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Abstract

In the computer security task of anomaly detection,
we wish to measure not only the classi�cation accu-
racy of a detector but also the average time to detec-
tion. This quantity represents either the average time
between false alarms (for a valid user) or the aver-
age time until a hostile user is detected. We examine
the use of noise suppression �lters as componants of
a learning classi�cation system for this domain. We
empirically evalute the behaviors of a trailing window
mean value �lter and a trailing window median value
�lter in terms of both accuracy and time to detection.
We �nd that the median �lter is generally to be pre-
ferred for this domain.

Keywords: Noise reduction, time to classi�cation,
application.

Introduction

In this paper we examine methods for learning to clas-
sify temporal sequences of nominal data as similar to
or di�erent from previously observed sequence data
under the constraint that we wish to do so `quickly'.
This problem arises from the computer security task
of anomaly detection (Kumar, 1995). The task in this
domain is to characterize the behaviors of a computer
user (the `valid', or `normal' user) with a pro�le so that
unusual occurrences can be detected by comparing a
current input event stream to the pro�le. To reduce
the potential for hostile activities, we wish to make
this classi�cation by using as few events as possible.
The goal of the anomaly detection domain is to pro-

duce an agent which can detect, through observations
of system state, audit logs, or user generated events,
when a user or system deviates from `normal' behavior.
The presumption is that malicious behavior, especially
on the part of an intruder who has penetrated a sys-
tem account, will appear di�erent from normal behav-
ior in terms of some function of the present and his-
torical observations of system state (Anderson, 1980;
Denning, 1987). In this paper we refer to the in-
dividual observations as events. Taken over time,
the events form an unbroken stream of temporally
distributed nominal data. Our work focuses on an

anomaly detection agent as a personal assistant that
aids a single user in protecting his or her account
from abuse. The alternative approach, of character-
izing the system's state as normal or anomalous, en-
tails a somewhat di�erent set of problems and is exam-
ined in, for example, (Lunt, 1990; Forrest et al., 1996;
Lee et al., 1997). The learning task for our domain
is to form a pro�le describing the valid user's normal
patterns of behavior, and to use that pro�le to classify
incoming events as belonging to or di�ering from the
valid user. We also wish to make such detections in the
shortest possible time, to minimize the potential dam-
age from a hostile user. We envision the techniques
presented here as working in conjunction with other
methods such as biometric measurements and attack
signature detection to create an overall accurate and
robust security assistant.

Because the space of possible malicious behaviors
and intruder actions is potentially in�nite, it is imprac-
tical to characterize normal behavior as a contrast to
known abnormal behaviors (Spa�ord, 1998). It is also
desirable, for privacy reasons, that an anomaly detec-
tion agent only employ data that originates with the
pro�led user or is publicly available | an important
criterion to much of the computer security community.
This requirement leads to a learning situation in which
only instances of a single class (`valid user') are avail-
able.

In this environment, the anomaly detection agent
sees only an unbroken and undi�erentiated stream
of incoming events and must classify each event as
anomalous or normal. The associated learning task
(training the agent to recognize a particular user) pos-
sesses a number of di�culties not faced by traditional,
static learning tasks, including learning in the presence
of concept drift, online learning, single class learning,
and temporal sequence learning. These issues are fur-
ther complicated by the high degree of noise introduced
by normal variations in human activity patterns.

In other work, (Lane and Brodley, 1998b; Lane and
Brodley, 1998a), we have explored some of the data
representation, single class learning, online learning,
and concept drift issues associated with the anomaly



detection domain. The purpose of this paper is to ex-
plore the issues of noise suppression and time to de-
tection. In particular, we explore the behaviors to two
noise suppression �lters in terms of both classi�cation
accuracy and time to detection.

The Anomaly Detection System
In this section we describe the architecture of the
anomaly detection system classi�cation component
and describe the sources of time lag within that com-
ponent. We present the �ltering techniques that are
used for noise suppression in the classi�er.

System Architecture

We have developed a learning classi�cation system for
the anomaly detection domain. The architecture of the
classi�cation system is shown in Figure 1. Input event
tokens (appearing at the far left) are compared to the
current user pro�le via a similarity function, Sim(), to
yield a temporal stream of similarity values. Because
this stream is highly noisy, and classi�cation decisions
on the raw stream are di�cult to make accurately, we
smooth it with a window-based �ltering function, F ().
The smoothed similarity stream is classi�ed accord-
ing to an induced learning model, yielding a stream
of binary classi�cations. At each time step, the out-
put stream classi�es the current user as normal (1) or
anomalous (0).
In other work we have investigated properties of the

similarity function (Lane and Brodley, 1997b), data
representation (Lane and Brodley, 1998b) and online
pruning policies for the user pro�le (Lane and Brodley,
1998a), and model parameter estimation and updating
issues (Lane and Brodley, 1998a). In this paper, we
focus on the noise-suppression �ltering function, F (),
and its relation to classi�cation accuracy and time to
detection. To highlight the role of this fragment, we
employ only the simplest, static version of the classi-
�er. In this formulation, the pro�le is a dictionary of
previously seen instances, the similarity function is the
1-nearest-neighbor rule with an appropriate distance
measure between instances, and the model parameters
are a pair of thresholds, tmax and tmin. The �nal clas-
si�cation rule is that a sequence of events is considered
normal if and only if its similarity to the pro�le is be-
tween the classi�cation thresholds.

