
Approaches to Online Learning and Concept Drift
for User Identification in Computer Security

Terran Lane and Carla E. Brodley

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285
terran,brodley@ecn.purdue.edu

Abstract

The task in the computer security domain of anomaly
detection is to characterize the behaviors of a computer
user (the `valid' , or `normal' user) so that unusual oc-
currences can be detected by comparison of the cur-
rent input stream to the valid user's profile. This task
requires an online learning system that can respond
to concept drift and handle discrete non-metric time
sequence data. We present an architecture for online
learning in the anomaly detection domain and address
the issues of incremental updating of system parame-
ters and instance selection. We demonstrate a method
for measuring direction and magnitude of concept drift
in the classification space and present and evaluate ap-
proaches to the above stated issues which make use of
the drift measurement.

Introduction
In this paper we examine methods for learning to clas-

sify temporal sequences of nominal data as similar to or
different from previously observed sequence data when the
underlying concept is subject to drift. This problem arises
from the computer security task ofanomaly detection(Den-
ning, 1987; Kumar, 1995). The goal in this domain is to
characterize the behaviors of a computer user (the `valid' ,
or `normal' user) with a profile so that unusual occurrences
can be detected by comparing a current input stream to the
profile. This task presents us with a number of challeng-
ing machine learning issues including learning from dis-
crete, non-metric time sequence data, learning from exam-
ples from only a single class, online learning, and learning
in the presence of concept drift. We envision the techniques
presented here as working in conjunction with other meth-
ods such as biometric measurements and attack signature
detection to create an overall accurate and robust security
assistant.

Our work focuses on an anomaly detection agent as a
personal assistant that aids a single user in protecting his
or her account from abuse. The alternative approach, of
characterizing thesystem'sstate as normal or anomalous,

Copyright c1998, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

entails a somewhat different set of problems and is ex-
amined in, for example, (Lunt, 1990; Forrest et al., 1996;
Lee et al., 1997). The learning task for our domain is to
form aprofiledescribing the valid user's normal patterns of
behavior, and to use that profile to classify incoming events
as belonging to or differing from the valid user. The asso-
ciated learning task (training the agent to recognize a par-
ticular user) possesses a number of difficulties not faced by
traditional, static learning tasks. In particular:

Concept drift: A user's behaviors and tasks change with
time. The anomaly detection agent must be capable of
adapting to these changes while still recognizing hostile ac-
tions andnotadapting to those.

Online learning: There is no division of `training data'
versus `testing data' . Instead, the agent is presented with a
homogeneous instance stream and must select appropriate
training instances itself.

Single class learning:The agent is only provided with
examples from a single class (the normal user's data) for
learning. Because the space of possible malicious behav-
iors and intruder actions is potentially infinite, it is imprac-
tical to characterize normal behavior as a contrast to known
abnormal behaviors (Spafford, 1998).

Temporal sequence learning: Many learning algo-
rithms process instances composed of attributes and classes
defined on a fixed attribute space. This representation is not
particularly amenable to the unbroken stream data available
in this domain. Either a mapping from the one to the other
must be sought, or an algorithm designed for the native tem-
poral data space must be found.

In other work, (Lane and Brodley, 1997a; Lane and Brod-
ley, 1997b), we have explored some of the data represen-
tation and single class learning issues associated with the
anomaly detection domain. The purpose of this paper is to
explore issues associated with online learning and concept
drift.

Structure of the Learning Component
Previously we have examined a static model of learning for
anomaly detection in which separate train, parameter se-
lection, and test data sets are available (Lane and Brodley,
1997a; Lane and Brodley, 1997b). An online learning sys-
tem does not have the luxury of such distinctions. Incre-



mental methods are needed to select instances for insertion
into the model and to update current model parameters. In
this section, we describe the structure of the learning com-
ponent of the anomaly detector and enumerate the methods
employed in our online system.

Token and Similarity Streams The incoming stream of
tokens (events) is segmented into overlapping fixed-length
sequences. The choice of the sequence length,l, depends
on the profiled user. While not optimal for all users, the
value l = 10 was found to be anacceptable compromise
across users. Each sequence is then treated as an instance in
an l-dimensional space and is compared to the known pro-
file. The profile is a set,fTg, of previously stored instances
and comparison is performed between ally 2 fTg and the
test sequence via a similarity measure. Similarity is defined
by a measure,Sim(x; y), which makes a point-by-point
comparison of two sequences,x andy, counting matches
and assigning greater weight to adjacent matches. Similar-
ity to the profileSimfTg(x), is defined by:SimfTg(x) =
maxy2fTg Sim(x; y). This is the 1-nearest-neighbor rule
of IBL on the non-Euclidean space defined bySim. This
measure, and some alternatives, is described and evaluated
in (Lane and Brodley, 1997b).

