as material concept,
e.g., M-ZINC, then the word finish must be tagged as
R-COATING. If the word is followed by a numerical
value concept such as + /−0.002 �in drawing notes�, it
must be tagged as P-SURFACE-FINISH because this
property concept is related to numerical value concepts

Fig. 5 Examples of the document tagging results: „a…,„b… e
tions. Note that letters in bold are the words from the origina
in the drawing is not shown, „2… only parts of the tagged do
as defined in the EO. More details about the concept

ournal of Computing and Information Science in Enginee

aded 14 Apr 2008 to 128.10.242.76. Redistribution subject to ASME
disambiguation method are given in the next section.
5. PartXML generation: The processed partText is converted to

PartXML, where each word/phrase is enclosed with its con-
cept as tags. Figure 5 presents examples of a 2D drawing
�notes� and component catalog descriptions before and after
the tagging process. Note that the tag �TEXT� serves as a
containment of words not semantically tagged. These tags
are used for a repeated updating of the EO and EL because
the words can be easily pulled out and analyzed.

6. Concept-based indexing: In order to rank the relevancy of
documents in query processing, we propose a data structure
called inverted concept index �ICI� to index the concept �tag�
and the PartXMLs. ICI is a variation of the inverted index. It
lists each concept as well as the PartXML file name and the
locations where the concepts are present.

4.4 Engineering Ontology Based Query Processing. Users’
queries are assumed to be a list of words that may include
property-value expressions, such as “linear slide surface finish
�0.76 mm.” Tokens, i.e., keywords, are generated from a query
after tokenization and removal of stop words. Relational operators

mple of drawing notes; „c…,„d… example of catalog descrip-
cument or PartText. For the sake of clarity, „1… the title block
ents are illustrated, and „3… the PartText is ignored in „b….
xa
l do
are recognized, and correspondent routines will be called when

ring MARCH 2008, Vol. 8 / 011003-7
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he system ranks the documents. The rest of the keywords are
atched with the concepts in the EO through the EL.

4.4.1 Concept Disambiguation. Lexical ambiguity arises when
single keyword matches with multiple concepts. This includes

he types of ambiguities described in the previous section, i.e.,
olysemy and ellipsis. Given a query “lock washer with zinc fin-
sh,” the keywords “lock,” “washer,” and “finish” cause lexical
mbiguities. For example, lock matches with the device concepts
f D-LOCK-WASHER and D-TOOTH-LOCK-WASHER, and the
unction concept of F-LOCK; washer matches with D-WASHER,
-LOCK-WASHER, D-TOOTH-LOCK-WASHER, and
-PLAIN-WASHER; and finish matches with P-SURFACE-
INISH and R-COATING. We adapt the concept disambiguation
etric proposed in Ref. �13�. It calculates the correlations be-

ween the matched concepts of all keywords in order to determine
hich of the ambiguous concepts should be retained. For a set of

oncepts, a concept is highly correlated with others if it is �1� less
ar away from them in the EO, i.e., semantically closer, and �2�
as more words matching with the particular query keyword, i.e.,
exically closer. The disambiguation metric is

Matched concepts of query keyword Ki:Ci,1Ci,2,. . .,Ci,h

Matched concepts of other keywords

C1,1C1,2,. . .,Ci−1,1Ci+1,1Ci+1,2,. . .,Cs,t

Lexical terms of Ci,h:Ti,h,1Ti,h,2,. . .,Ti,h,j

Tscorei,h,j =
Number of keywords in query Ti,h,j matches with

Number of words in Ti,h,j

�1�

Cscorei,h = max�Tscorei,h,j� �2�

CD = 1 + min�# of arcs�C ,C �� �3�

Fig. 6 Concept disambiguation process for the query “
concepts for the query keywords, „b… CDs and wCscores
wCscores for the ambiguous concepts of keyword “wash
of keyword “finish”
�i,h��s,t� i,h s,t

11003-8 / Vol. 8, MARCH 2008
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wCscorei,h = Cscorei,h + �
s,t=1,1

Cscores,t

CD�i,h��s,t�
�4�

The calculations in disambiguating the given query example are
described in Fig. 6. Figure 3 also illustrates the matched concepts.
The formal definitions of the metric are the following.

Equation �1�. Term score �Tscore�: The score of a lexical term
that matches with a keyword is the total number of keywords in
the query the lexical term matches divided by the total number of
words in the lexical term.

