Machine Learning Techniques for the Domain
of Anomaly Detection for Computer Security

Terran Lane
Purdue University
Department of Electrical and Computer Engineering and

the COAST Laboratory

July 16, 1998

Keywords: Concept Drift, Lifelong Learning, Sequence Learning, Hidden
Markov Models, Classification, User Recognition, Computer Security,
Anomaly Detection.

Contents

List of Figures 111
List of Tables iv
Abstract v

1 Introduction

1.1
1.2

1
Motivation and Background 1
Goals of this Research 3
1.2.1 A Note on Terminology 4
1.2.2 A Hierarchical Model of Behavior Learning 4
1.2.3 Sequence Learning 5
1.2.4 Continual Learning and Concept Drift 6

2 Issues and Related Work 8
2.1 Requirements for an Adaptive Anomaly Detection Agent . . . 8
2.1.1 The Scope of “Anomalous’” 9
2.1.2 Accuracy and Error Rates 9
2.1.3 Resource Consumption 10

2.2 Machine Learning Issues 10
2.2.1 Concept Drift and Continual Learning 11
2.2.2 Temporal Sequence Learning 17
2.2.3 Data Reduction oo 20

2.3 Computer Security Issues. 0oL 20
2.3.1 Rule-Based Detectors 21
2.3.2 Statistical Detectors oL 22
2.3.3 Time Sequence Anomaly Detection Models 23

2.3.4 The Insider Threat 24

i

2.3.5 Hostile Training 25

2.3.6 System Initialization 25
3 Current Results 27
3.1 Description of the Current Experimental System 27
3.1.1 Data Collection and Parsing 28
3.1.2 Sequence Comparison via Similarity Measures 29
3.1.3 Instance Selection and Dictionary Pruning 32
3.1.4 User Verification 34
3.2 Experimental Results 37
3.2.1 Experimental Structure. 37
3.2.2 Testing Procedure. 39

3.2.3 Proof of Concept: User Differentiation via Sequences is
Possibleo 39
3.2.4 Exploration of the Effects of Dictionary Size 40
3.2.5 Investigations Into the Problem of Instance Selection . 41
3.2.6 On the Choice of Similarity Measures 42
3.3 Analysis of Concept Drift oo 45
3.4 Summary of Current Status 48
4 Proposed Research 49
4.1 Machine Learning Issues 49
4.1.1 On-line Learning 50
4.1.2 Temporal Sequence Learning 50
4.1.3 Induction of a Hierarchical Model of Behavior 51
4.1.4 Hidden Markov Models 53
4.1.5 Concept Drifto oL 56
4.2 Computer Security Issues.o 58
4.2.1 The Trusted Insider Problem 59
4.2.2 The Hostile Training Problem 59
4.3 Summary and Prioritizationo 0L 60
References 62

A An Overview of Hidden Markov Models 69

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5

4.1

An example behavioral hierarchy for human/computer interac-

Prototype anomaly detection system data flow overview
Sequence similarity calculation algorithm
Similarity measure stream. (a) Raw. (b) Smoothed.
Window length effects for USER3’s profile
Comparison of Bayes-optimal decision boundary and accept-
able false alarm rate boundary. The rightmost curve (user U3)
represents the profiled user. 0L,

Proposed behavioral hierarchy construction algorithm.

il

4

28
31
34
36

37

51

List of Tables

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

Scoring and update functions for the similarity measures

Summary of dictionary pruning heuristics.
Tokens available for experimentation per user
Proof of Concept: All users vs. all profiles.
Profiled users (SELF) versus all other users for various dictio-
NATY SIZES. + v v v v v e e e e e e e e e e e e e
Results of LRU instance selection
Detections over all users and similarity measures for USEROQ’s
profile, dictionary of 1000 sequences
Detections over all users and similarity measures for USER2’s
profile, dictionary of 200 sequences

v

32
33
38
40

41
42

43

Abstract

In this proposal, we examine the machine learning issues raised by the domain
of anomaly detection for computer security. The anomaly detection task is to
recognize the presence of an unusual (and potentially hazardous) state within
the behaviors or activities of a computer user, system, or network with respect
to some model of ‘normal’ behavior which may be either hard-coded or learned
from observation. We focus, here, on learning models of normalcy at the user
behavioral level, as observed through command line data. An anomaly de-
tection agent faces many learning problems including learning from streams
of temporal data, learning from instances of a single class, and adaptation
to a dynamically changing concept. In addition, the domain is complicated
by considerations of the trusted insider problem (recognizing the difference
between innocuous and malicious behavior changes on the part of a trusted
user) and the hostile training problem (avoiding learning the behavioral pat-
terns of a hostile user who is attempting to deceive the agent). We propose
an architecture for a learning anomaly detection agent based on a hierarchical
model of user behaviors. The leaf level of the hierarchy models the temporal
structure of user observations, while higher levels express interrelations be-
tween descendant structures. We describe approaches to fabrication of such
models, employing instance based learning models and hidden Markov models
as the fundamental behavioral modeling units. Approaches to the trusted in-
sider and hostile training problems are described in terms of the hierarchical
behavior model. Finally, we present empirical results for a prototype anomaly
detection system which employs an instance based learning model in a single
level model.

Chapter 1

Introduction

1.1 Motivation and Background

Consider your own activities on a ‘standard’ day—you may interact with
dozens of people in person or remotely, read, write, drive, work, cook, plan,
play. You are engaged in a myriad of tasks of varying degrees of importance
and requiring varying degrees of attention. But these tasks are almost cer-
tainly different, in detail if not in kind, than the daily tasks you were engaged
in a year ago, five years ago, ten years ago. You have adapted to changing cir-
cumstances and demands. In part, your current actions and responses reflect
the unique demands of the current situation, but to a large degree they are
also shaped out of previously learned behaviors and skills. This ability to act
by recycling previously gained knowledge when possible while acquiring new
knowledge or skills when necessary is one of the greatest strengths of human
intelligence and is one of the major contributing factors to human adaptability.

A desirable goal is to replicate a human-like degree of adaptability for use
in (semi-)autonomous agents. Such agent programs, if they are expected to
endure and function for extended periods in environments approaching the
complexity of the natural world (or even an advanced synthetic environment
such as the Internet), must be able to react to continually changing environ-
ments. Behaviors must be acquired and remembered while useful and disre-
garded when no longer relevant. As tasks change, an agent is presented with
new challenges and must be able to recognize similarities to previously encoun-
tered situations. In changing circumstances, it must be able to apply familiar
problem solving techniques as well as to develop novel solutions when previous

skills are inadequate. Furthermore, to decide when and how to apply retained
knowledge and when to search for new, the agent must be able to recognize
that some facet of the situation has changed and in what way.

There are a number of ways in which such dynamic tasks differ from the
classical static machine learning domains, but we devote our attention to two
important problems. The first is representation and comparison of temporal
sequences of discrete events for learning, and the second is detection of and
adaptation to concept drift, which we define here to be the change, with time,
of the underlying concept to be learned for a given domain.

A great deal of machine learning research over the past two decades has
been devoted to the problem of acquiring behaviors or knowledges suitable to
a static single domain. Although the assumption of conceptual stasis is often
a simplification of real environments, it’s an extremely useful assumption and
is often perfectly adequate to the task at hand. In general, however, a great
many tasks dont exhibit this static nature. Now that time invariant learning
tasks are becoming well understood, there is growing research interest directed
to dynamic and adaptable systems. Studies have examined issues such as
concept drift [55], learning bias from multiple tasks [7], continual learning
[53, 57], multitask learning [9], knowledge transfer between tasks [46, 44], and
lifelong learning [69]. While progress has been made, this branch of study
still contains many unresolved issues. Methods are needed to reliably detect
when the underlying concept being modeled has changed since training began
and to adapt the current domain model to the new conditions. It may even
be necessary to alter the learning bias (the heuristic that guides the learning
algorithm in its search for a domain model) in order to adapt the current
model to the new concept.

One domain in which continual learning or other forms of adaptive model-
ing show great promise is human behavioral modeling. While the general field
of human behavior is enormously complex, the subset of behaviors exhibited
by humans in interaction with a computer is relatively simple and more easily
examined, yet still provides a rich domain for investigation. In particular, we
have found that the anomaly detection domain, widely studied in the com-
puter and information security community (see, for example, [16, 39, 28]) is
a fruitful domain for the examination of issues in machine learning for dy-
namic systems. The general goal of anomaly detection is to model the state
of a computer system, network, or user and to detect later misuse in terms
of deviations from the known patterns. In this work, we focus on a personal

anomaly detection agent, which assists a user by learning that user’s behav-
iors in order to help protect his or her account or system from unauthorized
access. An adaptive learning model is a promising approach to profiling user
behavior for such anomaly detection systems [31, 30, 32]. This domain is a
particularly interesting learning context as it presents a number of difficulties
to an adaptive learning system:

o The system must be both adaptable to change on the part of a valid user,
yet resistant to intruders masquerading as authorized users or attempting
to train the system away from the valid user’s profile.

e For reasons of privacy and practicality, it is often necessary to train such
a system with data from only a single user and we thus have the task of
inducing a concept from examples of only a single class.

e The anomaly detection domain presents us with a stream of discrete
events (commands, system calls, user interface events, etc) from which we
wish to induce a concept. This task of learning from temporal sequence
data has its own issues that bear investigation such as learning on non-
metric spaces and learning relations within feature vectors.

In this research proposal, we will examine issues surrounding the task of
continual learning for autonomous agents as applied to the anomaly detection
for computer security domain. We present a detailed description of the do-
main and the machine learning issues that it raises, and we outline the scope
of the proposed research. In the following chapters, we examine related work
in the machine learning and computer security communities, present a prelim-
inary implementation and current experimental results, and finally describe
the proposed research.

1.2 Goals of this Research

We divide the proposed research into two broad branches: issues involved with
continual learning and concept drift, and issues involved with representation
of and learning from time sequence data. We briefly describe each of these
branches, here, and its relation to the anomaly detection domain.

a.out —a —b <datal> results
Is —laF

less results

diff results results.old

Figure 1.1: An example behavioral hierarchy for human/computer interac-
tions.

1.2.1 A Note on Terminology

Although the work presented in this proposal can be extended to analysis of
any stream of discrete events such as graphical user interface events, com-
mand names, or system calls, our implementation focuses on learning from
UNIX shell command traces. Therefore, use of the terms ‘command’, ‘inter-
face event’, or ‘atomic event’ in the general discussions that follow should be
taken to refer to any discrete event.