Time to detection

To minimize the potential for damage by a hostile user,
we wish to make accurate classi�cations of `abnormal-
ity' as quickly as possible, both in wall clock time
and in number of input tokens required for classi�-
cation. While a great deal of damage can be done in
a very short time (a sort of `hit-and-run' attack pat-
tern), attack signature matching systems employing
databases of known attacks can be employed to detect
large classes of short term attacks (Kumar, 1995). We
acknowledge that a learning system will have di�culty

matching the temporal performance of such known-
pattern detectors, so we focus our attention on longer
term attacks in which an intruder penetrates a system
for the purposes of exploiting its resources for a long
period. (For an example of such an attack, see (Stoll,
1989).)
The anomaly detection system outlined in Figure 1

is su�ciently fast in terms of wall time1, but requires
a token lag between input and classi�cation. That is,
the classi�er must accumulate t additional tokens be-
fore making a classi�cation of the �rst input token.
We refer to the lag period t as the minimum detection
length, as it represents the minimum time in which an
anomaly can be detected.
The lag factor is introduced by two components of

the classi�er: the similarity function, Sim(), and the �l-
tering function F (). The similarity function compares
subsequences of l input tokens to the user pro�le, yield-
ing a similarity measure for the entire group. In (Lane
and Brodley, 1997a), we examined the e�ect of the
choice of l on classi�cation accuracy, �nding that the
optimal value varied from user to user but that l = 10
was an acceptable compromise across users. The token
subsequences are allowed to overlap, so no additional
lag is required to align the subsequences. The �lter
function is a trailing window �lter that operates on w
similarity values to produce a single smoothed value.
Thus, the entire system introduces a minimum detec-
tion length of t = l + w tokens.

Filtering methods

We have examined two classes of �ltering methods for
this domain. The �rst, trailing window mean �ltering,
is de�ned by:

vD(i) =
1

w

iX

i�w+1

SimD(i)

where SimD(i) is the similarity of the token sequence
starting at time-step i to the user pro�le D, W is the
window length, and vD(i) is the �nal value of sequence
i with respect toD. This can be viewed as the normal-
ized convolution of a rectangular window with the raw
similarity stream.2 This �lter is known to be good at
removing high frequency e�ects such as noisy edges or
ringing at the expense of small (relative to w) features
and sharp gradients (Oppenheim and Schafer, 1989).
The second �ltering method we investigate is trailing

window median �ltering, de�ned by:

vD(i) = medfSimD(i �w + 1); : : : ; SimD(i)g

Where the medfg operation denotes selection of the
median element of a set and the other terms are as

1Our prototype anomaly detector can classify approxi-
mately six months of history data for a single user in four
minutes, running on an Sparc Ultra 1.

2Other window shapes such as Hamming or Kaiser are
possible, although we do not investigate these here.
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Figure 1: Architecture of the classi�cation component of the anomaly detection system

given above for the mean �lter. This �lter is non-linear
and does not possess as convenient an interpretation
as the mean �lter. The median �lter is known to be
generally strong at removing impulsive or shot noise,
while preserving edges and features of intermediate size
(Jain, 1989).

Empirical Evaluation

In evaluating the performance of alternative �ltering
functions for this domain, we must examine both the
relative accuracy and detection length of each method.
In the anomaly detection domain, there are two classes
of errors which must be accounted for. We shall denote
the rate of incorrectly 
agging normal behaviors as the
false alarm rate and the rate of failing to identify ab-
normal or malicious behaviors as the false acceptance
rate. The converse measures are the true acceptance
and true detection rates, respectively. The detection
length is the mean time (in events) between a hostile
user's �rst access to an account and the recognition of
an anomaly. When the valid user is falsely accused,
the detection length is the mean time between false
alarms.
In this section, we present an empirical evaluation

of the impacts of the choice of �lter function, F (), and
�lter window length, w, on the accuracy and detection
length of the anomaly detection classi�er.

