Testing for Software Vulnerability Using Environment
Perturbation

Abstract security flaws in software systems other than the one be-

ing tested. A team of individuals is given the responsibil-
We describe an methodology for testing a software systgyrof penetrating the system using this knowledge. For-
for possible security flaws. Traditionally, security tesinal methods use a mathematical description of the secu-
ing is done using penetration analysis and formal metity requirements and that of the system that implements
ods. Based on the observation that most security flaie requirements. The goal of these methods is to show
are triggered due to a flawed interaction with the enviroformally that the requirements are indeed met by the sys-
ment, we view the security testing problem as the prabm.
lem of testing for the fault-tolerance properties of a soft- A weakness of penetration analysis is that it requires
ware system. We consider each environment perturlggre either to know or be able to postulate the nature of
tion as a fault and the resulting security compromise fiaws that might exist in a system. Further, the effective-
failure in the toleration of such faults. Our approach iiess of penetration analysis is believed to be as good as
based on the well known technique of fault-injection. Ethat of the team that performs the analysis. A lack of an
vironment faults are injected into the system under tegjective criterion to measure the adequacy of penetration
and system behavior observed. The failure to tolera@alysis leads to uncertainty in the reliability of the soft-
faults is an indicator of a potential security flaw in the sysyare system for which penetration analysis did not reveal
tem. An Environment-Application Interaction (EAI) fauliny security flaws.
model is proposed which guides us to decide what faults to Attractive due to the precision they provide, formal
inject. Based on EAI, we have developed a security taglethods suffer from the inherent difficulty in specifying
ing methodology, and apply it to several applications. Vge requirements, the system, and then applying the pro-
successfully identified a number of vulnerabilities includgss of Checking the requirements Speciﬁcation against
vulnerabilities in Windows NT operating system. system specification.

Recently, several specific security testing techniques

Keywords: Environment fault, fault classification, faulthave been developed [4, 7, 18, 23, 21, 28]. As discussed
injection, security, security flaw, testing, security testingn section 5, these techniques are either restricted to some

specific security flaws or limited by the underlying testing

techniques.

1 Introduction Another alternative for security testing is to use gen-
_ _ eral testing techniques, such as path testing, data-flow test-
Security testing ing, domain testing, and syntax testing [2]. However,

Reports of security violations due to software errors tfée effectiveness of these techniques in revealing security

becoming increasingly common. We refer to such err%:ravzié?rsjgleuizigg\g: afr(n)(: ;%Lerisnﬁa'svssare needed to jus-
as “security errors” or “security flaws.” This has resulte 9 ty '
in security related concerns among software developers
and users regarding the “robustness” of the software tHejtline of our approach
use. All stages of software development are motivatgd . .
: . ur approach for security testing employs a well known
by the desire to make the product secure and invulnera-, . . :
technique in the testing of fault-tolerant systems, na- mely
ﬁult injection. This approach has drawn upon years of re-
Q . . - :
detecting errors that might lead to security violations searchand experiencen vulnerab|llty.analy5|s [1,3,6, 16,
". 20]. Our approach relies on an empirically supported be-

Tradltlonal_methods for detecting sepgnty flaws et that the environment plays a significant role in trigger-
clude penetration analysis and formal verification of secu- . NS
. .) . iNg security flaws that lead to security violations [9, 16].
rity kernels [17, 19]. Penetration analysis relies on known

ble to malicious intentions of some users. Our work
concerned with the testing of software with the goal

The problem environment faults. If we want to test whether a sys-

For the purbose of our discussion. we assume that a “Stem will behave appropriately under certain environment
purp ! omalies, we need to set up those environments. How-

tem t[§Tc;]0mposte: d t(.)f"an If‘ppgciﬂo?. a”Ot' Its ?gv'rodnéver, the set up time is often difficult to control. If the
ment. Thus, potentially, all code thatIs hot considere ggtup is too early, it might change during the test and the
belonging to the application belongs to the environme tt‘nvironment state might not be we is expected when an
However, we can reduce the size of the environment,

S . eraction between the application and the environment
considering only those portions of the code that have a kes place. If the environment is set up too late, the effect
rect or indirect coupling with the application code. SucI j

) . . O has on the application’s behavior might not serve the
coupling might arise, for example, due to the applicatio %rpose for which it was set up. By exploiting static in-

322 z]; %Igr?]?rllgi”rzggjrgzgzzii 'ggr}ﬁeesn;ggnr:gfxé?; Stmation in the application and the environment’s source
%Sde, our approach can, however, decide deterministically

ments. . when to trigger environment faults. Third, unlike penetra-

FOT various reasons, programmers 'tend tq make 8 analysis, where the procedure is difficult to automate
s.umptllons apout the environment in Wh'Ch their appllcg-nd guantify, fault injection technigue provides a capabil-
tion will function. When these assumptions hold, the aRé/ of automating the testing procedure. In addition, we

plication is likely to behave appropriately. But, becausadopt a two-dimensional metrics to quantify the quality
the environment, as a shared resource, can often be BFHur testing procedure

turbed by other subjects, especially malicious users, these
assumptions might not be true. A secure program is one .
that tolerates environment perturbations without any $8esearch issues

curity V|olat|on. . . Fault injection requires the selection of a fault model [5].
If we consider environment perturbations to be fau“?he choice of this model depends on the nature of faults.
then a secure system can be regardgd as a faylt-tole are errors arising from hardware faults, for instance,
system that is able to tolerate faults in Fhe envwonmeg}e often modeled via bits of zeroes and ones written into
Therefore, the gqal of testing the security of & systemJ$yata structure or a portion of the memory [15, 25], while
reduced to ensuring that the system is |mpl_emented 10 9ktocol implementation errors arising from communica-
erate various environment faults; not leading to securffy . . ~ten modeled via message dropping, duplica-
violatﬁons is cohsidered tolerqtion of such faults. Ir) ﬂ}?on, reordering, delaying etc. [14]. Understandir;g the na-
remainder of th.'s E)aper,“we .W'” use the te”rms " ENVIrOH o of security faults provides a basis for the application
ment perturbanon and environment fault” interchanggs; ¢ ¢ injection. Several studies have been concerned
ably Wher.e_the.re IS no con_fu5|on. with the nature of security faults [1, 3, 6, 16, 20].) How-
Fault injection—the deliberate insertion of faults iNtQor we are not aware of any study that classifies secu-
an operational system to determine its response—offersﬁ'f\}pf’lawS from the point of view of environment pertur-
effective solution to validate the dependability of faulty J.:0n some general fault models have also been widely