1.2.2 A Hierarchical Model of Behavior Learning

Our approach to human behavioral learning is based on a causal model of
human/computer interaction. The hypothesis is that a user approaches a
computer system with a goal in mind and that interactions with the machine
are driven by that goal. The human’s actions and responses are driven by the
context of the goal, while the computer’s actions and responses are driven by its
internal state. Furthermore, we believe that the hierarchical model of problem
solving embodied in most modern computer systems will evidence itself in the
user’s behaviors. Thus, we are interested in inducing hierarchies of behavioral
patterns, where each level of the hierarchy is modeled as temporal sequences

of discrete events. An example of such a hierarchy is displayed in Figure 1.1.
The lowest level of the hierarchy (leaf nodes) is comprised solely of atomic
user events, while higher levels are comprised of conglomerations of lower level
events representing tasks or subtasks. The root of the tree should represent the
profiled user. In this framework, detection of concept drift can be modeled as
detection of deviations from ‘normalcy’ or expected behavior. Adaptation to
drift depends on the underlying model used for temporal grouping. Deviations
from normalcy can occur at any level of the hierarchy and agent reactions
depend on the hierarchy level in question. Deviations at the leaf level represent
usage of previously unseen commands while deviations at higher levels indicate
introduction of new subtasks or even goals. Anomalies at the lower levels of
the tree probably indicate learning on the part of the user and should be used
to adapt the current model of the user. Anomalies at the higher levels, on the
other hand, may indicate an intruder or abusive actions and should be flagged
by the system as suspicious.

1.2.3 Sequence Learning

A key component of the hierarchical continual learning model presented above
is the ability to learn patterns of events in temporal sequences. There are
two major ways in which the sequence learning problem differs from many
previously examined learning tasks. Temporal learning has been studied for
time series data, but almost exclusively for numerical time series in which the
existence of a full ordering and a distance metric allow the application of many
powerful mathematical techniques. Time series of discrete elements, however,
do not inherently possess such distance properties so techniques such as spec-
tral analysis [42], clustering [21], or neural networks for temporal prediction
[12] are not directly applicable.

Discrete, non-metric spaces have been studied, but mostly for the atem-
poral case, in which an instance is considered to be a feature vector in which
element ordering is not significant. Decision trees [47], summary statistics
[34], rule learners [48], and even k-nearest neighbor classifiers [2] have been
used for learning on discrete valued spaces but all of these methods consider
each feature independently. That is, the contribution of a single feature to the
final classification depends only on its value and not on its position within the
sequence, its relation to the preceding and succeeding features, etc. Thus, a
straightforward application of such techniques (in which each time step within

a fixed length sequence is considered to be a single feature element) will ig-
nore the information contained within the temporal relations among elements.
Such methods also typically depend on multi-class training data.

We propose to investigate the structure of the discrete valued temporal
sequence learning problem. In particular, we are interested in the use of both
an instance based learning (IBL) model (similar to nearest neighbor based
classification) and hidden Markov models (HMM’s) as representations for this
problem. While examining these algorithms, we must keep in mind that the
domain demands low space and time overhead for learning and classification.
There is potentially a huge volume of data available, but the anomaly detection
system must not be obtrusive to normal system usage. Both IBL. and HMM
learning methods store dictionaries of behavior exemplars' and classification
requires time linear in the size of the dictionary. Thus, we require methods for
constraining the storage space required for each method.

1.2.4 Continual Learning and Concept Drift

A personal anomaly detection agent must be capable of adapting to its user’s
behavioral changes, as observed through new observed behaviors. At the same
time, it must avoid acquiring new behaviors that result from an intruder or
from hostile activities. In the worst case, the anomaly detection system must
resist the actions of a hostile user with perfect knowledge of the detector’s
learned model, who attempts to subvert its learning strategy with carefully
planned and seemingly innocuous behaviors.

We describe the required adaptive abilities of an anomaly detection agent
in terms of the continual learning paradigm proposed by Ring [52, 53]. Con-
tinual learning, as described by Ring, is the process of behavioral adaptation
engaged in by a learning agent embedded in a potentially changing, partially
observable environment for which a single skill or knowledge set is insufficient.
There are two basic sub-tasks that must be handled by a continual learning
system to successfully adapt to changing environments. Initially, the agent
must detect that conditions have changed and that currently held knowledge
is no longer adequate. Once the agent is aware that change has occurred,
it must adapt its internal model to the current situation. This may be ac-
complished by immediately discarding the current model and inducing a new

Tn the hidden Markov model context, the exemplars are individual models that represent
classes of user behaviors.

one, or by altering the current model to fit new circumstances. Note that the
two phases may not be separated within the learning algorithm; techniques
that automatically discard training instances by age, for example, integrate
the two phases with an assumption of drift. In general, the process of adapt-
ing current models to new information has been studied under the rubrics of
multitask learning [9], knowledge transfer between tasks [46, 44], and lifelong
learning [69].

Chapter 2

Issues and Related Work

In this chapter we will discuss the goals of the anomaly detection domain,
related background work, and the issues raised by the proposed research. Al-
though we make an effort to divide the issues into those most nearly learning
related and those most nearly security related, we note that the nature of the
domain is such that it can be difficult to completely separate the two.

2.1 Requirements for an Adaptive Anomaly
Detection Agent

Before examining the anomaly detection problem in detail, we discuss the
overall performance goals of an adaptive anomaly detection system. When ex-
amining machine learning algorithms for anomaly detection, we must keep in
mind several practical requirements imposed by the domain and intended use.
Specifically, the purpose of any security system is to enhance the users’ ability
to accomplish their desired tasks. In the context of anomaly detection, this
enhancement is increased confidence on the parts of individual in the privacy
and confidentiality of personal systems or accounts. From a global perspective,
strong anomaly detection systems increase confidence in authenticity (the be-
lief that actions originating with a particular account are actually associated
with the owner of that account) and increase assurance that shared system
resources and data are being used properly.

In this section, we review personal versus global definitions of ‘anomaly’,
requirements for system accuracy, and space and time resource issues.

2.1.1 The Scope of ‘Anomalous’

The class of anomalous activities includes a wide variety of different activities.
Intuitively, what we are trying to detect is ‘hazardous’, ‘hostile’, or ‘abusive’
activities. Unfortunately, these concepts are quite loosely defined and, in
the final analysis, depend on human desires and goals. With respect to a
single user, employing an anomaly detection agent to monitor a single personal
computer system or account, this notion is close to ‘intrusive’. All actions
undertaken by the system owner are, by definition, in accord with that person’s
desires and the (implicitly defined) security policy. The system owner is likely
to be interested in actions that seem to originate with an outsider.

When the anomaly detector is employed as an assistant to a network se-
curity officer, on the other hand, the notion of ‘abusive’ is somewhat broader
than just ‘intrusive’. In this context, there is a security policy that defines
acceptable system uses. While we still wish to detect illicit system use by
intruders, we are also interested in abusive activities by authorized users. One
legitimate user may be accessing another’s account to gain unfair advantage,
for example. Or, perhaps, a user is disseminating controlled information to
untrusted parties or to competitors.

2.1.2 Accuracy and Error Rates

To increase general user confidence of privacy and authenticity, the anomaly
detection agent must be accurate at detecting intrusions and hostile activities.
At the same time, though, it must not raise false alarms too often; users
and system administrators will quickly learn to ignore the ‘security agent that
cried wolf’, if it often flags innocuous behavior as hostile. We thus have two
classes of errors with which we are concerned: the false accept rate (rate of
accepting hostile behaviors as anomalies) and the false alarm rate (rate of
incorrectly rejecting the valid user). The converse measures are true detect
and true accept rates. While we wish both error rates to be as low as possible,
there is inevitably a tradeoff between complimentary error classes, so a decision
must be made as to what error rates are considered ‘acceptable’. The tradeoff
between acceptable levels for the two error rates is dictated by security policy
on a site by site basis. In light of these demands, we require that the error
rate tradeoff be governed by a user-selectable parameter.

10

2.1.3 Resource Consumption

Beyond merely being accurate, a security system must not become obtrusive
through time or space resource consumption. A perfectly accurate anomaly
detector will still be useless if it consumes all available resources. In practical
terms, the anomaly detector must not introduce unreasonable CPU loads or
storage requirements. Because there is usually a tradeoff between resource
consumption and model accuracy, the definition of ‘reasonable’ resource allo-
cation should also be user selectable.

2.2 Machine Learning Issues

We divide the machine learning issues into continual learning and temporal
sequence induction. Continual learning and the related fields of concept drift,
lifelong learning, and knowledge transfer are concerned with dealing with learn-
ing in a changing environment where previously acquired knowledge can be
useful to future tasks. The anomaly detection domain is such an environment,
as the user being monitored changes tasks, knowledge, and behavior over time.
By temporal sequence induction, we refer to the process of learning from tem-
porally distributed sequences of discrete, unordered elements, such as occur
when examining audit trails or command traces.

Before discussing the literature and its relations to our own work, we in-
troduce the following framework for describing machine learning algorithms
in general: Learning algorithms consist of two major parts: the hypothesis
language (the language used to represent learnable concepts as partitions of a
feature space) and the bias, [38], (the heuristic used to search the hypothesis
space for appropriate generalizations). The hypothesis language constrains
the possible concepts learnable by the algorithm and should general enough to
cover the complete space of concepts of interest. For many commonly employed
learning systems, the hypothesis language is actually capable of representing
any possible function on the feature space. Although significant increases in
learning rate can be realized if the hypothesis language is restricted, it may
be difficult or impossible to guarantee that interesting concepts are still ex-
pressible under the restricted language. It is, therefore, generally the bias that
defines the power of the learning algorithm for a particular task.

11

2.2.1 Concept Drift and Continual Learning

In a domain, such as the anomaly detection domain, where the target concept is
subject to change with time, it is not possible to locate a single, static, optimal
hypothesis. This property was named concept drift by Schlimmer in [55] where
he studied the capacities of two learning methods to adapt to concept changes
in a synthetic domain. In his experiments, the drift could be modeled precisely
and controlled by the experimenter so that analysis of learner effectiveness
was straightforward. Schlimmer employed radical concept drifts, in which the
entire concept was instantaneously replaced with an unrelated concept. Since
Schlimmer’s work, a number of researchers have examined the problem of
dealing with concept drift in different domains. We are interested in domains in
which concept drift is not radical. That is, a majority of the concept (some user
behaviors, in our domain) remains unchanged and should be preserved while
a segment of it requires update. The questions of recognizing that drift has
occurred, locating the appropriate sections of the model to adapt, and adapting
the model as efficiently as possible has been studied under the titles continual
learning, knowledge transfer, lifelong learning, and multitask learning.

The term continual learning was coined by Ring to describe the learning
process employed by autonomous, long-lived agents in changing environments.
Specifically, in [53] he gives the following seven criteria for a continual learner:

e [A continual learner] Is an autonomous agent. It senses, takes actions,
and responds to the rewards in its environment.

e Can learn context-dependent tasks, where previous senses can affect fu-
ture actions.

o Learns behaviors and skills while solving its tasks.

o Learns incrementally. There is no fixed training set; learning occurs at
every time step; and the skills the agent learns now can be used later.

o Learns hierarchically. Skills it learns now can be built upon and modified
later.

o Is a black box. The internals of the agent need not be understood or
manipulated. All of the agent’s behaviors are developed through train-
ing, not through direct manipulation. Its only interface to the world is
through its senses, actions, and rewards.