Data Sources and Structure

Of the thousands of possible data sources and features
that might characterize a system or user, we chose to
examine UNIX shell command data. We did so for
two primary reasons: �rst, our interest is mainly in
methods of characterizing human behavioral patterns
and command traces re
ect this more directly than do,
say, CPU load averages and, second, shell data is sim-
ple and convenient to collect.3 Lacking shell traces of
actual intrusive or misuse behaviors, we demonstrate

3The techniques discussed here could, of course, be ex-
tended to cover any discrete stream of nominal values such
as system call logs, keystrokes, or GUI events. Further-
more, this classi�er could likely be combined with classi-
�ers based on other measures to yield a system with higher
overall performance.

the behavior of the system on traces of normal sys-
tem usage by di�erent users. In this framework, an
anomalous situation is simulated by testing one user's
command data against another user's pro�le. This rep-
resents only a subset of the possible misuse scenarios
| that of a naive intruder gaining access to an unau-
thorized account | but it allows us to evaluate the
approach.
We have acquired shell command data from eight

di�erent users over the course of more than a year.
The data events were tokenized into an internal format
usable by the anomaly detector. In this phase, com-
mand names and behavioral switches were preserved,
but �le names were omitted under the assumption that
behavioral patterns are at least approximately invari-
ant across �le names. The pattern `vi <file> gcc

<file> a.out', for example, represents the same class
of action regardless of whether file is homework1.c

or filter.c.
From each user's data, seven thousand tokens were

extracted and divided into train (5,000), parameter se-
lection (1,000), and test (1,000) sets. For each user's
data, a pro�le was constructed from the train data and
classi�cation model parameters were chosen by anal-
ysis of the parameter selection set. (The details of
pro�le construction and parameter selection are given
in (Lane and Brodley, 1998b).) Each user model was
then used to classify the eight available test sets. Test-
ing a model against the same user's test set yields the
true accept rate, while testing against other users' data
yields true detect rates. We use the static test model
here to emphasize the e�ects of the �lter component
independent of the online learning components. The
online learning version of this system is described in
(Lane and Brodley, 1998a).
To examine the behaviors of each �lter for di�er-

ent window lengths, w, we ran the entire test set for
each �lter with w 2 f11; 21; 41; 81; 161g. Odd window
sizes were chosen so that the median function yielded
a single input point, rather than an interpolation.

Accuracy

Examples of the classi�cation accuracies of the two
�ltering methods are given in Table 1. Because the per-



Pro�led Tested Accuracy
User User Window length

11 21 41 81 161
Mean �lter

USER0 58.1 65.9 90.6 100.0 100.0
USER2 USER1 37.0 44.0 83.7 100.0 100.0

USER7 87.1 93.4 100.0 100.0 100.0
SELF 95.1 95.5 87.8 84.3 77.5

USER1 20.8 36.3 48.7 85.1 99.8
USER7 USER5 21.9 38.9 60.0 94.3 100.0

USER6 09.7 15.3 19.6 75.5 100.0
SELF 99.0 99.6 100.0 98.8 98.0

Median �lter
USER0 44.1 78.0 93.3 99.5 100.0

USER2 USER1 20.9 63.4 83.1 94.5 100.0
USER7 76.6 99.6 100.0 100.0 100.0
SELF 96.4 91.2 91.7 88.1 100.0

USER1 17.6 34.6 62.8 72.4 91.1
USER7 USER5 16.8 35.2 80.4 92.0 100.0

USER6 07.8 14.7 35.8 46.3 100.0
SELF 100.0 98.8 99.2 96.8 81.8

Table 1: True accept (SELF) and true detect (other UESRs) rates for the �ltering methods.

formances of the techniques are quite disparate across
users, variances for averaged accuracies are large mak-
ing direct comparison di�cult. Therefore, we present
extreme cases for the techniques to illustrate strengths
and weaknesses of each.
The �rst case appears in data tested against

USER2's pro�le. Here we �nd that the median �lter
model has worse true detection rate than the mean �l-
ter at the shortest window lengths (w = 11 sequences),
but wins substantially at w = 21. At longer window
lengths, the median �lter either wins or has compara-
ble performance to the mean �lter. In true acceptance
accuracy, the median �lter is superior in all cases ex-
cept w = 21. The direct tradeo� between true de-
tection and true acceptance accuracy is typical of this
domain, and results from a high degree of overlap be-
tween the similarity value distributions of the valid and
abnormal users.
An alternative case is displayed in data tested

against USER7's pro�le. Here, the mean value �lter
has superior accuracies for both true detect and true
accept rates in most cases. The exception is the value
w = 41 sequences. We observe that, while there is a
generally increasing trend in accuracy with increasing
w, the trend is not uniform. A dramatic jump occurs
between w = 40 and w = 80 for the mean �lter, while
a similar jump occurs between w = 20 and w = 40 for
the median on USER7's pro�le. This jump represents
the point at which the �lter gains the majority of its
noise suppression ability.
It seems, then, that while the median �lter does

not have the highest overall accuracies, it does achieve
strong accuracies for smaller values of w than does the

mean �lter. Although we do not have space to display
them here, we have observed cases in which each of the
�lters has generally decreasing performance with larger
values of w. We �nd that, overall, the median �lter has
higher true detection accuracies than the mean �lter in
approximately 65% of the test cases, but outperforms
mean on true accept rate only 52% of the time.