Comparison of successive incoming sequences yields a
similarity stream representing the similarity over time of
the observed user to the profiled user. This signal turns out
to be quite noisy, so it is smoothed with a trailing window
mean value filter with window lengthw. Because classifi-
cation takes place after smoothing, the window length lim-
its the shortest time in which initial detection of an intruder
can be made. We choosew to be 80 sequences — the mini-
mum window length that we have found to reduce noise ac-
ceptably. It has been argued that an intruder can do a great
deal of damage in less thanl + w = 90 tokens and that
alternative approaches should be explored for this reason.
While the danger of short-term attacks is undeniable, there
are also large classes of attackers who exploit a system over
longer time periods (see (Stoll, 1989) for one example) and
we orient our detector toward such attacks. Furthermore, an
alternate branch of computer security research focuses on
pattern matching detectors for locating known short-time
attack signatures (for example, (Kumar, 1995)).

Classification Classification is performed on each point
of the smoothed similarity stream, yielding a value of 0
(anomalous) or 1 (normal) for each time step. Classifica-
tion is subject to two types of errors: false acceptance (in-
correctly identifying hostile behaviors as normal) and false
alarm (incorrectly flagging normal behaviors). It's impor-
tant that the false alarm rate be low for the system to be
usable, but we wish to induce as little falseacceptance as
possible for that cost. Because only a single class is avail-
able for training (the valid user), it's not possible to con-
struct a Bayes-optimal classifier. The classification rule we
employ, therefore, is: we assign a 1 ifPfTg(x) � r other-
wise we assign a 0. Wherer defines the `acceptable' false
alarm rate, andPfTg(x) denotes the probability of observ-
ing similarity valuex given user profilefTg. As it turns

out, allPfTg' s that we have observed are characterized by
a single strong peak with low-probability noisy tails. So, in
this case, the above-stated classification rule can be approx-
imated as: assign a 1 iftmin � x � tmax otherwise assign
a 0, wheretmin andtmax are classification thresholds in the
similarity measure space.

System Initialization The question of initializing an
anomaly detector to a user's behavioral patterns in ase-
cure fashion is a complex one and is beyond the scope of
this paper. For the work described here, weassumethat
an adequate sample (a thousand tokens, in this paper) of
intruder-free data is available for the profiled user. In (Lane
and Brodley, 1997a), we show empirically that a thousand
tokens is often sufficient to characterize a large, but not
complete, segment of user behaviors. During system ini-
tialization all sequences are automatically classified as valid
and incorporated into the profile. To set initial classification
thresholds, the system compares incoming sequences to the
current profile to accumulate a similarity value frequency
histogram that approximatesPfTg(x). With this distribu-
tion and an `acceptable' false alarm rate,r, we can calcu-
late the decision boundaries,tmax andtmin such that thea
posteriori probability outside the thresholds isr. For this
paper,r was chosen to be 2%.

Instance Selection For each classified point after initial-
ization, the learning system needs to decide whether to add
the point to the profile or to reject it. This decision is es-
pecially critical in the presence of concept drift, when an
unknown behavior pattern might represent the valid user
changing tasks or might represent an intruder. A common
approach to dealing with concept drift is to incorporate in-
stances misclassified by the current model (Aha and Kibler,
1989). Such an approach is not appropriate to the anomaly
detection domain because a training signal is not available
to the learner to inform it that it has made a misclassifica-
tion. Furthermore, storing instances about which the learner
is extremely uncertain (i.e. have low similarity to the pro-
file) as is done in (Lewis and Catlett, 1994), has the poten-
tial danger of assimilating hostile actions into the profile.
Sequences labeled as abnormal are, therefore, not included
in the profile. For the sequences labeled normal, we have
examined four storage heuristics. Thekeepheuristic simply
preserves all normal sequences. The converse policy,reject,
refuses all sequences. An intermediate policy,uncertain,
attempts to focus on sequences about which the profile is
uncertain yet still labels normal. Under this heuristic, a se-
quence is assigned a probability of insertion as follows: if
tmin � Sim0