12

e Has no ultimate, final task. What the agent learns now may or may not
be useful later, depending on what tasks come next.

Following these guidelines, he developed a reinforcement oriented maze
navigation agent around his Temporal Transition Hierarchy learning algorithm
[52]. Although the requirements for the anomaly detection agent that we
present here differ in some key aspects from Ring’s definition, we feel that the
overall classification of an anomaly detection agent as a continual learner is
appropriate. In particular, the anomaly detection system has the following
requirements:

o [t should be an autonomous agent. We conceive of this system as a
software assistant that monitors a single user’s account, reporting to
the account owner or security officer when it detects abuses. Security
measures should be unobtrusive, however, so the agent should have as
little direct interaction (other than passive data collection) with the user
as possible. It must, therefore, learn and act independently and with
very little behavioral feedback. It has no expected termination point,
being active for the entire lifetime of the user’s account.

o [t must learn from examples of only a single class, recognizing events that
are ‘suspiciously’ different from that class. Because it’s impractically
difficult to characterize the space of abusive, anomalous, or suspicious
actions in an a priori fashion, the space can only be described by example
(thus, the need for a learning system in the first place). But by sampling
from multiple users, we cannot be sure of obtaining enough training
data to fully describe such a space; there always remains the possibility
that an intruder will possess a behavioral pattern different from any
previously observed. Furthermore, privacy issues often limit the type
and amount of data available from users other than the account owner,
while efficiency considerations dictate that the model should be compact
and not reserve space characterizing parts of the space not used in the
primary task of recognizing the target user.

o [t should be able to recognize events within patterns and patterns within
larger contexts. Individually innocuous events (a file copy, for example)
may be seen to be suspicious within larger contexts (if the file being
copied is the system password file). This argument can also be extended

13

to higher levels of behavioral patterns; file system browsing may be sus-
picious in the context of email reading, and one user’s normal behaviors
may be another’s attack pattern.

o [t should constantly acquire new skills. Although there is only a single
task to be solved — recognition of the valid user (or, conversely, recog-
nition of anomalous events) — multiple skills can contribute to the task.
If a recognizer for a behavioral pattern is taken to be a skill, then the
agent’s job is to continuously acquire new skills and learn the appropriate
contexts for their applications.

e The agent must constantly both learn and apply its knowledge. Because
the user’s tasks and behaviors change with time, no single training set
can be sufficient to cover the necessary behaviors.

o [t should be capable of detecting a hierarchy of behavioral patterns. We
hypothesize that the hierarchical formulation of problem solving will be
manifested in the user’s behaviors, and that this hierarchical structure
can be induced from the user’s input data. Thus, ‘higher level’ behavioral
recognizers (task or goal recognizers, for example) can make use of ‘lower
level” recognizers developed previously.

e The agent should learn and function independently of human direction.
Thus, its internal model needn’t to be manipulable by an outside ob-
server. This has the dual benefit of relieving a human from the task of
constantly updating a rule base (the goal of an adaptive learning system
in the first place) and obscuring the model’s details from a malicious
user who might wish to emulate or modify them.

o [t must constantly and unceasingly adapt and acquire new skills. The
anomaly detection agent has no ‘final goal’. Its lifetime is the lifetime of
the user’s account. While its goal is constant — monitor the account for
unauthorized use or abuse — the tasks and skills necessary to accomplish
that task are mutable.

Ring’s Temporal Transition Hierarchy algorithm [51, 52] builds a syn-
chronous higher order neural network whose higher level nodes act to recognize
contextual information (in terms of inputs to the network at the previous time
step) and modify the connection weights between the input and output nodes.

14

Such a structure is inappropriate to the anomaly detection task for a number
of reasons. The lack of negative instances renders the neural network training
rule ineffective, and the neuronal class discrimination model (spatial regions
defined by hyperplanes) is not well suited to the non-metric nature of the
feature space.

Schmidhuber has examined a continual learning, reinforcement oriented
domain similar to Ring’s, [56, 57]. The system he develops to tackle the
problem employs a generalized, Turing-equivalent programming language as a
hypothesis representation language and a search engine (using Levin Search) to
construct programs within this language. Programs are preserved or discarded
based on an amortized reward accrued while the program is executing. The
programs are permitted to be self-modifying so there is allowance for adaptive
action strategies. While different in implementation, this approach has many
abstract commonalities with Ring’s. In particular, training is based on a
reinforcement feedback signal from the environment and the agent is allowed
to explore the environment as part of the learning process. Again, both of
these conditions are absent from the anomaly detection domain.

The continual learning framework is conceptually similar to learning struc-
tures presented by other researchers, although the temporal continuity of their
systems are often not stressed as highly. Pratt, for example, has given atten-
tion to the problem of knowledge transfer among different tasks [46, 44, 45].
Here the goal is to apply knowledge acquired in one learning task to another
learning task in order to speed learning and possibly increase final accuracy.
Pratt specifically investigates transfer among neural network structures by pre-
serving decision hyperplanes across tasks. The arrangement of hyperplanes, as
defined by the network’s hidden unit weights, determines the decision struc-
ture embodied by the neural network. Literal transfer of these hyperplanes
initializes a new network to the same structure as the previously learned one,
but suffers from inability to adapt to differences from the previous task. To
counteract this deficiency, Pratt introduces the Discriminibility Based Transfer
(DBT) algorithm which selectively alters the ‘inertia’ (magnitude of a hidden
unit’s weight vector) of some hyperplanes, allowing them to more easily adapt
to the new task. The selection process is based on an information metric which
chooses hyperplanes that fail to effectively discriminate the new task’s classes.

As with Ring’s work, the neural network framework is inappropriate to
the anomaly detection domain because of the non-metric nature of the data
space and the lack of negative training instances. Additionally, the information

15

metric employed by the DBT algorithm fundamentally depends on multi-class
data. Finally, Pratt’s entire knowledge transfer paradigm is predicated on the
existence of well differentiated tasks. That is, it is possible to say that there
are k different tasks and that task ¢; is defined by data Xj, task ¢ is defined by
data Xy, and so on. While the anomaly detection domain can be formulated as
consisting of multiple tasks (for example, tasks could correspond to recognizing
different user behavioral patterns), such tasks are not well separated. The data
for the different tasks are intermingled and there is no external indication as
to which data is associated with which task (in fact, some data may well
be associated with multiple tasks). Furthermore, there isn’t even any a priori
indication of how many tasks there are. Thus, Pratt’s formulation of knowledge
transfer cannot be easily applied to the anomaly detection domain.

Thrun’s lifelong learning formulation, [69, 70, 71], frames the lifelong learn-
ing domain as the problem of learning bias from n — 1 tasks to speed learn-
ing on the n'" (presumably related) task. Thrun has examined methods for
transferring knowledge among learners for a memory based learner (k-nearest
neighbor) and for a neural network learner. For the former, he takes two
approaches: data re-representation and transfer of distance metric, while for
the latter he applies the data re-representation scheme and presents an algo-
rithm which augments the neural net training data with gradient information
derived from previous models. Data re-representation is performed by employ-
ing a neural net to learn a mapping from the natural data representation to
the input representation for the concept learning system, allowing the concept
learner to be applied to apparently disparate tasks. Thrun also presents an
analysis of the lifelong learning process that claims that the technique is effec-
tive because over multiple tasks it narrows the bias space. This narrowing has
the effect of learning the invariances present among tasks, allowing a learner
for a given task to specialize a generally correct framework rather than having
to acquire the entire task from scratch.

Thrun’s formulation of lifelong learning and the techniques he develops to
implement it are inappropriate to the anomaly detection domain for many of
the same reasons that Pratt’s knowledge transfer techniques are. Specifically,
the anomaly detection domain does not possess well defined ‘tasks’ that can
be learned separately and data re-representation through a neural network
transform is inappropriate because of the non-metric nature of the feature
space.

A related problem was examined by Caruna in his multitask learning work

16

[10, 11, 9]. In this case, the learning system is presented with a goal task on
which actual performance is to be measured and a number of known related
tasks for which training data is available. In this case, however, the tasks are
not presented sequentially but simultaneously. Caruna employs a multiple out-
put learning model (a neural net, k nearest neighbor, and a kernel regression
model for this work) to learn all tasks simultaneously. He demonstrates that
for some visual recognition tasks and a medical domain task, this model can
acquire the goal task more accurately than can a similar learner trained only
on the goal task. This work is something of a bridge between the static, single
knowledge source framework of learning and the dynamic, multiple knowledge
source framework espoused by Ring. Certainly, the ability to acquire knowl-
edge from multiple related sources is a useful one to an autonomous agent but
Caruna’s particular solution, based as it is on supervised learning algorithms,
is not well suited to the anomaly detection task. Furthermore, like the pre-
viously discussed works, the different tasks comprising the anomaly detection
domain are not easily separated a priori.

In [7], Baxter presented a formal analysis of multitask learning as practiced
by Pratt, Thrun, Caruna, and others. His analysis is based on the hypothesis
that multitask learning is effective because it improves the task-level learning
bias across successive tasks. Baxter assumes that there is a true (optimal) bias
which is drawn from a space of possible biases according to some distribution.
Using an information theoretic model, he shows that when the individual tasks
are closely related and arbitrary sampling of the task space is allowed then the
bias-learning system can converge to the true bias with arbitrary accuracy.
Furthermore, in these conditions, the amortized cost of learning a single task
(in terms of number of examples required to learn a particular accuracy thresh-
old) can be reduced to a bias-dependent optimal constant. Baxter’s analysis
applies to the case in which there is a single optimal bias across all tasks. In
the temporal, concept drift case, it’s possible that the bias itself is changing
with time and that the optimal bias for learning task ¢; is quite different from
the optimal bias for learning task ¢,,. Under such conditions, it is possible that
there exists no single task-level bias that optimizes a fitness criterion across
all tasks.

17

2.2.2 Temporal Sequence Learning

A second feature of the anomaly detection domain is temporal interactions
between events. Human/computer interactions are generally causal and goal
driven; a user commands a computer in order to achieve a particular goal and
responds to the computer’s reactions in such a way as to (hopefully) bring that
goal closer. The process is not fully deterministic, though, as tasks may change
dynamically (interrupting work on a document to answer an email message)
and the same task may be accomplished via different methods on separate
occasions. Finally, noise such as typos or ‘mouse-0’s’ is likely to corrupt the
signal. These two factors lead to a domain in which intra-event correlations
can encode a great deal of characteristic information. Thus, we seek methods
for learning characteristic temporal sequence structures in streams of discrete,
unordered user observations. Current learning methods either do not han-
dle data with temporal structure or employ a distance metric on the feature
space to compare temporal sequences. In this section, we examine current
approaches to temporal sequence learning and their limitations with respect
to the anomaly detection domain.