tolerant computer .a'f‘d sof'tyvare sy;tems [5]. Inour apsey [13, 26, 21, 28]. The semantic gap between these
proach, faults are injected into environment thereby pef, yeis and the environment faults that lead to security

turbing it. In other words, we perturb the application e ations is wide and the relationship between faults in-

vironment durlng testing to see h.OW t.he I respoqu a[é ted and faults leading to security violations is not known.
whether there will be a security violation under this Pe{,

) : X e have developed an Environment-Application Interac-
turbation. If not then the system is considered secure. tion

(EAI) fault model which serves as the basis the faultinjec-
Advantages of our approach tion technique described here. The advantage of the EAI

. L . model is in its capability of emulating environment faults
The use of environment fault injection technique leads #Qat are likely to fause);ecurity violagtions

several advantages. First, in practice, it is hard to trigger Another issue in fault injection technique is the loca-

certgm anomalies in the enwronment: and knowing h Y&n, within the system under test, where faults are to be
fo trigger them depends on the tester's knowledge of ¢ jected. In certain cases, the location is obvious. For

envwonmgnt. Therefore, tgstmg softwarg gecunty unc ample, in ORCHESTRA [14], the faults emulated are
those environment anomalies becomes difficult. Fault in-

Qommunication faults. Hence, the communication chan-

jection ttechnlqulgz proytlgestahwgy OI ekr)nulatlng thedeny els between communicating entities provide the obvious
ronment anomalies without having to be concermnea Wyl ;o for fault injection. In other cases, where the lo-

how.they could oceur in practice. .S'econd, our approa(% ion is hard to decide, nondeterministic methods, such
provides a systematic way of deciding when to emulate

as random selection, selection according to distributi@pace, stack space, and heap space are part of its internal
are used to choose the locations. For example, FERRARite.

[15] and FINE [13] use such an approach. The SeIeCtIB%finition 2.2 (Environment Entity and Environment State)

of location is also a major 1ssue fo.r us. In the curreﬂ\tny element that is external to an application’s code and
stage of our research, we inject environment faults at t ta space is called an environment entity. A state that

points where the environment gnd thg appl|ca_t|on mterag ’nsists of the status of these entities is called an environ-
In future work, we plan to exploit static analysis to furth%ent state

reduce the number of fault injection locations by finding
the equivalence relationship among those locations. The For instance, file and network are treated as environ-
motivation for using static analysis method is that we cament entities. The permission of a file, existence of a file,
reduce the testing efforts by utilizing static informatioawnership of a file, real user-id of a process, and the ef-
from the program. fective user-id of process are different parts of an environ-
A general issue about software testing is “what is &nent state.
acceptable test adequacy criterion?” [10]. We adopt a A key difference between an environment and an in-
two-dimensional coverage metric (code coverage and fd@mal entity, which makes implementation of a secure sys-
coverage) to measure test adequacy. tem difficult and error-prone, is the shared nature of the
The remainder of this paper is organized as followgnvironment entity. An application is not the only one
section 2 presents the fault model. A methodology for séat can access and change an environment entity. Other
curity testing is presented in section 3. In section 4 we wilbjects, such as other users, may access and change the
show the results of using this methodology in detectifgivironment entity as well. Internal entity, on the other
real world programs. Finally a brief overview of relateBand, is private to an application in the sense that only the
studies is presented in section 5 followed by summaryaplication can modify and access them, assuming that
this research and the potential for future work in sectiont®€ underlying operating system provides protected pro-
cess space.
. In concurrent programming, shared resources are han-
2 An Environment Fault Model dled by using the mutual exclusion and the sema- phore
mechanism to guarantee assumptions about the state of
In order to determine System behavior under various %}h‘ared resources. However, we believe that few program-
vironment conditions, an engineer must be able to detgfers use a similar mechanism to guarantee their assump-
mine the effects of environment perturbation on a givgyn about the state of the environment. There are sev-
system. Therefore, it is useful to inject faults that magra| reasons for this. First, programmers might not have
ifest themselves as errors in systems at the environmeBkognized that the environment entities are shared re-
application interaction level. To maintain confidence i§ources. When, for example, an application writes to a
the validity of the errors, the model used for these ifite, it checks that it has the permission to write to that
jections should be drawn from actual environment faultfie, and then assumes that right in subsequent operations
while faults injected into the system should be able {g that file without noticing that a malicious attacker could
emulate those environment faults appropriately. One &gve change the environment thereby rendering the as-
sumption behind this requirement is that a security violggmption false. Most security flaws resulting from race
tion resulting due to the injected fault is similar to one thgbnditions [4] are caused by such dubious assumptions.
results due to an environment fault that arises during t88cond, although some mechanisms, such as file locking,

intended use of the system. guarantee that a programmer’s assumption hold on some
part of the environment state, there is no general mecha-
2.1 Terminology nism to do the same as the environment entity has various

attributes than what the mutual exclusion and semaphore
Definition 2.1 (Internal State and Internal EntityAny mechanisms could handle. As a result, programmers of-
element in an application’s code and data space is @y ysead hocmechanisms to guarantee the correctness
sidered an internal entity. A state consisting of the statysineir assumptions. This can lead to errors more read-
of these entities is called an internal state. ily than would be the case when a standard mechanism is