fTg(x) � tmax then,

Pins(x) = k
tmax � Sim0

fTg(x)

tmax � tmin

otherwise,Pins(x) = 0, whereSim0
fTg(x) denotes the

smoothed similarity value of sequencex with respect to
profilefTg, andk is a constant selected to makeP a prob-
ability distribution. The final instance selection heuristic
is DAIP (Drift Analysis Insertion Policy) which selects se-
quences for insertion only when a measure of concept drift



indicates that the profile needs to be updated. Measurement
of drift and the full description of this heuristic are deferred
to the next section.

Parameter Updating Learning parameters such as se-
quence length, smoothing window length, and classification
thresholds are all, potentially, dynamically adjustable. We
focus here ontmax and tmin — the classification thresh-
olds. After initialization, there are three methods available
for updating the classification boundaries.Entire recalcu-
lates the thresholds at every time step from the similarity
histogram of the entire profile at that time.Windowedcal-
culates the thresholds only from a window of points within
the profile. For this work, we take the window to be the
same size as the initial profile — 1000 tokens — and to be
drawn from the most recently acquired sequences. Finally,
DATA (Drift Analysis Threshold Adjustment), adjusts the
extant thresholds via a measure of the concept drift.

Measurement of Drift Concept drift can take place at
many time scales, varying from a few tokens (perhaps stop-
ping to read email in the middle of writing a conference
article) to change over many months (changing research fo-
cus over time, for example). At the shortest time scales,
drift phenomena are difficult to distinguish from noise. We
focus on drift occurring at longer time scales — weeks to
months — appearing as changes in the stream of similarity-
to-profile measurements.

To quantify one class of drift effects, we calculate the
best fit line (in a mean squared error sense) over a win-
dow of the similarity signal. The window size must be long
enough to suppress most of the noise effects and yet short
enough to be responsive to the scales of interest. We have
found empirically that 1000 tokens is anacceptable length,
but are currently examining methods for selecting this size
automatically. The window size defines the scale at which
we are measuring drift. Because we have no wish to adapt
to behaviors `known' to be hostile, we calculate the best fit
line only over instances classified (by the current model) as
normal. The coefficient of the linear term of the best fit line
then gives us an indication of the general directional trend
of the similarity stream, and we take this value to be our
drift measure,b�.

We employ our drift measure in two learning models. In
theDAIP (Drift Analysis Insertion Policy) model, we em-
ploy the sign ofb� for instance selection. Whenb� � 0, the
similarity measure is generally stable or increasing and the
profile is doing a good job of matching current user behav-
iors. To prevent the profile size from increasing without
bound, we do not insert sequences that are already cov-
ered by the current profile. Whenb� < 0, then the pro-
file is performing poorly, and so is updated by inserting
new instances. TheDATA(Drift Analysis Threshold Ad-
justment) model employs both the sign and magnitude of
b� for parameter estimation.DATAbegins with the clas-
sification thresholds,tmax(0) andtmin(0) selected during
system initialization, and updates them ateach time step by
addingb�: tfmax;ming(i+1) = tfmax;ming(i)+ b�(i). Under
this model, the `width' or discrimination of the thresholds

Model Select Update
P-opt keep entire
truncate reject entire
W-opt keep window
DAIP DAIP entire
DATA keep DATA
U-ins uncertain entire

Table 1: Learning models evaluated.

(tmax � tmin) remains unchanged for the lifetime of the
system.

Empirical Evaluation
In this section, we describe learning models, data sources,
and experimental structure and give results evaluating the
learning models previously described.

Models examined For time and space reasons, we have
not tested all of the twelve possible combinations of in-
stance selection and parameter updating policies. Instead,
we have focused on examining each issue (parameterupdat-
ing and instance selection) separately. The learning mod-
els we have examined are summarized in Table 1. While
some of the names we assign to learning models have obvi-
ous meanings (truncate andrandom ), others bear some
explanation.P-opt is `pseudo-optimal' . This model re-
tainsall valid instances of a user's behavior and is capable
of finding the best possible similarity measure for a new
sequence given prior experience. As we will see, how-
ever, making the best similarity match does not necessarily
equate to having the best overall performance. Similarly,
W-opt preserves all instances for the similarity calcula-
tion, but selects thresholds only over a window. Finally,
U-ins selects instances for inclusion in the profile based
on their uncertainty (i.e. proximity to the minimum accept-
able similarity threshold).