Equation �2�. Concept score �Cscore�: This is the maximum
Tscore among its lexical terms. For the given example,
P-SURFACE-FINISH has a Cscore of 0.5 because its lexical term
is “surface finish.” It consists of two words and matches with
finish in the query. Similarly, R-COATING has a Cscore of 0.5,
D-LOCK-WASHER and F-LOCK have 1.0, D-TOOTH-LOCK-
WASHER has 0.67, and D-PLAIN-WASHER has 0.5.

Equation �3�. Concept distance �CD�: The shortest distance or
least number of arcs between two matched concepts in the EO
which belong to distinct keywords. For instance, CD �D-LOCK-
WASHER, D-WASHER� =2 in the given query. CD is 1 if the
matched concepts are coincident. It is infinite if there is no di-
rected path between the two concepts. Note that CD is symmetric,
i.e., CDi,j =CDj,i.

Equation �4�. Weighted concept score �wCscore�: This relates to
the Cscores of all its correlated concepts but inversely relates to
the CDs with them.

Finally, wCscores are compared among the matched concepts
of a keyword: Only the concept with the maximum wCscore is
selected. This metric is applied to all the matched and ambiguous
concepts, keyword by keyword. Finally, all of the selected con-
cepts are added into a list in descending order with respect to their
wCscores. The selected concepts are further expanded to add their
relevant concepts such as child concepts to the list. The newly
added concepts share the same wCscore with their parent con-
cepts. This is called query expansion, which might increase the

k washer with zinc finish:” „a… Cscores of the matched
the ambiguous concepts of keyword “lock,” „c… CDs and
and „d… CDs and wCscores for the ambiguous concepts
loc
for
er,”
number of relevant documents to be retrieved.
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One issue of this metric is the computational cost related to the
ntology traversal when computing the CDs. To ameliorate the
roblem, we propose a pairwise concept distance lookup table
PCDT� that stores any pair of concepts and their CD. PCDT is
recomputed �i.e., when the EO is uploaded into the memory� by
mplementing the Floyd–Warshall algorithm. Therefore, the online
omputing cost is transferred to offline processing.

4.4.2 Concept Abstraction. Semantic ambiguity occurs in the
ueries when users may not know the exact words of the design or
he related issues they want to find though they may have some
ontextual clues, such as the functionality of the design and other
nteracting parts/components of the querying product/component.
ne example is when users want to find “a component which

otates, has teeth, and connects to a chain and shaft.” The system
hould return a sprocket even though the word “sprocket” does
ot appear in the query. However, in traditional IR methods, be-
ause the query is treated as a list of independent words when
earching for relevant documents, the meaning of the query is lost.
herefore, the retrieval performance is hurt. In the EO-based
ethod, the engineering contexts of the query are recovered at the

ystem representation by using the proposed concept abstraction
etric. The metric takes advantage of the structure and content of

he EO to ferret out the true meaning, i.e., the target concept�s�, of
he query.

Given a user’s query “rotates teeth chain shaft,” the query key-
ords are first processed by Eqs. �1� and �2� in concept disam-
iguation, i.e., only the Cscores of the matched concepts are cal-
ulated. Next, all of the matched concepts are added to a list.
uery expansion is executed on the matched concepts. The newly

dded concepts share the same Cscore with their parents. All these
oncepts are called Probe concepts. For the given example, as-
uming the Probe concepts �and their scores� are SF-TOOTH
1.0�, D-SHAFT �1.0�, D-AXLE �1.0�, D-CHAIN �1.0�,
-ROLLER-CHAIN �0.5�, and F-ROTATE �1.0�, the system

raverses the EO by breadth first search �BFS� to collect the con-
epts �Cconcept�. Each of these Cconcepts must have at least one
f the Probe concepts as the filler concepts in one of its relation-
hips, except for is-a. The wCscore of this Cconcept is then ob-
ained by adding up the Cscores of all its filler concepts, which are
lso Probe concepts. Figure 7 is part of the EO which illustrates
he concept abstraction process. For example, the wCscores are
.0 for D-TOOTH-LOCK-WASHER, 3.0 for D-GEAR, and 4.0
or D-SPROCKET. The average wCscore is then set as threshold
nd only the Cconcepts with above average wCscores are se-
ected. They are added into the selected concept list in descendent
rder. In this example, the average wCscore is 2.67. Therefore,

Fig. 7 A portion of the
-SPROCKET and D-GEAR are selected.

ournal of Computing and Information Science in Enginee
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4.4.3 Ranking and Property-Value Search. In general, the rel-
evance of documents with respect to a query is ranked by the
similarity score between the selected query concepts and the
document. The score is calculated by using Boolean model �58�
and the ICI.