A number of methods for characterizing time series data have been devel-
oped in the signal processing and pattern recognition communities [21, 42].
Among these are spectral analysis, principle component analysis, and nearest
neighbor matching. Some inductive approaches, such as artificial neural net-
works, have also been applied to time sequence modeling, [13]. Unfortunately,
such techniques depend fundamentally on the existence of a distance metric
on the feature space. On an unordered, discrete space such as that defined
by command strings, there is no such explicit metric. There is no sense that
the string “ ‘cat’’ is ‘closer to’ or ‘further from’ the string ¢ ‘vi’’ than it is
to ‘‘more’’. An artificial ordering can, of course, be imposed upon such a
space, but without an a priori justification such an imposition is dubious at
best.

Methods have been demonstrated for converting an unordered discrete
space into a metric space without introducing an artificial ordering. For exam-
ple, Aha et al. [1], employed a representation in which each discrete feature
of the original data space is converted to a bit vector with one bit position
for each possible value of the discrete variable. Such a representation allows
standard machine learning algorithms to be applied, but expands the dimen-
sionality of the feature space. In the case of anomaly detection, where the
count of possible commands may number in the hundreds to thousands, the

18

dimensional explosion is unacceptable because the data space quickly becomes
too sparse for learning to be practical.

Alternatively, the feature space can be treated in its native form. A number
of techniques have been developed for learning from discrete valued attributes.
Decision trees [47, 49] and symbolic rules [48], for example, are well suited to
representing decision boundaries on discrete spaces. The bias used to search
for such structures, however, generally employs a greedy search that examines
each feature independently of all others. This bias ignores internal relations
arising from causal structures in the data generating process.

One method of circumventing this difficulty is to convert the data to an
atemporal representation in which the causal structures are represented explic-
itly. Norton [41] and Salzberg [54], for example, each independently used such
a technique for the domain of learning to recognize coding regions in DNA
fragments. DNA coding, while not temporal, does exhibit interrelations be-
tween positions that are difficult for conventional learning systems to acquire
directly. Salzberg’s system converted each DNA sequence into a set of sum-
mary features which had been developed by domain experts. He was then able
to apply a standard decision tree algorithm to the classification problem. This
type of approach, while often effective, requires the time and effort of domain
experts to isolate the important feature relations and develop the appropri-
ate mappings. It is desirable to limit the necessity for human intervention
as much as possible. Furthermore, reducing the dependence on hard-coded
domain specific features increases the generality of the system; a system de-
veloped to analyze command traces, for example, could be easily extended to
analyze system call traces if it did not have to depend on a model of com-
mand interactions. Finally, model based assumptions are often dangerous in
computer security. Many attacks that penetrate computer defenses exploit
deficiencies in the abstract security model or gaps between the abstract model
and its concrete implementation. A system which relies too heavily on model
based assumptions may risk missing such attacks.

A non model-based approach to time sequence learning is to employ sum-
mary statistics to reduce temporal data to atemporal. For example, a stream
of command input data can be reduced to summaries such as mean usage of
each command per unit time or mean and standard deviation of time between
command inputs. This approach is popular for adaptive anomaly detection
systems; see, for example, [26, 4, 59]. By employing statistical models for
data reduction, the need for sophisticated knowledge of the target system is

19

alleviated. A statistical model of the data is still required, but such models
are quite general and widely applicable. The difficulty is that many sum-
mary statistics also eliminate the inter-event structures that may be critical
for anomaly recognition. Many known intrusion patterns, for example, employ
well known and widely used commands, such as the UNIX finger command,
merely in novel ways [64]. Such attacks would not appear to many summary
statistics because the anomaly is found not in what commands are employed,
but in how.

One class of methods that are capable of modeling discrete time series data
without an explicit model of system functionality is that of hidden Markov
models (HMM’s). HMM’s have been found to be useful for many time se-
ries recognition and learning tasks such as speech recognition [50, 37|, time
sequence clustering [62], and fault detection [60, 61]. We hypothesize that
they will also prove to be useful models for the class of temporal sequences
encountered in the user behavioral modeling domain.

HMM’s can be thought of as stochastically observable finite state automata
with probabilistic state transitions. The hypothesis language for HMM’s is
the space of possible models — that is, all possible fully or partially connected
graphs (representing state machines), all possible transition probabilities for
those graphs (including zero probability transitions), and all possible obser-
vation processes (the stochastic process mapping the internal model state to
observable variables). The learning bias is then the algorithm used to con-
struct such models from the data. Currently, methods exist to select transition
probabilities and observation process parameters from data [50] but general
methods for domain-specific structure selection (i.e. choice of the size and in-
terconnections of the state transition graph) are lacking. We present a formal
description of hidden Markov models and the associated training rules in Ap-
pendix A and will discuss the structure selection issue in Chapter 4.

Hidden Markov models are an appealing learning technique for the anomaly
detection domain because they can encode both deterministic and stochastic
aspects of user behaviors. The state transition matrix can encode the causal
aspects of behavior that are associated with accomplishing particular tasks.
Because the state transitions are non-deterministic, they can also model occur-
rences of, for example, one task being preempted before completion in favor of
another of higher priority. The stochastic output processes can help to account
for noise in the stream of user observations (such as typos) and can model a
single task being accomplished through multiple alternative methods.

20

2.2.3 Data Reduction

Instance selection is the problem of choosing a small subset of instances to be
used for model construction from the pool of all available instances in order to
decrease resource consumption while maintaining accuracy. The large amount
of data available for user profiling dictates that some form of instance selection
must be a part of any successful anomaly detection system. Until the recent
advent of the field of Knowledge Mining and Data Discovery (KDD), over-
abundance of data had not traditionally been a difficulty for machine learning
researchers — often quite the contrary. Recently, though, a number of re-
searchers have given attention to the instance selection problem. Lewis and
Catlett [33], for example, have examined a selective sampling method that
attempts to gather more information about those instances for which classi-
fication is uncertain — that is, instances for which the current classification
model yields classifications with a low confidence of correctness. Their tech-
nique presupposes a learner that can interact with the data source to request
more examples of the concept. It is infeasible, for most security applications,
for the anomaly detector to request that a user undertake a particular task
merely to examine how he or she handles it.

2.3 Computer Security Issues

The anomaly detection domain has been an area of active study within the
computer and information security communities since Anderson’s introduction
of the concept in 1980 [5], and Denning’s formal model in 1987 [17]. Much of
the research has been explicitly oriented toward the assumption of an intruder
penetrating the computer system from outside, but more modern investiga-
tions have broader scopes. Kumar, for example, defines anomaly detection as
follows: “Anomaly detection attempts to quantify the usual or acceptable be-
havior and flags other irregular behavior as potentially intrusive” [28]. Under
this definition, the scope of anomaly detection encompasses not only violations
by an outsider but also anomalies arising from violations on the part of an au-
thorized user (the trusted insider threat). Current anomaly detection models
consist primarily of expert system rule bases and statistical profiles, though
the emphasis on the various components differs from system to system.

21

2.3.1 Rule-Based Detectors

One approach to misuse detection is to develop a rule base which describes all
possible misuse scenarios and to then employ some form of pattern matcher
(such as an expert system) to activate appropriate rules. This form of detection
is appealing because it can detect patterns of attack quickly as it doesn’t
depend on aggregate data that must be acquired over an extended time period
such as statistics or behavioral profiles. In addition, known attacks can be
reliably detected and differentiated from valid usage without the uncertainty
associated with statistical measures.

Unfortunately, the very idea of misuse or abuse is fundamentally tied to
that of security policy [27], and policy is decided by humans — often in a
distinctly non-formal manner. Furthermore, as the number of possible states
that a computer system can be in is truly vast (and changes with each re-
configuration of the system hardware), completely partitioning this space into
‘abusive’ and ‘normal’ can be a difficult if not impossible task. Thus, spec-
ifying a complete and accurate definition of ‘misuse’ or ‘acceptable use’ is
impractical. Current systems, therefore, rely on matching signatures of known
attacks, generated by hand from the experience of human operators. This is
both labor intensive and suffers from inability to detect previously unknown
attack patterns. Nonetheless, some extant systems rely primarily on such rule
bases for anomaly detection. Purdue’s IDIOT system [29, 28] uses colored
petri net models as attack patterns, while the GrIDS [65, 14] system employs
subgraph matching rules to examine network interconnection graphs. Such
models are quite expressive and powerful, but, to date, the attack pattern
models must still be generated by hand. Signature based detectors have proved
to be quite useful in diagnosing known security vulnerabilities (for example,
the SATAN/SANTA tool [18]) or virus attacks (for example, [22]).

More often rule bases form a single component of an anomaly detection
system. Systems such as (N)IDES [35, 34, 26, 3] and its successor EMERALD
[43], AIS [25], MIDAS [58], and NSM [24] all employ rule bases higher as level
decision procedures in a hierarchical detection system. These procedures are
used as discriminators to prune out spurious hits from lower level sensors and
anomaly detectors which may be statistical in nature. Even for such systems,
though, it is desirable to increase the accuracy of hits passed up the detection
hierarchy from the leaf level detectors.

22

2.3.2 Statistical Detectors

Denning formalized the concept of adaptive, statistical anomaly detection,
[17]. She presented the anomaly detection framework that was developed
into SRI’'s (N)IDES detector, and which has since been adopted for use in
a number of different detection systems. Denning proposed that the user
profile be formed of a statistical model of behavior measured across a variety
of metrics extracted from audit records such as number of password failures
per minute, time between logins, or pages printed per day. She presented the
following five potential statistical models for summarizing the metrics into a
profile:

Operational Model This model employs fixed, empirically selected, thresh-
olds for a metric. An observation is abnormal if it falls outside these

thresholds.

Mean and Standard Deviation An observation is abnormal if it falls out-
side a confidence interval about the mean.

Multivariate This is the multivariate extension of the mean/standard de-
viation model, employing an n dimensional mean vector and the corre-
sponding covariance matrix.

Markov Process' This models each type of audit record as a state variable
and defines transition probabilities between them. An observation is
abnormal if its probability of occurrence after the observed predecessor
is too low.

Time Series This model employs the inter-arrival times of events to esti-
mate the probability of occurrence of a newly arrived event. In the
general case, this model includes the complete set of marginal densities,
P(O:|04-1,0_9,... ,0p) and is of exponential complexity. It is, there-
fore, necessary to impose some constraints on this model for the sake of
practicality.

Tt is important to note that the Markov process model presented by Denning is distinct
from the hidden Markov model we describe in Section 2.2. Denning’s Markov process
model assumes that the state variables correspond to some real and observable phenomenon
(audit records, in this case), while an HMM assumes that the state variables are hidden and
correspond to phenomena that are, perhaps, fundamentally unobservable (such as a user’s
mental states).