: . o . . Tsed.
Variablei in a application, for example, is an interna
entity. The value of is part of an internal state. The size .
of a buffer used in the application is also part of its intern&k 2 Developing a fault model

state. In general, all information in this application’s da{d orger to provide high confidence in the validity of the
security flaws caused by environment faults, the method-

ology described here models systems at a high level. YNe environment attribute is the file's ownership. In this
refer to this level as the Environment-Application Intecase the execution is safe. The other possibility is that
action (EAI) level. Fault injection at the interaction levethe file belongs to some malicious user. This is an en-
attempts to emulate what a “real” attacker does. Singieonment fault created by the malicious user. Now the
most of the vulnerability databases record the way attadkdividual who runs the application assumes that the file
ers exploit a vulnerability, we transform these exploitselongs to the application. If the application does not
to environment faults to be injected with little analysideal with this environment fault, it might execute arbi-
on those records thereby narrowing the semantic gap tsary commands in that file thereby resulting in a security
tween faults injected at the interaction level and faults thablation.

really occur during the intended use of the system. In con- The most error-prone interaction between an appli-
trast, other studies [21, 28] inject faults at the programation and the environment is that involving files. Pro-
statement level thereby leaving a large semantic gap geammers tend to use an abstraction of a file that includes
tween faults injected and those that might arise during tbely a subset of the file attributes. A file name with a lo-

intended use of the application. cation or file content, for example, is a commonly used
abstraction of a file. The environment faults, such as a
2.3 An EAI fault model long file name or a file name with special characters, as-

sociated with this abstraction will propagate via the inter-
In general, environment faults affect an application in tweal entity. If the application does not place appropriate
different ways. First, an application receives inputs froshecks on these internal entities, such environment faults
its environment. The environmentfaults now become fauli$ cause security violations such as those due to buffer
in the input, which is then inherited by an internal entitgverflow and the execution of an unintended command.
of the application. From this point onwards the enviroifhe environment faults associated with the remaining file
ment faults propagate through the application via the iatributes, such as whether the file is a symbolic link, the
ternal entities. If the application does not handle the fauttenership of the file, existence of the file, and the per-
correctly, a security violation might occur. The direct reanissions associated with the file, will not propagate via
son for this violation appear to be faults in the internah internal entity. Although these attributes are extrinsic
entity. However, this violation is due to the propagatio the application, if not dealt correctly, they are likely
of environment faults. Stated differently, the environmetd directly affect the interaction between application and
indirectly causes a security violation, through the mediusmvironment.
of the internal entity. Figure 1(a) shows this indirect way In summary, we have categorized the environment faults
in which the environment faults affect an application. according to the way they affect applications. Environ-
Consider the following example. Suppose that an apent faults which affect programs via internal entities are
plication receives its input from the network. Any faultalledindirect environment faultsEnvironment faults which
in the network message related to this input is inheritaeffect programs via environment entities are catl@dct
by an internal entity. When the application does a memnavironment faults
ory copy from this message to an internal buffer without
checking the buffer’'s boundaries, the fault in the netwokks 1 |ndirect environment faults
message, the fault being “message too long,” now triggers
a violation of security policy. We categorize indirect environment faults according to the
A second way in which an environment fault affect¢/ay they propagate in the internal space. The propagation
the application is when the fault does not propagate Vieludes initialization and use of an internal entity corre-
the internal entity. Instead, it stays within the environmefonding to an environment fault. Different ways of prop-
entity and when the application interacts with the envirofgation are summarized in the following.
ment without correctly dealing with these faults, security First, different kinds of environment faults are trans-
policy is violated. In this case, the environment faults aferred to an internal entity, which has been initialized, in
the direct cause of security violation and the medium féifferent ways. Most common initializations are through
environment faults is the environment entity itself. Fighe interaction of the application with the environment, in
ure 1(b) shows this direct way in which the environmem¢hich case, there must be a statement in the program that
faults affect an application. performs this initialization. However, for other initializa-
Let us now a consider an example to illustrate this séi@ns, there is no such statement in the application. The
ond kind of interaction. Suppose that an application nedfiialization of an environment variable, for example, is
to execute a file. There are two possibilities one being tif@ried out by the operating system. The aspect of this
the file belongs to the user who runs the application. Hef@d of internal entity can easily cause mis-handling since

. i :

enviroment environmen enviroment

entity
internal T
entity -

enfity)~ _ y entity
T

environmey
entity "
. environment
_

Softwar e System Softwar e System

Environment Environment

——= input from the environment to the software system

- - -> environment entity affects the software system viaan internal entity ~> environment entity affects the software system directly
i execution of the software system g execution of the software system
@ (b)

Figure 1: Interaction Model

programmers rarely notice the initialization or even theiter specified ilPATH and the search will stop right after

existence. it has found it. The security could most likely be affected
Second, environment faults inherited by internal eby changing the order of paths in tfRATHvariable or

tities propagate in different ways since internal entitiegppending a new path to it. Certainly, an arbitrary modifi-

come from different sources and are used differently. Sazaion of PATHwill rarely cause a security breach.

internal entities are used by the application directly in that Different semantics of each internal entity is summa-

there are explicit statements in the application that use timed in Table 5.

internal entities. Other internal entities are used by the

application indirectly, meaning that there is no explicif 32 Direct environment faults

statement in the application that uses the internal enti-

ties. Implicit usage might be caused by system calls @§ect environment faults are perturbations of environ-

system calls use some internal entities without being fBent entities that affect an application’s behavior directly.

ticed. When, for instance, a system call is mad&/iX Unlike the internal entities, which consist only of vari-

to execute a command without using an absolute path, Gfées, environment entities are more complex. For each

might not notice from the application that this system cd}Pe of entity, the attributes vary. There are three types

uses th@ATHenvironment variable to find the location oPf environment entities in a traditional operation system

that command. Without this knowledge on how the Syglodel. We categorize environment faults according to

tem call works, programmer is unaware of this invisib@is model. These categories are enumerated afilel1)

use of the internal entity and hence might make incorrédtstem 2) process 3) network.

assumptions about it. Studies of security violation reports, vulnerability databases,
As per the above discussion, an understanding of 884 vulnerability analyses suggest several security-related

curity flaws is facilitated by dividing indirect environmengttributes corresponding to each environmententity. These

faults into the following five sub-categories according @€ summarized in Table 6. This list is not exhaustive,

their origins: 1)user input, 2) environment variable, 3) Nnevertheless it provides the common attributes that appear

file system input 4) network input, 5) process input in reports of security violations. Future vulnerability anal-
According to vulnerability analysis reported in [1, 3ySes, however, might add new entries to the list.