Detection length

Possibly a more practically useful measure than ac-
curacy is total detection length. This is both a measure
of how frequently the legitimate user will be bothered
by false alarms and a measure of how quickly a hos-
tile user can be detected. In Table 2, we give detec-
tion lengths (in sequences examined) for both �ltering
methods on the same cases examined above. We omit
the minimumdetection length (Section ) as it is a �xed
overhead for a given w. In this table, we wish the SELF
detection length to be high, indicating infrequent false
alarms, and the detection length for `hostile' users to
be low, indicating rapid detection.
In general, we observe the same trends that we found

in accuracy. The important point to note is that de-
tection length is not directly proportional to detection
frequency. Speci�cally, a 10% true detection rate is
equivalent to a 10% false alarm rate in average de-
tections per unit time, yet the detection lengths for
the two cases are quite di�erent. Such a case can be
observed in tests against USER7's pro�le for the me-
dian �lter, in which the worst false alarm rate (18.2%)
corresponds to a detection length of 187.3 sequences,
while the much lower true detection rate of 7.8% cor-
responds to a detection length of only 82.7 sequences.



Pro�led Tested Detection length
User User Window length

11 21 41 81 161
Mean �lter

USER0 7.4 6.1 1.9 0.0 0.0
USER2 USER1 16.3 15.3 3.1 0.0 0.0

USER7 0.8 0.6 0.0 0.0 0.0
SELF 256.8 276.6 167.7 94.3 128.8

USER1 45.6 31.1 33.3 7.8 0.0
USER7 USER5 48.3 31.9 10.8 1.0 0.0

USER6 64.4 61.6 60.6 8.0 0.0
SELF 227.2 421.6 476.0 259.5 257.7

Median �lter
USER0 10.1 4.0 1.4 0.0 0.0

USER2 USER1 45.7 10.6 3.0 0.8 0.0
USER7 1.7 0.0 0.0 0.0 0.0
SELF 277.2 251.3 255.6 254.6 416.0

USER1 49.8 38.0 17.3 17.5 3.3
USER7 USER5 59.1 43.6 4.1 2.5 0.0

USER6 82.7 72.9 29.7 26.8 0.0
SELF 491.0 266.2 268.5 247.9 187.3

Table 2: Detection lengths for the �ltering methods.

This implies that the detector is performing as we de-
sire | 
agging hostile users often and quickly, while
generating false alarms only rarely.
Finally, we note that because the minimum detec-

tion length factor is omitted, the actual values shown
are not fully re
ective of total time to detection. A
tabulated detection length of 10.6 sequences at w = 21
corresponds to an actual detection length of 31.6 se-
quences or a total of 41.6 tokens (for sequence length
l = 10), and is to be preferred to a tabulated value
of 0.0 sequences for w = 161. Overall, we have found
that the median �lter has superior detection length
performance in approximately 62% of the true detec-
tion cases and in 60% of the true acceptance cases.

Conclusions

We have examined a pair of �lter functions for noise
suppression in the learning and classi�cation compo-
nent of an anomaly detection system. Time to de-
tection is a critical issue in this domain. We investi-
gated the the impact of trailing window mean value
and trailing window median value �ltering on the time
to detection for a variety of simulated attack data sets.
We found that, though the median �lter does not uni-
formly have the highest accuracies or best time to de-
tection, it does achieve better results with shorter win-
dow lengths than does the mean �lter. This is caused
by an abrupt jump in accuracy which occurs at shorter
window lengths for the median �lter than it does for
the mean �lter.
We are currently investigating the nature of this

jump, in terms of the type and degree of noise encoun-

tered in the similarity function signal. We are also ex-
amining the behavior of non-rectangular windows for
the �lter functions. Full characterization of these �l-
tering techniques for this domain will need to include
examination of interactions with the pro�le formation
and classi�cation model stages of the complete learn-
ing system. Finally, we intend to investigate methods
for characterizing which �ltering method is likely to be
most successful for a given pro�le in terms of observed
properties of the un�ltered similarity signal.
While the median �lter evidences superior perfor-

mance in between 60% and 65% of the test cases, this
margin is not enough to declare it to be universally the
superior method for this domain. Nevertheless, it does
display strong performance, and if a single method is
to be selected, the median �lter is the preferred candi-
date.
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