23

Many current anomaly detection systems employ only the first three of
Denning’s models. HAYSTACK [59, 39], for example, models a number of
system parameters as independent, Gaussianly distributed random variables.
Individual parameters are considered to be abnormal when they fall outside
the 90% data range for that variable. Total profile abnormality is calculated
as a weighted sum over the abnormal parameters. NSM [24] models network
activity as a four dimensional sparse matrix where each point represents a
particular network connection. Abnormality is detected either with an expert
system rule, or by comparison against an ‘expected behavior’” matrix mask.
The expected behavior matrix is generated from accumulated statistics of the
complete local network over time.

To our knowledge, the Markov process statistical model has remained the-
oretical since Denning’s proposal, as has the full (exponentially complex) time
series analysis method. Some recent anomaly detection work has focused on
time series analysis by considering various restrictions to the general method.
We examine these techniques in the next section.

2.3.3 Time Sequence Anomaly Detection Models

In recent years, work has appeared which extends the anomaly detection model
away from the rule bases and first order statistics that have characterized many
well known anomaly and intrusion detection systems. While these approaches
can, in principle, be assimilated into the very broad model of anomaly de-
tection presented by Denning, they represent a dramatic departure from the
majority of techniques previously developed.

Forrest et al. [20, 19] have examined the problem of detecting anomalous
actions on the parts of privileged system programs (daemons, in the UNIX
operating system parlance). Such programs have been widely exploited by
malicious users and intruders to elevate privilege or tamper with data. For-
rest’s approach tracks the execution traces of these programs at the system
call level, comparing fixed length temporal sequences of events to a dictionary
of expected behaviors for that program. Because monitoring of system calls
must take place extremely quickly and with little overhead, they employ an
exact string match for a comparison function. Exact matching is a plausible
technique for examining sequences of system calls, which are typically gener-
ated by a compiler, but is generally insufficient to examining sequences of user
generated events. We have found that humans rarely tend to ezactly repeat

24

prior sequences of actions.

An alternative method of employing sequence learning to the anomaly de-
tection domain was presented by Teng et al. in [67, 68]. Their system develops
sequential rules of the form ‘E1 - E2 - * - E3 —— > (E4 = 94%; E5 =
6%)’, where the various E’s are events derived from the security audit trail, *
denotes ‘any event’, and the percentages on the right hand of the rule represent
the probability of occurrence of each of the consequent events given the oc-
currence of the antecedent sequence. The rules are generated inductively with
an information theoretic algorithm that measures the applicability of rules
in terms of coverage and predictive power of each rule. While the temporal
aspects of this work are similar in nature to our own, Teng et al. have not,
to our knowledge, examined the continual learning and concept drift aspects
associated with adaptive anomaly detection.

2.3.4 The Insider Threat

Although many security techniques are oriented toward defending the system
perimeter, thus preventing intrusion by an outsider, there is a strong need for
the converse: the ability to defend against malicious actions on the part of al-
ready authorized users. The 1996 Ernst & Young Information Security Survey
[73] reports that, of companies who suffered financial losses from problems with
information security and disaster recovery, “A third (42% at larger companies
[those with more than 1,000 employees]) cited malicious acts by company in-
siders,” as the security violations. The statistic may be even higher; according
to Boedges [8] (as reported in [59]), 80% of computer crimes known to the Air
Force Office of Special Investigations Computer Crimes Division were carried
out by trusted employees.

While the anomaly detection concept was originally formulated as a defense
against intruders, the framework can also, in principle, support monitoring of
authorized users for unusual behavioral patterns. When hostile or abusive
actions require drastic or highly unusual activities, they may be subject to
detection by an anomaly detection agent. For example, massive file deletes or
copies or execution of security penetration codes on the part of a ‘normal’ user
may well be part of a hostile action. The large difficulty is in differentiating
such hostilities from innocuous and expected change on the part of the user.
Does the use of a command previously not seen for the profiled user signal the
start of an attack sequence, or merely that the user read the system manual

25

and has become more proficient? Adaptability on the part of the anomaly
detection system is desirable for the latter purpose, but may defeat the util-
ity of the system for detecting the former. This difficulty has traditionally
been approached through the addition of attack signature rule bases to the
adaptive component to form a hybrid anomaly detection system, as described
previously.

2.3.5 Hostile Training

Another threat facing adaptive anomaly detection systems is that of hostile
training. An informed intruder or masquerader (one aware of the anomaly
detection system and the content of one or more user profiles) may be able to
emulate the behaviors of a valid user well enough to pass unnoticed. Over time,
the hostile user can alter behavior, presenting a gradual change to which the
anomaly detection system may adapt. HAYSTACK approaches this problem
by profiling each user in two ways: as an individual and as part of a class of
users [59]. The hypothesis is that while a single user may be able to train the
individual profile to accept abusive behavior, but will not be able to distort
the entire class’s profile (assuming the class is comprised of sufficiently many
users). In practice, HAYSTACK's class profile is fixed and represents “generic
notions of acceptable behavior for a group of users.”

2.3.6 System Initialization

A difficulty of adaptive approaches to anomaly detection is defining a policy for
handling startup situations. The system must have some knowledge of the user
or system in question before it can make reliable classifications, but initially
(when encountering a user for the first time) no such knowledge is available.
Furthermore, initial acquisition of user data is as subject to subversion as later
data, but the anomaly detector is not yet in a position to detect attempted
subversion.

HAYSTACK [59, 39] handles startup conditions by initially treating users
as members of a behavioral class. The class profile is constructed by hand
from observation of the class in question and has relatively broad definitions
of acceptable behavior. So long as the new user adheres to the class profile,
the user is taken to be valid. The user’s profile is initialized to a copy of the
class profile and, over time, is specialized to fit that user.

26

Although the startup problem is a critical one, with important implications
for the practical use of adaptive anomaly detection mechanisms, we do not
intend to address it within the scope of the proposed research.

Chapter 3

Current Results

In this chapter, we describe our current prototype anomaly detection system
and present an empirical analysis of its behavior. We close with our current
theoretical results on the structure of concept drift.

3.1 Description of the Current Experimental
System

Following [16], we perform anomaly detection by reference to a known user
profile, built from historical command token data from the user of interest.
Once a user profile is formed, the basic action of the detection system is to
compare incoming input sequences to the historical data and form an opinion
as to whether or not they both represent the same user. The fundamental unit
of comparison in the anomaly detector system is the command sequence. To
this end, all input token streams are segmented into overlapping sequences of
tokens (where the length of each sequence is a parameter to the system, but is
fixed for a single run). Sequences are compared to one another using one of a
variety of possible similarity measures. Historical sequences, known to belong
to the valid user, are stored in a sequence dictionary which, along with various
other parameters such as sequence length, comprise a user’s profile.

An overview of the data flow in our prototype anomaly detection system
is shown in Figure 3.1. The stream of tokenized command line data (left) is
compared to the user’s profile via a similarity measure function Sim() to yield
a raw similarity stream. A noise suppression function, F(), is employed to

27

28

ffffffffffffffffffffffffffffffffff

| | | | |
e - | LR [~ |] im0

A

User Model
Profile Params
Figure 3.1: Prototype anomaly detection system data flow overview

smooth the raw similarity stream and improve classification accuracy. Finally,
the smoothed similarity stream is classified with respect to model parame-
ters (which may be fixed or learned) to produce a classification stream. The
classification stream indicates, at each time step, whether the current user’s
behavior is normal or anomalous.

3.1.1 Data Collection and Parsing

To learn characteristic patterns of actions, our system uses the sequence (an
ordered, fixed-length set of temporally adjacent actions) as the fundamental
unit of comparison. For this research, actions were taken to be UNIX shell
commands with their arguments, although the approach developed here is gen-
eral and can be extended to any stream of discrete events or event vectors such
as operating system calls or graphical user interface events. For ease of data
collection, the temporal order of commands was maintained only within the
context of a single command interpreter (a shell). Currently, we preserve com-
mand names and argument switches but omit the specific file names associated
with each command execution. This decision was based on the intuition that
the significant facet of the user’s command history for this work was behavior
rather than content. Thus, it should be more useful to note that the user
invoked the command emacs (a text editor) with the behavioral switch -nw
(run in text-mode rather than initialize the X-windows interface) and two file
names, than it would be to take note of the actual file names used. Clearly,
for some applications of misuse detection, important information could be ex-
tracted from the filenames (directories in which the user typically works, for
example).

To collect user action data, we created a parser for the UNIX csh family of
languages (including tcsh) which translates the raw data stream of the shell
command trace into a token stream suitable for storage and comparison. This

29

translation suppresses filenames, as described above, but preserves command
names, argument switches!, and other syntactically important symbols such

as |, ;, and >&!. For example, the command stream:
> 1s -laF
> cd /tmp

> gunzip -c foo.tar.gz | (cd \7 ; tar xf -)
would be translated by the parser into the token stream:
1s -laF cd <1> gunzip -c <1> | (cd <1> ; tar - <1>)

where the token <1> denotes the occurrence of a single filename argument?.
The parser also introduces the tokens **S0F** and **EOF#** indicating start
and end of a command interpreter session, respectively.

3.1.2 Sequence Comparison via Similarity Measures

A number of possible methods exist for measuring the similarity of two se-
quences. The most straightforward is the equality function, which yields TRUE
when both sequences match in every position and FALSE otherwise. This is
the similarity function employed by string matching algorithms and has the
advantage of being widely studied and highly optimizable. For example, the
UNIX diff program employs this form of matching. When examining user
command traces, the difficulty arises that for long sequences the probability
of locating exact matches in historical command data becomes exceedingly
low (in one series of tests, only 7% of a user’s command sequences exactly
matched some historical command sequence). Thus, the equality function is
not a viable choice for this particular domain.

Our system, therefore, computes a numerical similarity measure that re-
turns a high value for pairs of sequences that it believes to have close re-
semblance (bounded above by a constant, Simp,y, defined as the similarity

1Strictly speaking, the parser depends upon the UNIX convention that argument switches
are prefixed with a dash, so the ‘~1aF’ switch in the command 1s -1aF ${HOME} would be
correctly recognized, but the switch tvf in the command tar tvf /tmp/foo.tar would not
be. This is not taken to be a serious weakness, however, as the dash convention is widely
used.

Multiple filenames are replaced by an appropriately numbered token. For example, the
parser would emit a set of five filename arguments as <5>

30

of identical sequences), and a low value to pairs of sequences that it believes
largely differ (bounded below by 0 for sequences having no elements in com-
mon). The individual elements of the sequences are from an unordered set,
which creates a matching problem similar to that of symbolic features for IBL.
However, unlike IBL, our similarity measure is judging the similarity between
two sequences rather than two feature vectors. The temporal nature of se-
quence matching suggests that interrelations between different elements of the
sequence vector can be important.?