6, 16, 20] and our analysis of a vulnerability database,

faults likely to cause security violations depend on the se-4 Data Analysis

mantics of each entityPATH for example, is an environ-] - . o]

ment variable, and comprises a list of paths used to seafcurity vulnerability database [16] is maintained in the

a command whenever an application needs to execute fR&RIAS Center at Purdue University. Currently there are

command. In this case, the order of paths is importaﬁ5 entries in this datgbase which |r_10Iude vulnerabilities

since the search will look for that command using the d?f applications from different operating systems, such as

Table 1: high-level classification (total 142)

Categories

Indirect
vironment
Fault

En- | Direct
vironment
Fault

En-

Others

number

81

48

13

percent

57%

34%

9%

3 Environment Fault Injection Method-
ology

3.1 Faultinjection

Like the EAI model, which models the environment faults
at the interaction level, fault injections are also done at the
interaction level. The previous section classifies the envi-

Table 3: Direct Environmental Faults that Cause Securfgnment faults into direct and indirect environment faults.
Violations (total 48)

Categories | File System | Network | Process
Number 42 5 1
Percent 87% 10% 2%

These faults are injected using the following mechanisms:

1. Indirect Environment Fault Injections: An in-
direct environment fault occurs at the interaction
point where an application requests its environment

Windows NT, Solaris , HP-UX, andLinux . A use-

ful property of this database is that most of the vulner-
abilities are analyzed in detail either using the first hand
knowledge from actual penetration testing or using second
hand knowledge.

Among the 195 entries in the database 26 entries do
not provide sufficient information for our classification,
22 entries are caused by incorrect design, and 5 entries are
caused by incorrect configuration. Both design and con-
figuration errors excluded from the scope of our research.
We therefore classify only those errors that manifest di-
rectly as incorrect code in the application using the fault
model presented above. Hence the total number of entries
used for our classification is 142.

Table 1 shows the high-level classification of environ-
ment faults. 91% of the 142 security flaws are classi-
fied by using the EAI fault model; the remainiap are
caused by software faults irrelevant to the environment.
These include errors such as those due to mistyping of the
code in the application.

Table 2 shows the classification of indirect environ-
ment faults. Table 3 shows the classification of direct en-
vironment faults. Data in Table 3 indicates that a signifi-
cant number of part of software vulnerabilities are caused
by the interaction with théile system environment.
Interaction with thenetwork contributes onlyl0% of
all software vulnerabilities in our database. The reason
for the low percentage network-caused vulnerabilities is 2.
that most of the network vulnerabilities are introduced by
a weak protocol design which does not fall into the scope
of our classification. Table 4 provides further classifica-
tion of file system environment faults according to
Table 6.

for an input. The input that the environment pro-
vides to the application will most likely affect the
application’s behavior. A secure application should
tolerate an unexpected anomaly in the environment
input. One way to perturb the input is to use random
input as in Fuzz [8, 23]. However, this approach
dramatically increases the testing space, which and
calls for a significantly large amount of testing ef-
fort. The Fuzz approach does not exploit the se-
mantics of each input. Our vulnerability analysis,
however, has shown that inputs most likely to cause
security violations tend to have patterns according
to their semantics. If, for instance, the input is a
list of paths used to search for a command, then se-
curity failure will most likely occur when the order

of these paths is altered, a new path is inserted or
deleted, or the length of the list is increased. Other
kinds of perturbations are less likely to cause secu-
rity failure. Thus, by an examination of rare cases
and by concentrating instead on fault patterns al-
ready observed, we reduce the testing space con-
siderably.

Faults injected into the application are based on pat-
terns that are likely to cause security faults. These
patterns come from our investigation of a vulnera-

bility database and other studies reported in the lit-
erature. The faults are summarized in Table 5.

Direct Environment Faults Injections: A direct
environment fault occurs at the interaction point where
the application accesses an environment entity for
creation, modification, reading or execution of an
environment entity. Different status of environment
entity attributes will affect the consequences of those
interactions. Thus, the environment fault injections
are used to perturb the attributes of an environment
entity at points of interaction and to observe how
the application responds to the perturbation. For
example, before an application executesopen
operation to a namefile , several perturbations

Table 2: Indirect Environment Faults that Cause Security Violations (total 81)

Categories User Input Environment File System Input Network Input Process Input
Variable

Number 51 17 5 8 0

Percent 63% 21% 6% 10% 0%
Table 4: File System Environmental Faults (total 42)

Categories | file symbolic permission ownership file working

existence link invariance directory
Number 20 6 6 3 6 1
Percent 48% 14% 14% 7% 14% 2%

Table 5: Indirect Environment Faults and Enviromnet Perturbations

Internal Entity

Semantic Attribute

Fault Injections

User Input

file name +
directory name

change length, use relative path, use absolute path, insert special characters suchflas “..",

“/”in the name

command

change length, use relative path, use absolute path, insert special characters glcH|as “

“&”",“ >"or newline in the command

file name +
directory name

change length, use relative path, use absolute path, use special characters, But&as
or “>"in the name

Environment execution path + change Tength, rearrange order of path, insert a untrusted path, use incorrect path, use
Variable library path recursive path
permission mask change mask to 0 so it will not mask any permission bit
File file name + change length, use relative path, use absolute path, use special characters in the nafhe such
System directory name as‘|",“&"or“ >"in name
Input
file extension change to other file extensions like “.exe” in Windows system; change Tength of file eten-
sion
IP address change length of the address, use bad-formatted address
Network packet change size of the packet, use bad-formatted packet
Input host name change length of host name, use bad-formatted host name
DNS reply change length of the DNS reply, use bad-formatted reply
Process message change length of the message, use bad-formatted message
Input