Data Sources and Structure We chose to examine
UNIX shell command data for two primary reasons: first,
our interest is mainly in methods of characterizing human
behavioral patterns and command traces reflect this more
directly than do, say, CPU load averages and, second, shell
data is simple and convenient to collect. of actual intrusive
or misuse behaviors, we demonstrate the behavior of the
system on traces of normal system usage by different users.
In this framework, an anomalous situation is simulated by
testing one user's command data against another user's pro-
file. We have acquired shell command data from eight dif-
ferent users over the course of more than a year. The data
events were tokenized into an internal format usable by the
anomaly detector. In this phase, command names and be-
havioral switches were preserved, but file names were omit-
ted under the assumption that behavioral patterns are at
least approximately invariant across file names.

Adaptation to Drift Concept drift in the anomaly detec-
tion domain can only occur between the valid user's past
and present behaviors. Changes in the observed patterns of



Learning Tested Elapsed time (thousands of tokens)
Model User 1 2 3 5 10 15

True accept rate (%)
P-opt SELF 100.0 97.8 96.6 89.2 81.0 80.9
W-opt SELF 100.0 97.1 95.4 82.2 55.9 51.3
DATA SELF 100.0 97.9 96.7 89.6 83.3 84.2

True detect rate (%)
USER2 5.4 5.5 5.6 5.7 6.8 6.9

P-opt USER4 52.2 52.8 52.9 54.2 54.7 55.1
USER6 16.2 17.3 30.7 18.4 26.2 21.5
USER2 7.9 10.4 26.9 68.5 100.0 96.3

W-opt USER4 52.0 58.8 99.7 73.9 100.0 79.4
USER6 16.2 96.7 100.0 95.7 100.0 97.7
USER2 5.6 5.6 14.5 8.9 11.9 17.0

DATA USER4 52.6 53.0 67.4 59.7 62.5 66.8
USER6 20.1 27.2 99.5 40.2 94.4 95.3

Table 2: Results for parameter selection (U1's profile)

usage attributable to another user are not drift but anoma-
lies. Thus, we are interested in measuring two quantities for
a learning model: the true acceptance rate over time (repre-
senting the ability of the model to adapt to drift) and the true
detection rate independent of time (representing the ability
of the model to differentiate anomalies from drift). To mea-
sure these quantities, we constructed 35 simulated `attack'
traces for each user. For each user we began by building five
`base' traces of lengths one, two, five, ten, and fifteen thou-
sand tokens drawn from that user's data. Each base trace
was then converted into seven final traces by appending a
block of one thousand tokens fromeach other user's data.
The true acceptance rate is then the accuracy of a model on
the basal part of a data trace, while the true detection rate is
the accuracy on the final thousand tokens of a trace.

Our experiments are examining two axes simultaneously
in these experiments: parameter measurement and instance
selection policies. We present results for each class of
learning model in turn below. Merely presenting average
summaries of each technique's performance over all data
sets does not not reveal the true structure of the space, be-
cause such summaries have high variances for this domain.
Instead, we present extreme and characteristic case behav-
iors for the various models to indicate the strengths and
weaknesses of each approach.

Parameter selection methods Table 2 displays relative
behaviors for the three tested parameter adaptation meth-
ods. Recall that all of these methods use the `keep' instance
selection strategy. We find, here, thatP-opt has strong
true accept performance but weak true detection rates. Re-
call thatP-opt sets its classification thresholds based on
its entire previous experience. While this allows it to rec-
ognize a broad range of behaviors, it has the twin diffi-
culties that the decision boundaries become widely spaced
(thus increasing false acceptance) and that it becomes dif-
ficult to adjust the decision boundaries quickly in response
to changing circumstance. As an attempt to minimize the
second problem, we introduced theW-opt model. This

Learning Tested Elapsed time (thousands of tokens)
Model User 1 2 3 5 10 15

True accept rate (%)
DAIP SELF 100.0 93.9 87.2 73.1 61.4 57.9
truncate SELF 100.0 94.8 90.4 81.4 78.7 80.8
U-ins SELF 100.0 92.2 86.0 75.2 65.7 62.9