Initially, we examined a similarity measure that simply assigns a score
equal to the number of identical tokens found in the same locations of the
two sequences. Upon consideration, however, we hypothesized that a measure
that assigns a higher score to adjacent identical tokens than to separated
identical tokens might be preferable. The intuition is that token matches
separated by interleaving non-matching tokens are more likely to have occurred
by chance, while adjacent matches are more likely to have occurred due to a
causal process. Therefore, if sequence Seq, has k tokens in common with each
of Seq, and Seq,, but the common tokens are adjacent in Seq, and Seq, then we
would like the similarity measure to have the property that Sim(Seq,, Seq,) >
Sim(Seq, Seqs). Under this requirement, the pair of sequences shown below
on the left would have a higher similarity value than would the pair on the
right.

1s foo ; vi 1s -1 foo ;
1ls foo cat bar 1ls -F foo cat

Thus, one axis of differentiation between similarity measures is ‘does not
detect match adjacency’ versus ‘detects match adjacency’. A second axis is the
bound of the maximum similarity measure as a function of sequence length.
The similarity measure that scores sequences from a count of matches, re-
gardless of adjacency, has an upper bound that is polynomial in the length
of the sequences. Specifically, for sequences of length n, this measure is < n.
We denote this similarity measure as MC-P (for match count with polyno-
mial bound). To examine the hypothesis that detecting match adjacency is
useful for this task, we modified MC-P to bias the similarity score in favor

3Note that the possibility of interdependence between vector elements implies that the
similarity function is unlikely to be metric, that is, we cannot assume that the triangle
inequalitity holds.

31

of adjacent matches (as described below). This measure is denoted MCA-
P (for match count with adjacency and polynomial bound) and is bounded
by n(n +1)/2. A polynomial bound seems appropriate, considering that the
central hypothesis is that adjacent tokens are produced by a (mostly) causal
process, and, therefore, should display a high degree of correlation.

In a stream of independently generated tokens, it seems likely that an
exponentially bounded function would be more appropriate. Our intuition
is that the causal linkage of user-generated tokens will evidence itself as a
deviation from the characteristics of the independence assumption. To test our
hypothesis (i.e. reject the independence hypothesis), we examined the behavior
of exponentially bounded measures analogous to the polynomially bounded
ones just described. The MC-P measure was modified to score exponentially
in the number of matches (still without considering adjacency) and was labeled
MC-E. The MC-E measure has upper bound 2". The MCA-P measure was
adapted in a similar fashion to create MCA-E, whose upper bound is 2" — 1.
All four similarity measures are encompassed by the algorithm of Figure 3.2
operating on sequences Seq, and Seq,.

1. Set an adjacency counter, ¢ := 1 and the value of the
measure, Sim := 0.

2. For each position, 7, in the sequence length, n:

o If Seq (1) = Seqy(i) then Sim := f(Sim, ¢) and ¢ :=
u(c)
o Otherwise, ¢ := 1.

3. After all positions are examined, return the measure
value.

Figure 3.2: Sequence similarity calculation algorithm

The differences between the measures are determined by the nature of the
scoring function, f(Sim,c), and the adjacency update function, u(c¢), as sum-
marized in Table 3.1.

Finally, we define the similarity of a single sequence Seq; to a set of se-
quences, [, as:

Sim(Seq;, D) = max {Sim(Seq;, Seq;)}

Seq; €D

32

f(Sim,¢) | u(c)
MC-P Sim + 1 1
MCA-P | Sim+4+c¢ |c+1
MC-E 2 - Sim 1
MCA-E | Sim+4+c¢ | 2-¢

Table 3.1: Scoring and update functions for the similarity measures

Thus, the similarity of a sequence to the user dictionary is the measure of
that sequence compared to the most similar sequence in the dictionary. This
is related to the IBL 1-nearest-neighbor classification rule, according to which
an instance is classified only by the closest instance in the learned model.

3.1.3 Instance Selection and Dictionary Pruning

The potential amount of data that is available for examination on a per-user
basis is staggering. If the granularity of examination is reduced to the level
of individual operating system calls, the data stream could well amount to
thousands, or even millions, of data items per second. If the anomaly-detection
system is to run real-time then it is imperative that the system be both fast
and resource conservative (history has shown that a security measure that is
sufficiently obtrusive will not actually be used, and will, therefore, be useless—
for example, [66]). Thus, much of the available data must be discarded with
little or no examination. To this end, after initial dictionary construction, we
reduce the dictionary to a fixed size through pruning according to a utility
heuristic. The final dictionary size is a parameter of the user profile, and is
currently set empirically.

We have investigated a number of pruning heuristics for this domain. Un-
der the definition of similarity to a set, we note that only a single dictionary
sequence can be selected as most similar to an input sequence under inves-
tigation. If we assume that the characteristics of a user’s behavior change
relatively slowly, we can invoke locality of reference to predict that recently
matched dictionary sequences will be used again for detection in the near fu-
ture. This suggests an analogy to tasks in operating systems, such as page
replacement, in which some resources must be discarded in favor of others.
This analogy led us to the LRU (least recently used) pruning heuristic. Under

33

‘ Name ‘ Removal Criterion ‘ Heuristic
LRU least recently used t,
LFU least frequently used Cq
WLFU | weighted LFU Cq27 e
truncate | newest i
FIFO oldest tq
random | random random()

Table 3.2: Summary of dictionary pruning heuristics

this strategy, the parameter selection data set (separate from both train and
test data sets) are used to mark which sequences in the dictionary are used for
detection. As each pruning sequence is examined, the dictionary instance se-
lected as most similar is time-stamped. After all pruning data is processed, the
dictionary is reduced to the desired size by removing the least-recently-used
sequences (where sequences that are never matched by the similarity measure
are taken to be older than all other sequences). The resulting pruned dictio-
nary is then employed as the user profile to classify input streams. Strictly
speaking, LRU is an iterative algorithm, while our implementation for these
experiments was batch mode. Note, also, that the amount of parameterization
data can impact the performance of the LRU algorithm. If the parameteriza-
tion data contains fewer instances than does the training data, for example,
there must exist some instances that have not been marked as contributing to
classification. LRU can make no decisions about such sequences, as they have
no timestamp.

Finding the LRU heuristic to be useful, we proceeded to implement and
test the LFU (least frequently used: remove sequences with smallest use count)
and weighted LE'U (use count weighted by an exponentially decayed age factor)
heuristics. For comparison, we also included truncate (remove most recent
sequences), FIFO (remove oldest sequences), and random (remove sequences
randomly) pruning policies. All the currently implemented pruning heuristics
are summarized in Table 3.2. Heuristics in this table are described in terms
of the parameters ¢4 (time sequence was stored into the dictionary), ¢, (last
access time—i.e. the last time at which this sequence was selected as most
similar to an input sequence), and ¢, (access count).

34

60 T T T T T T T T T 60

50 | sol
40 H 40r
30 H 30

20 H 20 W

10F 1 10k

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900
(a) (b)

Figure 3.3: Similarity measure stream. (a) Raw. (b) Smoothed.

3.1.4 User Verification

Given an input stream of command tokens parsed by the data collection mod-
ule, the detection module classifies the current user as normal or anomalous
after each token. The output of the detection module is a stream of binary
decisions indicating, at each point in the input command data, whether or not
it believes that the input stream at that point was generated by the profiled
user.

To make these decisions, the detection module first calculates the similarity
of each input sequence to the user’s dictionary, yielding a stream of similar-
ity measures. In an intuitive sense, this stream represents the familiarity of
the input commands at each time step, given knowledge about the previous
behavior of the user. In preliminary experiments, we discovered that the sim-
ilarity value stream produced by comparison of test data to a user profile was
noisy and erratic (see Figure 3.3, (a)). The noisiness of the raw similarity
measure stream can be attributed to normal deviations in actions on the parts
of the users, as well as to random elements (preempting work to deal with
urgent e-mail, for example). Although explainable, this variance in the simi-
larity measure makes it impossible to detect anomalous behavior from a single
sequence. (The profiled user sporadically has very low similarity with their
own past behavior.)

Based on the hypothesis that, while individual sequences may deviate from

35

historical precedent, aggregate behavior should largely conform to historical
behavior for valid users but should still noticeably deviate for intruders, we
applied a smoothing filter to the data (see Figure 3.3, (b)). The smoothing
filter we applied was a windowed mean-value filter, which at sequence ¢ of the
input stream is defined by:

my(t, D) :% Z Sim(Seqj,D)
j=i—w

where D is the user profile dictionary and w is the window length. This
filter suppresses high frequency noise effects at the cost of detection speed. It
is thus desirable to choose the minimum window length capable of sufficient
noise suppression. Currently, the window length is selected empirically from
observations of behavior over a subset of our user population. The curves in
Figure 3.4 display the effects of window lengths for USER3’s profile. Fach
point on each curve represents the average similarity to USER3’s profile for
all sequences up to and including that time. Thus, the curves display the
net effects of successively longer windows. For sufficiently long windows, the
average similarity converges to the true mean with a small variance. At these
long window lengths, a large separation between USER3 (the top curve) and
other users is observed. Unfortunately, such long windows entail large time
lags before detection, so we chose the smallest window that produced visible
separation (80 sequences, for these experiments).

After smoothing the similarity measure stream, the detection module makes
a classification of the input stream as being normal or abnormal at the point
occurring at the end of the current window. A Bayes-optimal classifier is
not available to us, because we have training data only for the profiled data.
As a result, we can characterize the distribution of similarity measures be-
tween a user and his or her profile, but not the similarity distribution between
that profile and an intruder. Furthermore, we have found that a hypothetical
Bayes-optimal classifier (not weighted for classification costs), is overly critical
of the profiled user. Figure 3.5 displays an a posterioriBayes-optimal classifier
for USERG6’s test data when measured against USER3’s profile. In this case,
the (unweighted) Bayes-optimal boundary yields far too high a false error rate.

In light of these considerations, the classification mechanisms we employ are
based on threshold tests. The first method we examined used a single threshold
for all users selected by observation on a subset of the user population. This
test can be viewed as a case of the operational statistical model presented

36

30

| (NN N MM
‘ rﬂ USER3
20 ﬂ ‘ 1

1 | USER1
\
~— USER2

\
‘ \ ~N V\M
VN / e~

15

mean similarity to profile

USERO

I I
0 500 1000 1500
smoothing filter window length

Figure 3.4: Window length effects for USER3’s profile

by Denning in [17]. When the average similarity to the profile fell below
the threshold the sample was considered to be anomalous, otherwise it was
considered to be normal. We have also examined using dual thresholds (a floor
and ceiling) such that values falling between tgo0, and .. are considered to be
normal and samples outside this range are considered to be anomalous. The
thresholds were selected in two ways: for early experiments, they were set by
hand to a single value for all users, by examining long-term average similarities.
For example, for the data displayed in Figure 3.4, a lower threshold of 15 and
an upper threshold of 30 are appropriate thresholds. For later experiments, the
thresholds were automatically selected on a per-profile basis by examination
of an independent parameter selection set of command sequences. Thresholds
were chosen to achieve a specified classification accuracy on the parameter
data.