Table 6: Direct Environment Faults and Environment Perturbations

Environment Entity

Attribute

Fault Injections

file existence

delete an existing file or make a non-existing file exist

file ownership

change ownership to the owner of the process, other normal users, or root

=

om

File file permission flip the permission bit
System symbolic Tink if the file is a symbolic link, change the target it links to; if the file is not a symbolic Tifk,
change it to a symbolic link
file content modify file
invariance
file name invariance change file name
working directory start application in different directory
message authenticity make the message come from other network entity instead of where it is expected to/come
from
protocol purposely violates underlying protocol by omitting a protocol step, adding an extra tep,
reordering steps
socket share the socket with another process
Network service availability deny the service that application is asking for
entity trustability change the entity with which the application interacts to a untrusted one
message authenticity make the message come from other process instead of where it is expected to come
Process process trustability change the entity with which the application interacts to a untrusted one

service availability

deny the service that application is asking for

are performed on this file by changing its attributdsest is considered inadequate since in this test, only a few
such as its existence, permissions, ownership, anteractions are perturbed, how the system behaves under
the type of the file since failure to handle these gterturbation of other interactions is still unknown.
tributes is most likely to cause security violations. Point 3 is representative of an insecure region because
These attributes are and their their perturbation atree fault coverage is so low that we consider the applica-
presented in Table 6. tionis likely to be vulnerable to the perturbation of the en-
vironment. The safest region is indicated by point 4 which
3.2 Test adequacy criterion corresponds to a high interaction and fault coverage.
An importantissue iq the management of spftware te;tiggs Procedure
is to “ensure that prior to the start of testing the objec-
tives of testing are known and agreed upon and that fAee procedure of our Environment Fault Injection Method-
objectives are set in terms that can be measured.” Soébgy consists of the following steps:
objectives “should be quantified, reasonable, and achiev-
able” [11].
We usefault coverageandinteraction coveragenea- 2. For each test case, do step 3 to 9.
sure test adequacy. Fault coverage is defined as the per-
centage of the number of faults tolerated with respect to 3- For each interaction pointin the execution trace, de-
that of the faults injected. Our conjecture is that the higher ~ cide if the application asks for an input. If there is
the fault coverage the more secure the application is. In NO input, only inject direct environment faults; if
addition to fault coverage, an additional measurement of ~ there is an input, inject both direct and indirect en-
the testing effort is the interaction coverage. Interaction ~ Vironmentfaults.
coverage Is Qefined asthe percentage of th? number ofing - pecide the object where faults will be injected.
teraction points where we injected faults with respect to
the total number of interaction points. Once again, we 5. Establish a fault list corresponding to this object us-
conjecture that the higher the interaction coverage, the ing Table5 and Table 6.
more dependable the testing result are. Of course we as- . . .
sume that faults found during testing are removed. These6' FOF each. fault in thg list, mpct it before the_ .|n.ter—
two coverage criteria lead to a 2-dimensional metric for action point for the @rectepwronmentfaultg |r!ject
each fault after the interaction point for the indirect

measuring test adequacy. . . .)

9 quacy environment faults since in this case, we want to
change the value the internal entity receives from
the input.

1. Setcountandn to O.

H
o
|
T
N

D
\l

. Increasa by 1.

8. Detect if security policy is violated. If so, increase
counthy 1.

. Calculate interaction coverage. If the test adequacy

criteria for interaction coverage is satisfied then stop
1 3 else repeat steps 3-9 until the adequacy criteria for
interaction coverage is achieved.

Fault Coverage «
(o]

Interaction Coverage 1‘.0 ‘ 10. Dividecount by n yielding « to obtain the vulner-
ability assessment score (fault coverage) for the ap-

plication.

Figure 2: Test Adequacy Metric

Figure 2 shows the 2-dimensional metric and four sad®-4 Example

le points of significance. The metric serves as a quanti- . .
pie p 9 9 r]II illustrate the steps shown above, we consider an exam-

tative evaluation of a test set. Point 1 is representative i of fault iniection. The followina code is taken from
the region where testing resulted in low interaction a?ﬁDversion (])ﬂ o ' Notice that? ¢ is a privileaed
fault coverage. In this case testing is considered inade- prc . P P 9

guate. Point 2 is representative of the region where f lication. 1t is aset-UID application which means

fault coverage is high but interaction coverage is low. T Péat it runs in the root's privilege even when it is invoked

by a user who does not have the same privilege as the root.

f = create(n, 0660); a Projlist file undersubmit directory, which speci-

rE0{ . _ fies a list of projects students could be able to turnin. Stu-
printf(“%s: cannot create %s”, name, n);

cleanup(); dents can type “turnin -c coursename -I" to view the list of
} H . “« in _ _
' (code skipped here) projects; s?udents can type “turnin -c coursename -p pro
if (write(f, buf, i)\=i) { o jectname files” to turnin their project files. After submis-
printf(*%s: ‘;A’asméeﬂ')’ file write_errorin’, sion, the submitted files will be copied to TAsibmit
break: Y directory.
} Sinceturnin program allows students to copy their

Suppose that we have decided to perturb the envird{fS 1 TAS protected directory, the program is running
ment at a place where tloeeate system call is issued.aSSU|D’ which means its effective user fisot . The