True detect rate (%)
USER0 0.0 6.6 4.6 10.8 23.6 31.2

DAIP USER1 18.2 25.4 27.5 30.2 43.6 41.3
USER4 57.9 66.5 68.5 65.2 64.2 73.1
USER0 5.1 5.1 5.1 5.1 11.3 5.1

truncate USER1 11.3 11.3 11.3 11.3 14.9 11.3
USER4 50.1 50.1 50.1 50.1 55.0 50.1
USER0 0.0 1.5 3.4 1.2 12.2 16.5

U-ins USER1 14.2 16.5 15.2 19.5 31.1 31.7
USER4 62.3 65.2 62.1 68.3 69.2 67.5

Table 3: Results for instance selection (U5's profile).

learning strategy also preserves all known valid instances
for the purpose of similarity measurement, but selects clas-
sification boundaries based only on data from a window of
those instances. WhileW-opt has substantially superior
true detect rates, it suffers in true accept rates. This model
is setting tighter decision boundaries than is theP-opt
model and can adapt more quickly, but is unable to pre-
dict changing usage patterns. Analysis of similarity value
frequency over the trailing window only givesW-opt an
idea of where the conceptwas, not where it isgoing to
be. A useful balance is struck between the two extremes
by DATA. This model begins with the classification bound-
aries selected during system initialization and updates them
in response to the large scale measure of drift described
above. Again, the update is based only on data from a re-
cent window of experience, butDATAhas some indication
of where the similarity value concept will be in the imme-
diate future. Finally,DATA prevents the decision region
from becoming too narrow by preserving the initially se-
lected width (i.e.tmax � tmin is constant). Overall, we
find that DATAmatches or outperformsP-opt approxi-
mately 70% of the time on both true accept and true detect.
Conversely,W-opt beatsDATAon 68% of the true detect
cases, but loses to it in 81% of the true accept tests.

Instance selection methods One class of behaviors for
instance selection models is displayed in Table 3. These
models employ the `entire' parameter selection method.
Thetruncate model is, in this case, equivalent to merely
employing the static classifier trained during system initial-
ization. Its true detect rate is effectively constant; the varia-
tions observed here are effects of the smoothing filter which
can `carry over' high similarity values from the valid user's
data into the hostile user's data. As the `valid user' concept
drifts, this static model cannot adapt and trueaccept ac-
curacy drops. The `intelligent' instance selection methods
experience a more drastic drop in this case, in exchange for
increasing detection accuracy. The problem here seems to
be less in the particular method of instance selection, but in



Learning Tested Elapsed time (thousands of tokens)
Model User 1 2 3 5 10 15

True accept rate (%)
DAIP SELF 100.0 91.5 94.3 92.9 95.3 96.5
truncate SELF 100.0 83.7 83.0 81.8 82.9 82.9
U-ins SELF 100.0 100.0 98.5 92.2 94.4 94.9

True detect rate (%)
USER3 95.0 81.0 93.6 93.7 69.8 52.9

DAIP USER4 95.0 24.4 93.7 38.6 26.7 26.2
USER6 94.7 41.2 92.2 50.0 37.6 34.9
USER3 96.0 96.5 96.2 94.6 97.6 96.1

truncate USER4 96.3 96.5 96.3 94.8 97.4 96.1
USER6 95.7 95.6 96.2 93.5 95.6 95.2
USER3 83.5 82.0 87.6 85.3 74.5 71.0

U-ins USER4 13.8 21.8 24.9 27.8 33.2 34.2
USER6 94.6 41.4 67.5 75.6 43.8 50.6

Table 4: Results for instance selection (U2's profile).

the fact of instance selection itself. All models discussed
in this paper accumulate only instances that are `known'
(by the current model) to be valid. If the current model
does not encompass a particular change in concept, then
all behaviors associated with that change are lost, and the
decision boundaries become correspondingly narrower. As
truncate is a static model, it is not subject to such loss.
ThoughDAIP makes an effort to account for changing con-
cept, it appears to fail for this user.U-ins performs better
(in both accept and detect rates), apparently because it fo-
cuses explicitly on uncertain instances and, thus,accepts a
wider class of behaviors than doesDAIP.