We have also briefly investigated the possibility of classification through
clustering along the similarity axis with Parzen windows [21]. For the similarity
measures we are currently employing, we found that the data tends to develop
only a single window and that this window can be well approximated by the
floor and ceiling threshold system previously described.

37

0.25

- - Bayes-optimal threshold
—-—-- Acceptable False Alarm thresholl

02

Frequency
o
e
u

o
o

0.05

I h I I o I I I
0 5 10 15 20 25 30 35 40 45 50 55
Similarity to profile

Figure 3.5: Comparison of Bayes-optimal decision boundary and acceptable
false alarm rate boundary. The rightmost curve (user U3) represents the pro-

filed user.

3.2 Experimental Results

In this section, we present empirical evaluations of our prototype anomaly
detection system. We describe the sources and structure of the data employed,
and give experimental results showing the performance of the system and the
impact of various parameter settings.

3.2.1 Experimental Structure

The data used in these preliminary investigations were command histories col-
lected from five members of the Purdue MILLENNIUM lab over the course of
slightly more than an academic semester and two sets donated by other stu-
dents. Command histories were generated from the tcsh UNIX shell running
under Solaris 2.5 or Linux 2.0. Command data were gathered with the full
knowledge and consent of the participating students, which may have affected
their behavior during the period of data collection. Possibly a more serious
impact on the structure of the data, however, is the fact that all donating
students were fairly to highly experienced computer users. We are currently
attempting to obtain command data from a variety of sources, including novice

38

‘ User ‘ # Tokens ‘

USERO 8,001
USERI 25,545
USER2 13,164
USER3 25,801

USER4 4,104
USER5 1,593
USERG 4,400

Table 3.3: Tokens available for experimentation per user

computer users, to help assess the generalization abilities of the techniques re-
ported here to other segments of the user population.

The number of tokens available for experimentation differed on a per-user
basis (because of different work patterns, tasks, typing rates, data collection
period, etc.). Users 4, 5, and 6, for example, began contributing data sub-
stantially later than the other users and are less well represented. For the
experiments reported in this section, the number of tokens available for each
user is reported in Table 3.3.

Because of the (relatively) low token count from users 4, 5, and 6, they
were generally only used for testing purposes while profiling was done on users
0-3. The one thousand most recent tokens were reserved from each data set for
testing purposes. For the profiled users, the remaining data was split into train
and parameter selection sets at a proportion of 2/3 to 1/3, with the train data
selected from the oldest tokens. Thus, for the experiments performed here, the
train and test data are separated by a variable amount of time and the results
reported here may well reflect concept drift. Because the experiments were
performed concurrently with data acquisition, and different users contributed
data at different times, not all users were available for all experiments.

The assumption was made for the experiments reported in this paper that
all training data was pure—that is, that each user’s data reflects only that
user’s actions and not the actions of an intruder or another user masquerading
as that user. Although this assumption is difficult to verify, we currently have
no reason to doubt it.

39

3.2.2 Testing Procedure

Because we lack data of actual intrusions or abuses, we test our system on
synthesized anomalous situations. For each available user (for whom we have
sufficient data) we create a user profile as described in Section 3.1, employing
a fraction of their data. The remaining data from each user is then used as test
data, and is tested against all profiles. When the test data and profile originate
with the same user, the test measures the system’s ability to recognize the valid
user (or, conversely, the false alarm error rate). When the test data and profile
originate with different users, the test measures the system’s ability to detect
an anomalous or intrusive situation (and the corresponding false acceptance
error rate). This form of synthetic attack represents only one particular kind
of anomalous situation — that of a naive intruder gaining unauthorized access
to an account — but it allows us to characterize the baseline performance of
our system.

3.2.3 Proof of Concept: User Differentiation via Se-
quences is Possible

A central hypothesis of our anomaly detection system is that user patterns
are sufficiently consistent, for a single user, yet sufficiently disparate, when
measured between users, that differentiation is possible. Furthermore, we
propose that this differentiation can be made through the use of temporal
sequences of commands. In this experiment we show that differentiation is, in
fact, possible within the scope of our test data. Table 3.4 displays the detection
results for all pairwise tests of user test sets and available user profiles with
sequence length of 12 and a dictionary size of 2000 sequences using the MCA-P
similarity measure (as described in Section 3.1.2).

The user from whom the profile was generated is listed in the leftmost
column, while the user from whom the test data was generated is listed across
the topmost row. The numbers in the table are percentages of windows that the
detection system identified as the profiled user. Ideally, the diagonal elements
of the table (true positive rates) should be 100% and the off-diagonal elements
(false positive rates) should be 0%.

These results demonstrate that the recognition system has higher true pos-
itive than false positive rates. Furthermore, in some cases (USERI tested

against USERO and USER2 tested against USERI, for example), the false

40

Profiled Tested User

User USERO ‘ USER1 ‘ USER2 ‘ USER3
USERO 99.19 35.35 6.113 0.000

USER1 17.84 88.30 23.32 1.251

USER2 3.519 54.86 72.10 8.292

USER3 6.270 15.74 11.52 69.85

Table 3.4: Proof of Concept: All users vs. all profiles.

negative rate is lower than the false positive rate. This is a desirable charac-
teristic as false negatives make the system less usable (due to the annoyance of
false alarms). We take these results as evidence that the closed world assump-
tion is appropriate for at least some users in this domain, although we note
that the users involved in this study are all fairly to extremely experienced
computer users. The question of whether or not the techniques presented here
would apply equally well to novice users is still open.

3.2.4 Exploration of the Effects of Dictionary Size

Early investigations led us to examine the question of whether optimal dictio-
nary size is invariant of the user profiled. Tables 3.5 (a)-(d) suggest that ideal
dictionary size is user specific. In these tables, the column headings indicate
the size of the dictionary used in the user profile (selected from all available
training data with the truncate pruning heuristic, as defined in Section 3.1.3),
while the row headings indicate the test set under examination. ‘SELF’ de-
notes a test of the user’s data against that same user’s profile. The numbers
in the table are percentages of the input stream detected as the same as the
profile. Thus, the ideal values for the ‘SELF’ row are 100% and the ideal
values for other rows are 0%.

It appears that, while for USERO most of the important behavioral data
is extracted within 500 sequences, for USER3 significant information is still
being acquired by the 1000 and 2000 sequence points. USER2 and USER3’s
accuracies do not appear to asymptote on this range of sequences. There are a
two possible explanations for this behavior. The first is that users 1, 2, and 3
are also characterized by a small number of sequences, but that those sequences
occur infrequently, and thus require a larger sample to acquire. Under this
hypothesis, it is possible that a single dictionary size is applicable to all users,

41

| | 200 | 500 | 1000 | 2000 | | | 200 | 500 | 1000 | 2000 |
| SELF [[19.1] 92.1] 98.8 [99.2| [SELF [46.0 | 74.4 | 82.6 | 88.3 |
USERL || 9.0 [12.90 | 27.6 | 354 | [USERO || 0.0 7.4 [12.0] 178
USER2 || 00| 0.0 20| 6.1] [USER2| 4.7]10.1 [15.6 | 23.3
USER3 || 00| 0.0] 00| 00| [USER3| 00| 1.0] 1.0] 13
(a) (b)
| | 200 [500 | 1000 [2000 | | [200 | 500 [1000 | 2000 |
| SELF [4.6 [21.7] 55.0 | 721 | [SELF [14.3[36.9] 55.3 | 69.8 |
USERO | 0.0 1.5] 28] 3.5 USERO || 1.4] 1.8] 29] 63
USERI || 83[224 | 46.1 | 54.9 USERL || 05| 24| 61| 157
USER3 | 0.0] 02] 14| 83 USER2 || 0.0] 21| 56] 115

() (d)

Table 3.5: Profiled users (SELF) versus all other users for various dictionary
sizes.

and that the important sequences occurred early for USER0O more-or-less by
chance. Alternatively, it is possible that different dictionary sizes are necessary
for superior performance for different users. This issue is complicated by the
result that the false positive rate seems to increase with increasing dictionary
size; it is desirable to maintain the smallest acceptable dictionary for accuracy
as well as resource reasons.

3.2.5 Investigations Into the Problem of Instance Selec-
tion

We investigated the behavior of the dictionary pruning heuristics defined in
Section 3.1.3. Characteristic results for the LRU heuristic are given in Tables
3.6 (a)-(d). The format of these tables is identical to the format of Tables 3.5
(a)-(d).

For USER2 and USERS3, these results display a dramatic increase in true
detection rate, accompanied by a decrease in false positive rate. USERO, on the
other hand, experiences a slight drop in true positive rate for large dictionary
sizes, along with increases in false negative rate in some cases. There are two
noteworthy features of USERO’s results. The first is that the true detection
rate (the SELF rate) for a dictionary size of 200 elements is much greater than

42

| | 200 | 500 | 1000 | 2000 | | | 200 | 500 [1000 [2000 |
| SELF [[69.4 [86.8 | 90.7] 93.4 | [SELF [28.3]89.8 100.0 [100.0
USERI [[13.3[37.6 [46.7[50.9 | [USERO | 2.1 |154] 258 | 36.7
USER2 [0.0 0.0] 0.0] 0.0| [USER2[00| 1.3| 81| 11.4
USER3 || 0.0 0.0] 00| 00| [USER3] 00] 0.0] 00] 0.0
(2) (b)
| | 200 | 500 [1000 | 2000 | | | 200 | 500 [1000 | 2000 |
| SELF [[10.7 [47.1[70.1] 95.0 | [SELF [323]69.9] 80.4 | 89.8 |
USERO | 22| 3.1 34]106| |USERO[0.0] 1.2] 29] 59
USERI || 1.8]16.0 [42.8 | 60.1 | |USERL| 0.0 00| 00| 0.2
USER3 || 00| 0.0[00| 09| |USER2] 0.0] 0.0 32] 36

() (d)

Table 3.6: Results of LRU instance selection

for the equivalent entry in Table 3.5 (improved by 50 percentage points). This
suggests that the LRU pruning algorithm can be useful even for this user. It
also suggests, however, that the LRU selection technique might asymptote at
lower accuracies for the other users as well, if the experiments were extended
to cover larger dictionary sizes. The second interesting factor in Table 3.6 for
USERQO is that, while false positive rates increased with respect to USERI,
they declined or remained constant with respect to USER2 and USER3. This
raises the possibility that the optimal instance selection scheme is not merely
a function of the user being profiled, but also of the intruder.