Different from regular users’ requests, engineers often need to
search for designs that satisfy some specifications or property-
value pairs, including quantitative/numerical values such as
washer with inside diameter �I.D.�=2.0 cm and qualitative/
symbolic values, e.g., motors with high load capacity.

In order to enable query by numerical property-value pairs, the
system first understands the meaning of relational operators such
as “� �greater than�,” “� �less than�,” and “� �equal to�.” Sec-
ond, we identify the numerical value in the query such as 2.0,
which is assumed to be associated with the selected property con-
cept such as P-INSIDE-DIAMETER and the measurement unit
concept, e.g., MU-MILLIMETER. Last, recall that ICI represents
the distance among concepts in the PartXML by recording their
locations; therefore, in order to rank documents with respect to
queries having numerical values, the difference between the nu-
merical value in the query and the correspondent numerical values
in the PartXMLs is taken into account in the final ranking. Cor-
responding routines of the relational operators are developed to
�1� find the PartXMLs that have the numerical value concepts,
which are comparable to the one in the query and are adjacent to
the same type of property concept �and the measurement value
concept�, and �2� rerank these PartXMLs after the Boolean
ranking.

Note that both numerical and symbolic values are recognized as
a value-type concept. The value-type taxonomy includes numeri-
cal value concepts such as V-INT and V-FLOAT and symbolic
value concepts such as V-HIGH, V-MEDIUM, and V-LOW. To
quantify the symbolic property values, the system first finds the
PartXMLs that have numerical value concepts adjacent to the
same type of property concept as in the query, then orders the
PartXMLs into three sets according to the values of these numeri-
cal value concepts from lowest to highest.

4.4.4 Context-Aware Dynamic Search Interface. Studies by
�59� indicate that engineers who look for information want to
browse and search documents by category. Teevan et al. �60� dis-
covered the “orienteering” behavior in information seeking activi-
ties. This represents an evolving information-finding process
where users interact with the search system and use the interme-
diate results to explore unexpected search directories or refine the
search path to finally arrive at the target. It has been noticed that

in concept abstraction
EO
such an information seeking process is preferred to the directed
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eyword search. However, to our limited knowledge, there is no
earch system that allows users to navigate engineering docu-
ents by dynamically generated design orienteering previews.
ost of them return a flat list of relevant documents, or use pre-

efined classification schemas as visible indices of the document
ollections. Design orienteering, on the other hand, is to dynami-
ally update and organize the retrieval results based on the domain
ontexts in the EO that matches the query and the content of the
elevant documents. Compared to the user interface proposed in
ef. �9�, our approach �1� utilizes the specific inference structure
f the EO corresponding to a query in order to illustrate the query
ntent; �2� employs the concept tagging and concept-based query
nalysis to categorize the relevant documents. For example, it
llustrates how many documents are relevant to certain concepts
s well as certain property-value ranges calculated on the fly; and
3� dynamically updates the matching inference structure and con-
ent of EO, the categories, as well as the returned documents
ccording to users’ subsequent interactions. This helps direct the
ser to the most relevant documents quickly.

We develop a search interface that allows users to navigate
ccording to the query-dependent domain contexts or the concept
ategories in the EO. Figure 8�a� shows the first interface for
avigating engineering catalog collections. It includes a text
earch box, the first level EO concepts, and the number of docu-
ent that have the specific concepts. For each query, by either

yping keywords or selecting concept categories, the system �1�
eturns a list of ranked documents, and �2� categorizes them based
n the concept categories, which are present in the returned
artXMLs. Figure 8�b� shows the results categorized on the inter-
ace. The left panel lists the concept categories that apply to the
eturned documents. The search results are displayed on the right.
he current query and the search box are shown on the top. For

nstance, suppose a query is “finishing lock washers with i.d.
1.25 cm �0.5 in.�,” if the user then selects “stainless steel” from

he material category, then stainless steel is added to the query.
he new results will be further organized by the subconcepts of
-STAINLESS-STEEL. Therefore, specifying the query by add-

ng concept categories helps users narrow down their search
cope. Within the right panel, the upper left shows an image of the
op-ranked searching component. Each catalog component is at-
ached with an image for visualization purposes. By double click-
ng the image, users will see a separate window showing the origi-
al PDF catalog descriptions. The upper-right panel lists all the
oncepts in the PartXML. The bottom panel shows the types of
omponents �in the collection� that interface with the current
earching component.