This is an interaction point wheitpr interacts with the program consists 0f 1310 lines of coc;ie. - .
fle system . Thereis no inputin this case and hence Following our method, we have identified 8 interac-

we simply carry out direct environment fault injections. tion placgs where programmers could possibly have ’T‘ade
The next step is to identify the object. Herejs a assumptions about the environment. We make 41 environ-
file name, and hence the object is the file referred to usi nt perturbation to check whether programmers indeed

this file name. Then we refer to Table 6 and get a list of aY: . th? assumptions, and whfather th.e failure of tr:lese
tributes that need to be perturbed. This list includes 1) fR§SUMPtoOns can affect program’s security. Among those

existence, 2) file ownership, 3) file permission, 4) SynQ_(—:-rturbations, 9 perturbation lead to security violation,

bolic link, 5) file content invariance, 6) file name invari\—’_vhICh means the failure of assumptions on these 9 situa-

ance and 7) working directory. A further analysis shoWo" could lead to a vulnerability in the program. Then we

that attributes 5 and 6 are not applicable in this case as {H}éestigaéled elf‘Ch assumlptions by asking wge_therlthey %re

is supposed to be the first time the file is encountered. "€aSonable. orr]:nxa;rp eI}I%Dogrgmn}ers obvious ¥Ima €
We then perturb the remaining four attributes of tHfdl! assurgptgnt ST l())ca} ! tumln.cf: q i h'l €

file and inject the faults into the application. For examplls, frusted. Our perturbation te,stmg ound out if this as-

the perturbation of the “existence” means that we maﬁgmptmns is .false, the §ystems security will be waa}ed.

the file exist or not exist before the application creates ince theturnln.cf will always pe p.rotec.ted, soisits

The perturbation of “symbolic link” means that we mak irectory, we believe the assumption is quite reasonable,

the file link to some other file, such as the password fil'€r€ is no vulnerability regarding to this assumption.
before the application creates it However, one assumption seems unreasonable to us,

After fault injection, we execute the application anﬁ turns out to be a vulnerability, and i; hence exploited by
detect if there is any violation of the security policy. IftS after we have known the assumption. The problematic

this case the violation is detected when we perturb §Rd€ iS listin the following:

tributes 1, 2, 3 and 4. Doing so caudps to write t0 it (FILE 0 == (fp = fopen(pcFile, ")) {

a file even when the user who runs it does not have the printi(‘can not find project list file\n®);

appropriate ownership and file permissions. Thus whgn o)

the file is linked to the password file, the password file is

be modified bylpr . The problem here is that the applica- Sincefopen is an interaction point where potential

tion assumes that the file does not exist before the creatd@sumption might be made, we perturb the environment

or assumes that the file belongs to the user who runs gtetus ofpcFile , making it only readable by root, not

application. In a real environment, this assumption couly the people who is running thiernin -~ program. The

easily be false and the fault injection test points out a gesult is that by running “turnin -c coursename -I", we

curity vulnerability. can successfully read the contents of the file we are not
supposed to be able to read. So, here the programmers
have made an assumption that people are allowed to read

4 Result file pointed bypcFile usingturnin program, and its
) failure can cause security violation. Now, the question
4.1 Turnin is: is this assumption reasonable? The result turns out to

g/e NO since TA can makacFile point to any file he

Turnin is a program used in Purdue for electronicall s th . . ; dth tent
submitting files for grading. Before students in a class c%ﬁ?]; f”een usingurnin - program to read the contents
d .

use this program, the teaching assistant (TA) for this cla K ina this fact desianed a followi .
should have set up his account (or a dedicated course ac- nowing this fact, we designed a foflowing scenario.
a TA makes th@rojlist a symbolic link toetc/shadow

count) correspondly. This includes creatingtdomit di- L
rectory under the home directory of this account, creatiW&'Ch is not readable by anyone exceptt . Then the

TA runs “turnin -c coursename -I", Voila, the program Due to the agreement with Microsoft, we are not re-

prints out the content détc/shadow ! vealing the exact keys and source codes that have the vul-
Another perturbation we have done is perturbing theerabilities. So, in the next discussion, we will not refer
attributes of the argument in the following code: to any specific key, except the purpose of the key and the

problem with the key.
One of the keys in the registry directory specifies a

Sincenargv contains file names, according to table $l!€ name for a font. It seems pretty safe to give every-
we have inserted special characters, such as “/, «./», jpdy the right to modify this registry key until we have
front of the file names. The program does a good jobfmund a module in the system that invokes a function call
forbidding the “/” character, however, it does not resist tt}@ actually delete this file. To know whether the program
perturbation of inserting “../” in the front. Knowing thishas done the correct checking before the delete or not, we

fact, a student can submit several “.login” files with diffedid & perturbation on the properties of this file according
ent number of “../” in front of the “.login” file, such that© Table 6, making it writable only by administrator, and
when his TA unpacks the submitted file, the TA's “Io@/SO Making it point to a very importantfile (such as sys-
gin” will be overwritten by the student's malicious « |]o-tem configuration file, password flle;) instead of just a font
gin” file, which can do anything evil to the TA. file. It turns ou_t that the program fa|ls to responq ;ecurely
Theturnin program has been used in Purdue uniinder this environment perturbation - when administrators

versity widely since 1993, and we became the first to idiyt" this module, they will actually delete the file specified
tify these vulnerabilities. After our discovery, the unvef2y this registry key regardless of whether this file is a font

sity quickly verified and problem and patchectitsnin filg ora security critical fi!e. Thel asgumption behind of
program. this “delete” environment interaction is that the program-

mers assume the file name always points to a font file or
. . a unimportant file, however, since everybody has the right
4.2 Windows NT Registry to modify the value of this registry key, the assumption

In Windows NT operation system, registry directory itil t0 sustain. - _ _ _

a critical part to the system security. Registry directory Another vulnerability we have found is associated Wlth
is essentially an organized stored for operating syste{&r logon module. When a user logons, the module will
and application’s data which are globally shared by dﬁ_nd the userl's profile from a directory specified in a reg-
ferent applications and different components of the op&lY key. Using our EAI model, we have managed to per-
ating system. An appropriate configuration on each réﬂfb the trustability attribute of the cﬁrectory, angl found
istry key in the registry directory is a key factor for seciRut that the program does not deal with the situation when
rity. Many security vulnerabilities has been reported dife directory is not trusted, which means, whenever a user
to an inappropriate configuration of the registry keys. |R90NS, the logon module will go to the untrusted direc-
the Windows NT 4.0 (SP3), there are still keys that af@"y: and grab a specified profile for you. Therefore, by
not protected. Our task is to test the related modulestBf €nvironment perturbation, we have found out that pro-
the operating system, and find if it is secure to leave thd¥@mmers have made a fatal assumption about the trusta-
registry keys unprotected. bility of the pr_oflle directory. AfFer knowing the fact, |_t

First of all, we use static analysis technigue to find ocomes straightforward to design a test case and fail the
where these unprotected keys are used, then we applyRfRgrammers’ assumptions.