The converse situation is displayed in Table 4. Here
DAIP andU-ins are quite effective at identifying the true
user, but are far more lax in detecting hostile actions. In this
case,truncate ' s static classifier turns out to be more ac-
curate at discriminating foreign behaviors. Now the narrow
concentration of the adaptive methods serves them, as this
user's behaviors seem concentrated to a narrower class and
to experience less drift than the behaviors of other users.
(Manual examination of the history traces verify this obser-
vation.) Because the static decisionboundaries were not
originally selected optimally,truncate is restricted to
a more-or-less constant false alarm rate, while the other
methods are free to adapt to moreaccuratehypotheses.
The tradeoff is that there appears to be a certain degree of
overlap between USER2's behaviors and those of the other
users. The adaptive methods seem to focus the profile and
decision thresholds into this layer — as hostile behaviors
are added to the profile it becomes progressively easier to
add more hostile behaviors and the falseaccept error rate
grows quickly.

Overall, we find thatDAIP matches or outperforms
truncate in 52% of the true accept tests, but loses to it on
true detect nearly 85% of the time. Interestingly, the cases
in which DAIP wins are concentrated into a few profiles
for true accept tests and a few profile/attacker pairs for true
detect tests. This indicates that there may be many sorts of
drift taking place, and that the DAIP bias is appropriate to

only some of them. The disparity is even greater forU-ins
who beatstruncate 60% of the time on true accept but
loses 90% of the time on true detect tests.

Conclusions
We have examined some of the difficulties involved in
tracking user behaviors over time for use in the computer
security task of anomaly detection. We demonstrated an on-
line learning system for this domain, and described some of
the issues inherent in incremental learning with no training
signal. In particular, we investigated techniques for updat-
ing hypothesis parameters and selecting instances for inser-
tion into the user profile. We found that, although there is
high variability in the strengths and weaknesses of the var-
ious techniques, intelligent methods exist foreach of these
areas. A measure of drift based on estimating its magnitude
and direction in a continuous, 1-D feature space was found
to be useful (in up to 70% of the cases) both for updating
parameters and for selecting instances for inclusion in the
profile. An instance selection method based on uncertainty
sampling was also found to have areas of strength.

In our future work we plan to be able to exploit comple-
mentary strengths in different learning models through the
use of hybrid systems. In this paper we investigatedeach
phase of the overall learning model (parameter selection
and instance selection) separately. Our hope is that intel-
ligent combination of techniques from each can lead to a
stronger overall system. The second avenue of exploration
is to attempt to exploit overlapping strengths through a form
of meta-learning. We have observed that some techniques
(truncate andDATA, for example) yield generally un-
correlated results, making them tempting models for use
with meta-learning.

References

References
Aha, D. W. and Kibler, D. (1989). Noise-tolerant instance-
based learning algorithms. InProceedings of the Eleventh
International Joint Conference on Artificial Intelligence,
pages 794–799, Detroit, Michigan. Morgan Kaufmann.

Denning, D. E. (1987). An intrusion-detection model.
IEEE Transactions on Software Engineering, 13(2):222–
232.

Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff,
T. A. (1996). A sense of self for Unix processes. InPro-
ceedings of1996 IEEE Symposium on Computer Security
and Privacy.

Kumar, S. (1995).Classification and detection of com-
puter intrusions. PhD thesis, Purdue University, W.
Lafayette, IN.

Lane, T. and Brodley, C. E. (1997a). An application of
machine learning to anomaly detection. InNational Infor-
mation Systems Security Conference, Baltimore, MD.

Lane, T. and Brodley, C. E. (1997b). Sequence matching
and learning in anomaly detection for computer security.



In Proceedings of AAAI-97 Workshop on AI Approaches
to Fraud Detection and Risk Management.
Lee, W., Stolfo, S., and Chan, P. (1997). Learning pat-
terns from UNIX process execution traces for intrusion
detection. InProceedings of AAAI-97 Workshop on AI
Approaches to Fraud Detection and Risk Management.
Lewis, D. and Catlett, J. (1994). Heterogeneous un-
certainty sampling for supervised learning. InMachine
Learning: Proceedings of the Eleventh International Con-
ference, pages 148–156, New Brunswick, NJ. Morgan
Kaufmann.
Lunt, T. F. (1990). IDES: An intelligent system for de-
tecting intruders. InProceedings of the Symposium: Com-
puter Security, Threat and Countermeasures, Rome, Italy.
Spafford, E. H. (1998). Personal communication.
Stoll, C. (1989).The Cuckoo's Egg. Pocket Books.