Preliminary Evaluations
The preliminary experiment uses an engineering catalog collec-

ion as the test bed and compares the retrieval performance of the
O-based search and keyword-based search. The effectiveness of
sing the design orienteering user interface will be part of our
uture studies. We have collected about 1000 components �with
heir PDF descriptions� from the online catalogs of 62 manufac-
urers. The length of the original PDF description ranges from 1 to

pages per component. Information in the tables is converted by
sing the table extraction method developed by Wei et al. �61�.

We have implemented the most widely used keyword-based
ethods, the VS model. Note that the EO-based system indexes

nd retrieves PartXML documents, while the VS model acts on
he full text, i.e., PartText documents. Standard IR measurements
f recall and precision are used to measure the retrieval effective-
ess.

Recall =
Number of retrieved relevant documents
Number of relevant documents

11003-10 / Vol. 8, MARCH 2008
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Precision =
Number of retrieved relevant documents

Number of retrieved documents

For instance, if five documents are retrieved, three of which are
relevant, the total number of relevant documents is 10, then the
recall is equal to 3 /10, and the precision is 3 /5.

The test was executed by the experiment committee, consisting
of the first author, the last author, and two graduate students. Ten
undergraduate students from the senior engineering design class
and the SAE Formula-I design team in the Department of Me-
chanical Engineering were selected as subjects. They have various
levels of design and manufacturing experience. The subjects were
first briefed about the capabilities of the search systems. They
searched for specific components, which satisfied certain require-
ments. Each of them provided the committee at least ten queries
that they had generated during their tasks in the regular develop-
ment process. They were also required to attach a short descrip-
tion as the context of each query such as why the component was

Fig. 8 User interface for design orienteering: „a… search inter-
face and first level of EO concepts for navigation and „b…
search interface and returned results categorized
needed and how it was used. The committee classifies these que-
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ies based on criteria such as the level of complexity and the scope
f search prior to applying them to querying the two search sys-
ems. The relevancy of each retrieved document is judged by the
ommittee jointly.

There were a total of 100 queries generated. Nine of them were
nvalid and discarded; they were either duplicates or out of the
cope of the EO and the catalog collection. The relations between
he experience of the subjects and the variation of their queries
ere not analyzed. Instead, this will be part of future research.
he valid sample queries were first classified into two types:
search for what I type” and “search for what I mean.” These
orrespond to the type of queries that need concept disambigua-
ion and the type of queries to be answered by concept abstraction,
espectively. The first type of query is further classified as general
ueries, specific queries, qualitative queries, and quantitative que-
ies. The general queries were associated with the upper-level con-
epts of the EO such as “search for electrical motors,” while the
pecific queries were associated with the lower-level concepts,
.g., “find radius tab with threaded hole and made of steel” and
find parts made by SLA.” Quantitative and qualitative queries
efer to queries with quantitative and qualitative property-value
airs, respectively, for example, “dc motor of 6 V,” and “ac motor
hat can resist high temperature.”

Table 3 shows the results of the average recall and precision for
he queries in each category and for all the queries taken together.
he results demonstrate that the precision and recall of the EO-
ased model outperformed that of the VS model, especially for
eneral queries. This is because for general queries, more relevant
oncepts are added to the selected concepts by query expansion,
nd therefore, recall is improved. For example, in the general
uery mentioned above, the selected concepts will be expanded
rom the matched D-ELECTRICAL-MOTOR to all of its descen-
ent concepts such as D-STEPPER-MOTOR and D-SERVO-
OTOR. Meanwhile, precision is also improved significantly be-

ause concept disambiguation enables the system to search for the
ight lower-level concepts in the documents, which are also
agged by such concepts. In the VS model, however, the exact
erms of the upper-level concepts are rarely used in documents or
sed differently from the query intent. Therefore, its retrieval per-
ormance is degraded.

For specific queries, the retrieval performance improvement
ver the VS model is less significant compared with the retrieval
erformance improvement for general queries. There are several
easons. First, it is more challenged in accurately recognizing
ower-level concepts than upper-level concepts for the EO-based
pproach. Second, usually the recall is improved by query expan-
ion. However, there is less space in the EO for query expansion
ith lower-level concepts. Third, in general, the VS model obtains

airly good precision when more exact keywords are provided.
For the rest of the query categories, the EO-based approach also

chieves greater performance than the VS model because the
oncept-based document and query representations enable query
easoning based on meaning.