EPA method to find if programmers have made assump-
tions that can fail.

The result is a surprise! We have identified 9 unprﬁr2 Related Work
tected registry keys that could be exploited to break tﬁes
system security, and indeed we came up with test ca
to actually exploit the vulnerabilities. Furthermore, bas

execve (acTar, nargv, environ);

ignificant amount of computer security testing is per-
fined using penetration testing. Security is assessed by

AN . empting to break into an installed system by exploit-
on the similarities of these 9 registry keys and other pund y y exp

dk late that th | 10 well-known vulnerabilities. Several researchers, in-
unprotected keys, we speculate that the same vu neratell iding Linde and Attanasio [17], Pfleeger [24], describes

ties exist for those 20 keys as well. However, we have r}% process of penetration testing. Pfleeger points out that
been able to perturb the modules that used the Otherie%etration testing is prone to several difficulties. First,
keys yet due to the Iapk of knowledge of how thoge MOthere is usually no simple procedure to identify the appro-
ules work. The 9 rgglstry keys that we have gxploﬁed aﬁﬁate cases to test. Error prediction depends on the skill,
the results of applying our perturbation technique.

experience, and familiarity with the system of the creator
of the hypotheses. Second, there is no well defined and

10

tested criterion used to decide when to stop penetratenal. It feeds randomly generated input stream to sev-
testing. Statistical analysis is needed to show how muetal system utilities, includingpgin , ftp , telnet
confidence we can gain after a certain “quantity” of pen&he results show that0% of the basic applications and
tration testing has been done. Penetration testing doesowar 25% of the X-Window application can crash [23].
provide such a metric. Third, it is difficult to develop @ifferent patterns of input could possibly cause more ap-
test plan as it not only needs familiarity with system buyications to fail. Inputs made under different environ-
also needs skill and experience. It is also possible tmagntal circumstances could also lead to abnormal behav-
testers do not know how to develop a test to investigate. Other testing methods could expose these problems
some hypotheses due to the limitation of their knowledgénere random testing, by its very nature, might not [9].
of the environment. This might lead to a decrease in daather than rely on random inputs, our approach exploits
confidence in the test result as attackers might know whiabse input patterns that could possibly cause security vi-
the testers do not know. olations.

Our research attempts to overcome the above men-Bishop and Dilger studied one class of the time-of-
tioned difficulties. It has a deterministic procedure to cooheck-to-time-of-use (TOCTTOU) flaws [4]. A TOCT-
duct and test, a criterion to decide when testing shodl®U flaw occurs when an application checks for a partic-
stop. It overcomes the limitation of the lack of knowledgelar characteristic of an object and then takes some ac-
of the environment by emulating possible attacks usitign that assumes the characteristic still holds when in
the faults injection technique. Finally, our approach oveact it does not. This approach focuses on a source-code
comes the limitation of testers’ knowledge by offering based technique for identifying patterns of code which
set of concrete faults that should be injected into applicauld have this programming condition flaw. One of its
tion. limitations is that static analysis cannot always determine

Adaptive Vulnerability Analysis (AVA) is designed bywhether the environmental conditions necessary for this
Ghosh et al. to quantitatively assess information systefass of TOCTTOU flaws exist [4]. The authors conclude
security and survivability. This approach exercises softrat dynamic analyzers could help test the environment
ware in source-code form by simulating incoming malduring execution and warn when an exploitable TOCT-
cious and non-malicious attacks that fall under varioi®U flaw occurs. Our approach is dynamic. Instead
threat classes [21, 22, 27, 28]. In this respect, our owhdetecting dangerous environment conditions, we in-
work parallels the AVA approach. A major divergence agect dangerous environment conditions and see whether
pears, however, with respect to how incoming attacks dhe application will fail.
simulated. AVA chooses to perturb the internal state of Fink and Levitt employ application-slicing technique
the executing application by corrupting the flow of dat® test privileged applications. Specifications are used to
and the internal states assigned to application variablgfce an application to an executable subset relevant to the
Our approach chooses to perturb the environment stspecification, and manual methods are used to derive test
by changing the attributes of the environment entity awidta for the slice. By using application slices as the ba-
perturbing the input that an application receives from tises of security testing, they assume that testing a slice is
environment. Our approach should be considered as cagivalent to testing the whole application [7]. The moti-
plementary to AVA. vation behind the application-slicing technique is to focus

For attacks that do not affect the internal states of an a reduced and less complex portion of the application
application, AVA appears incapable of simulating thesuch that other static and dynamic analyses are made more
by only perturbing the internal states. For vulnerabilitiefficient. We believe this to be a significant step in secu-
that are caused purely by incorrect internal states, our &py testing. However, what is missing in this approach is
proach cannot simulate them by only perturbing the ean efficient testing technique used to test the slices. This
vironment. One disadvantage of the AVA is the semapaper assumes general testing methods can be used to test
tic gap between the attacks during the use of an applitiae slices and the effectiveness of their approach depends
tion and the perturbation AVA makes during testing. lan the effectiveness of general testing methods on reveal-
other words, knowing that the application fails under cang security flaws, which, as far as we know, is still un-
tain perturbation, it is difficult to derive what kind of atknown.
tacks correspond to this failure. This makes it difficult to Gligor has proposed a security testing method. It elim-
assess the validity of the perturbation. Our approach niaates redundant test cases by 1) using a variant of control
rows the semantic gap by perturbing at the environmesynthesis graphs, 2) analyzing dependencies between de-
application level since most attacks really occur due s$oriptive kernel-call specifications, and 3) exploiting ac-
intentional perturbation of the environment. cess check separability. The method is used to test the Se-

Fuzz is a black-box testing method designed by Milleure Xenix kernel [18]. A key drawback of this approach

11

is that it cannot detect the fact that entire sequences[Hf] J. Goodenough and S. Gerhart. Toward a theory of test-
functions, i.e. access check computations, may be miss- ing: Data selection criteriacurrent Trends in Program-
ing [12] as many security flaws are caused by the missing ming Methodology2:44—79, 1977.

of access checking and input validity checking.