Note that for the retrieved results, the VS model is rank based,

Table 3 Average recall and pr

Type of queries

No.
of

queries

Query by
concept

disambiguation

General query 22
Specific query 28

Quantitative query 15
Qualitative query 18

Query by concept abstraction 8
Average of total
hile the EO-based model is, in fact, Boolean retrieval. In order
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to make a reasonable comparison, a retrieved document is relevant
if it has a similarity score greater than 0.15 in the VS model. The
reported precision is when the maximum recall is achieved.

6 Conclusion
This research represents a first exploration of the possibilities of

semantics-based engineering document analysis and retrieval, and
its application. It develops an EO to represent the established
design and manufacturing knowledge, both inside and outside of a
company. We have described a new computational framework for
the EO-based search system that aims at effectively retrieving
unstructured engineering content.

The centerpiece of this framework is the EO and its associated
EL. They are acquired semiautomatically by following a system-
atic ontological semantics approach. We have demonstrated the
process used to conceptualize the EO and acquire it from various
engineering knowledge resources. The EO can be easily extended
to include new taxonomies, concepts, and relationships. We have
developed algorithms for more efficient concept disambiguation,
concept abstraction, and query by property values in order to �1�
improve retrieval precision and recall, �2� detect users’ search in-
tents, and �3� satisfy users’ information needs at different levels of
detail. We have designed a novel context-aware user interface that
�i� integrates EO-based search and category browsing, and �ii�
dynamically updates and structures the retrieval results so that
users can explore alternative solutions in a flexible manner and
narrow their searches quickly.

The experimental results demonstrate that the EO-based search
outperforms the keyword-based search. Using a test bed of 1000
engineering component descriptions from various suppliers, we
found that the EO-based search improves the average recall by
39% and the average precision by 29%. More importantly, �1� it
understands users’ queries at the concept level when exact query
terms are not available, and �2� it enables querying with quantita-
tive as well as qualitative engineering specifications. All these
query types are prevalent in engineering and design tasks but not
handled properly by the traditional IR approaches.

The research suggests that PDM/PLM systems should take into
account the importance of utilizing the established domain knowl-
edge in order to achieve more effective engineering IR. Engineer-
ing design is a complex task. Therefore, understanding the context
of the task, as well as obtaining information about this context in
an effective manner, plays a crucial role in the success of engi-
neers’ decision making. By extracting dispersed contents and as-
sociating them with an explicit domain knowledge model in order
to support the query inference on a meaningful and contextual
level, our method has the potential of pursuing a more coherent
design environment with future PDM/PLM systems.

Automatic ontology learning such as Refs. �62,63� aims at fa-
cilitating the ontology construction process by extracting knowl-
edge from texts through NLP techniques and corpus statistics. It
has potential to accelerate the ontology acquisition process. In
addition, a large amount of engineering knowledge is already

sion of two retrieval methods

erage
all of
model

Average
recall of

VS model

Average
precision of
EO model

Average
precision of
VS model

4% 28% 92% 31%
3% 77% 71% 81%
0% 36% 75% 41%
5% 38% 65% 35%

6% 25% 78% 30%
5% 46% 78% 49%
eci

Av
rec

EO

9
8
8
7

9
8

codified and available in engineering databases, design reposito-
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ies, company-specific standards, etc. Each of these is either semi-
tructured or structured and has its underlying implicit ontologies.
herefore, it is feasible to develop NLP-based learning ap-
roaches to automate the knowledge extraction process from such
ocuments complementary to the handcrafted acquisition process.

There are existing efforts to develop more general and upper-
evel ontologies, such as the suggested upper merged ontology
SUMO�,6 which provides definitions of general-purpose terms
nd acts as a foundation for more specific domain ontologies. It is
esirable to merge the developed EO with SUMO in the future.

Future research will focus on the experiments that also include
large collection of internal documents such as CAD drawings,

roject reports, and notebooks provided by our industry partner.
e will investigate the retrieval performance as well as the work-

ng performance gains by using �1� only the EO-based search
ystem �text query+category browsing� and �2� the combination
f the EO-based search and VS model, compared to combined
ase line approaches, such as Google desktop �to search the inter-
al document collection�, internet search engines �e.g., Google�,
nd component warehouses.7 Both tests will be executed in vari-
us product development environments or design tasks. In order
o do these, the current EO needs to be expanded with more
ompany-specific domain knowledge such as proprietary product
lassifications and various design and production processes.
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