6

[11]

Summary and Future Work [12]

We have presented a white-box security testing meth?gg]
ology using environment perturbation technique, a vari-
ant of the fault injection technique. The methodology is
based on the Environment-Application Interaction (EAI)
model, which captures the properties of a family of soffi4
ware vulnerability. We have applied this methodology to
several real-world systems and applications, and we have
successfully identified a number of security flaws that ex-

ist for several years without being discovered.
Future work will concentrate on applying this method-

[15]

ology to more applications. We are in the progress of de-
veloping and conducting a set of experiments to evaluate
the effectiveness of this methodology. In the future, W&s]
hope to be able to develop a prototype tool for security
testing based on this methodology.

References

(1]

(2]

(3]

(4]

(5]

[17]

(18]

T. Aslam. A taxonomy of security faults in the unix oper-
ation system. Master’s thesis, Purdue University, August
1995.

B. Beizer. Software Testing Techniquesvan Nostrand [19]
Reinhold, New York, 1990.

M. Bishop. A taxonomy of unix system and network vul-
nerabilities. Technical Report CSE-95-10, Department go]
Computer Science, University of California at Davis, May
1995.

M. Bishop and M. Dilger. Checking for race conditions ir21]
file acessesThe USENIX Association Computing Systems
9(2):131-151, Spring 1996.

J. Clark and D. Pradhan. Fault injection: A method for val-
idating computer-system dependabilifeEE Computer [22]
pages 47-56, June 1995.

[6] W. Du and A. Mathur. Categorization of software errors

(7]

(9]

that led to security breaches. 2dst National Information [23]
Systems Security Conferen@rystal City, VA, 1998.

G. Fink and K. Levitt. Property-based testing of privileged
programs. IrProceedings of the 10th Annual Computer Se-
curity Applications Conference; Orlando, FL, USA; 1994
Dec 5-9 1994. [

B. Miller, L. Fredriksen and B. So. An empirical study
of the reliability of unix utilities. Communications of the 5
ACM, 33(12):32—44, December 1990. [25]

S. Garfinkel and G. SpaffordPractical UNIX & Internet
Security O'Reilly & Associates, Inc., 1996.

12

H. Zhu, P. Hall and J. May. Software unit test coverage
and adequacyACM Computing Survey29(4):366—427,
December 1997.

W. Howden. The theory and practice of functional testing.
IEEE Software2:18-23, September 1985.

W. Kao, R. lyer and D. Tang. FINE: A fault injection and
monitoring environment for tracing the unix system behav-
ior under faultsIEEE Transactions on Software Envineer-
ing, 19(11):1105-1118, November 1993.

S. Dawson, F. Jahanian and T. Mitton. ORCHESTRA:
A fault injection environment for distributed systems. In
26th International Symposium on Fault-Tolerant Comput-
ing (FTCS) pages 404-414, Sendai, Japan, June 1996.

G. Kanawati, N. Kanawati and J. Abraham. FERRARI:
A tool for the validation of system dependability proper-
ties. InProceedings 22nd International Symposium Fault
Tolerant Computingpages 336—344, July 1992.

I. Krsul. Software Vulnerability AnalysishD thesis, Pur-
due University, Department of Computer Sciences, West
Lafayette, Indiana, 1998.

R. R. Linde. Operating system penetration AFIPS Na-
tional Computer Conferenc@ages pp. 361-368, 1975.

V. D. Gligor, C. S. Chandersekaran, W. Jiang, A. Johri,
G. L. Luchenbaugh and L. E. Reich. A new security test-
ing method and its application to the secure xenix ker-
nel. |EEE Transactions on Software EngineeringE-
13(2):169-183, February 1987.

E. J. McCauley and P. J. Drongowski. The design of a se-
cure operating system. Mational Computer Conference
1979.

C. E. Landwehr, A. R. Bull, J. P. McDermott and W. S.
Choi. A taxonomy of computer program security flaws.
ACM Computing Survey26(3), September 1994.

A. Ghosh, T. O’'Connor, G. McGraw. An automated ap-
proach for identifying potential vulnerabilities in software.
In IEEE Symposium on Security and Privagakland,
CA, 1998.

J. VWoas, F. Charron, G. McGraw, K. Miller and
M.Friedman. Predicting how badly “good” software can
behave |EEE Software14(4):73-83, August 1997.

B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A.
Natarajan and J. Steidl. Fuzz revisited: A re-examination
of the reliability of unix utilities and services. Technical
report, Computer Sciences Department, University of Wis-
consin, 1995.

24] C. Pfleeger, S. Pfleeger and M. Theofanos. A methodology

for penetration testingComputers and Securit§(7):613—
620, 19809.

S. Han, K. Shin and H. Rosenberg. Doctor: An integrated
software fault injection environment for distributed real-
time systems. Technical report, University of Michigan,
Department of Elect. Engr. and Computer Science, 1995.

[26] M. Hsueh, T. Tsai and R. lyer. Fault injection techniques
and tools.IEEE Computerpages 75-82, April 1997.

[27] J. Voas. Testing software for characteristics other than cor-
rectness: Safety, failure tolerance, and securityproc. of
the Int'l Conference on Testing Computer Softwa:1@96.

[28] J. Voas and G. McGrawsoftware Fault Injection: Incocu-
lating Programs Against ErrorsJohn Wiley & Sons, Inc.,
1998.

13