3.2.6 On the Choice of Similarity Measures

As described in Section 3.1.2, an important parameter of our anomaly detec-
tion system is the similarity measure employed for sequence matching. Cur-
rently, we have examined the behaviors of four possible sequence similarity
measures, differentiated by growth rate (polynomial or exponential in number
of tokens matched) and match locality (whether or not match adjacency is
factored into the final similarity measure). To examine the degree of class
separation produced by each of these measures, we used each to classify user
command history traces. From each user’s data set, two thirds of the tokens
were devoted to training (i.e. initial dictionary construction) and the remaining
one third was divided into 1000 testing instances and the rest into instances

43

used for dictionary instance selection and parameter selection. The user pro-
files were initialized with all available training data and were pruned down to
the desired testing sizes of 200, 500, or 1000 sequences via the LRU instance
selection algorithm as described in Section 3.1.3.

All experiments employed a sequence length of ten tokens and a smoothing
window length of eighty sequences. Profiles were created for four of the users
and then the test data from all seven users were classified against the profiles
according to each similarity measure. The classification thresholds were se-
lected to achieve a false-negative error rate of 1% on the parameter selection
data (as detailed in Section 3.1.4). Results of the experiments are displayed
in Tables 3.7 and 3.8. The results given here are typical and are generally
reflective of the trends we found in the data.

MC-P | MCA-P | MC-E | MCA-E
USERO | 93.96 67.07 | 73.44 79.36
USERL | 9.11 0.00 0.00 8.23
USER2 | 0.00 0.00 0.00 0.00
USER3 | 15.37 0.00 0.00 0.00
USER4 | 5.49 0.00 0.00 0.00
USERS5 | 10.54 0.00 0.00 0.00
USERG6 | 10.87 0.00 0.00 0.00

Table 3.7: Detections over all users and similarity measures for USERQ’s pro-
file, dictionary of 1000 sequences

MC-P | MCA-P | MC-E | MCA-E
USERO | 60.92 33.48 | 52.69 | 29.75 1
USERL | 68.72 | 70.14 7 | 77.06 73.77
USER2 | 93.85 99.89 | 99.89 99.89
USER3 | 61.25 | 48.30 7 | 52.47 | 54.99
USER4 | 34.80 | 33.26 7 | 39.08 35.13
USERS5 | 79.69 | 75.74 7 | 87.16 87.38
USERG6 | 81.78 70.58 | 83.53 | 68.06 f

Table 3.8: Detections over all users and similarity measures for USER2’s pro-
file, dictionary of 200 sequences

Each value in these tables reports the percentage of instances for which

44

the tested user was identified as the profiled user. The goal, therefore, is
to minimize all rows other than the profiled user and to maximize the row
corresponding to the profiled user (USERO, in Table 3.7 and USER2, in Table
3.8). In Table 3.8, the symbol ‘i’ indicates the position in which the best value
occurs for each user. As above, MC and MCA denote match count and match
count with adjacency bias similarity measures, respectively, while the suffixes
P and E indicate that the similarity measure’s upper bound is polynomial or
exponential in the length of the sequence.

Table 3.7 indicates a definite superiority of MC-P for the task of identi-
fying the profiled user (USERO) but somewhat inferior behavior on the task
of distinguishing other users from USER0. By contrast, all other algorithms
perform spectacularly when distinguishing other users from the profiled user
but have what is likely to be an unacceptably high false negative rate. Unfor-
tunately, the behaviors of many of the similarity measures are nearly identical
for large parts of the tested space, so it is difficult to identify their relative
merits from this data. Nonetheless, for USER0’s profile, the MC-P similar-
ity measure seems to be preferable. This result provides evidence against the
hypothesis that detecting adjacent matches is desirable.

The results in Table 3.8 indicate that, overall, MCA-P is the preferable
similarity measure for USER2’s profile, followed by MCA-E. A strong prefer-
ence for the adjacency-based measures is supportive of the hypothesis of the
causality of command sequences. And, as with USERQ, preference for the
polynomial bounded similarity measure further supports this hypothesis. It’s
also noteworthy that the MC-P algorithm has the poorest performance for
this user (often dramatically so). This indicates that there are cases in which
equality matching (with the addition of ‘don’t care’ positions) is insufficient
to the task of user modeling in this context.

Together the results for USERO and USER2 demonstrate that different
similarity measures are appropriate for different users. This indicates that
there is a need for a method to detect which similarity measure is appropriate
for a particular user and that future research should take this into account.
This issue is further complicated by the possibility that the optimal similarity
measure may be time variant within the context of a single user. Finally, the
possibility exists (and is supported to a certain degree by the data in Table
3.8) that the optimal similarity measure depends also upon the nature of the
anomaly (i.e. the identity of the masquerading user). This presents a difficulty
because, as mentioned in previously, the only data available for training is that

45

of the valid user.

Finally, note that there is a significant disparity between optimal dictio-
nary sizes for the users (1000 vs. 200 sequences). This seems to indicate that
USER2’s behavior is characterized by a smaller set of actions than is USEROQ’s.
The possibility remains, however, that none of the similarity measures inves-
tigated here are really appropriate for measuring USERO0’s behavior, and that
under a different measure fewer characteristic sequences would be required.
Upon examination, however, we note that instance selection (via the LRU al-
gorithm, as described above) was performed with only 1667 tokens of data for
USERAQ’s profile while over 5000 tokens were available for dictionary initializa-
tion. When a small number of sequences are rated as highly characteristic by
the instance selection algorithm, so few of the other dictionary instances will
be touched that selection becomes effectively random for sequences other than
the most strongly characteristic ones. This turns out to be the case for USER0
as approximately 260 of the instance selection sequences were devoted to se-
lecting only two of the final dictionary sequences. Thus, we hypothesize that
for USERO the LRU instance selection algorithm concentrates undue attention
on sequences that are not necessarily reflective of true behavior while selecting
the majority of the instances effectively randomly. Therefore a large number
of sequences are required in the final profile to obtain reasonable accuracy. By
contrast, LRU seems to select important instances much more successfully for
USER2 so fewer are needed in the final profile. Any sequences in the pro-
file beyond those most characteristic of behavior represent noise and lead to
decreased performance (and, indeed, degraded performance was seen in the
case of USER2’s profile for larger final dictionary sizes). The behavior demon-
strated here highlights an interaction between the similarity measure and the
instance selection algorithm, implying that choice of similarity measure is af-
fected not only by the identity of the profiled user and intruder (and possibly
time/concept drift) but also by the choice of instance selection technique.

3.3 Analysis of Concept Drift

When a domain concept is subject to change with time, that domain is said to
experience concept drift. In such domains, there is no single, time-independent,
optimal hypothesis. Instead, we seek a time-dependent hypothesis that max-
imizes some criterion (often accuracy) in the total time summation. Here we
investigate a process for doing so by attempting to match the instantaneous

46

hypothesis to the instantaneous concept.

We shall begin by introducing some notation. Let § be a feature space (not
necessarily metric) including all possible feature vectors, «, within the domain
of interest. Let £ = {L;, La,..., Ly} be the label space (alternatively, the
class space) for the domain, defining all possible class labels for points in §.
Then a concept is a partition C' : § — £, assigning a label to each point in
§. We shall write Lo(x) for the label assigned to a particular instance, x € §,
under concept C'. Let us further define the space of all possible partitions on
£ to be €, the concept space. The traditional supervised learning problem
is then, given a set of feature vectors, X C §, and the corresponding class
labels under concept C, Y = {y = Lo(a) : « € F}, formulate a hypothesis,
H € €, such that some value measure (accuracy, classification profit, dollar
value, etc.) is maximized, where the value measure, v, is a function of the
similarity between the hypothesis, H, and the true concept, C'. (We ignore,
for the moment, the effects of noise which can corrupt measurements of either
x ory.)

This is the static case, where ' is fixed for the entire course of the learner’s
lifetime. Now let us consider the addition of time and concept drift to the
problem. We will consider the time axis to be discrete for this analysis — while
this is not necessarily the case, all of our sampling techniques are discrete, so
this assumption should be sufficient, at least as a first order approximation.

Denote the time steps over which the domain is observed to be

tostistas .ot st b

Assume that at each time step we can sample k points from § according to
some sampling distribution p, (we take this distribution to be time invariant,
although it need not be so). Furthermore, assume that the true concept is
allowed to change with time, so that associated with each time step, ¢ there is
a concept, C;. Now we extend the learning task to formulating time dependent
hypotheses, H;, in an attempt to track the true concept over time such that
the total value,

m

Vtot = ZU(Ht“ Ctl‘)7
=0
is maximized. Initially we observe that a possible approach to this problem
is to completely reformulate H at each time step given only the k& available
samples for that time step. For some domains, this may well be the best

47

possible solution, but we believe that for many domains of real interest it is
possible to do better.
We define the concept drift function,

D:t— ¢,

as the mapping of time step to true concept (that is, D defines the change
of concept over time). We now propose that a possible approach to handling
concept drift is to learn a base hypothesis, Hy, and the concept drift function,
D, and use knowledge of D to extrapolate Hy, Hy,... . Unfortunately, D is
not as visible a concept as are the various C} are, so our first problem is how
to measure it.

Define the conceptual drift set, ACy C §, to be the set of points that possess
different class labels under concepts €} and Cyyq. That is,

ACL‘ = {f € S : LCt(f) 7£ L0t+1(f)}‘

Now at time step t+1, when we wish to revise our theory H;, we have available
to us our new set of instances, X1 = {zg,21,...,25_1}, sampled from §
according to ps. Assuming that all instances are sampled independently (not
necessarily a justified assumption), then each one has probability

/ACt ps(x) dx

of being sampled from the drift set, or the expected sampling from the drift
set is

E(X) = /ACt xps(x) de.

Thus, in our sample, we should expect to accumulate |X|E(X) = £F£(X) in-
stances from the drift set. For a sufficiently accurate hypothesis, H,, these
instances should appear as errors (misclassifications) in the application of our
hypothesis as a classification model (recall that we are omitting distortion from
noise for this analysis). Given knowledge of ps, we can now estimate |[AC}|,
which we will call instantaneous concept velocity at time t. This functions is an
indication of the amount by which our hypothesis must be adjusted to reach
an acceptable H;1 1. More importantly, however, it gives us feedback about the
structure of D (or, more specifically, of | D|, that is, the functional form of the
drift velocity). Proceeding another iteration, we can now approximate |[AC}4|

48

and thence |[A?C,|. Thus, we have induced a (presumably) differentiable or-
dinal function on the concept drift space. We can now attempt to model this
function by any of a number of methods (solution of the differential equation
via numerical methods or by model fitting, learning the functional structure,
etc.) Note, however, that lacking any a priori information about the form of
D, our problem is equivalent to the function induction problem again, and is
thus constrained in the same fashion. That is, necessity for bias, a hypothesis
language, number of samples required to converge to an accurate model, etec.

3.4 Summary of Current Status

Thus far, we have demonstrated the following points about the application of
machine learning to the computer security domain:

e Temporal sequences of commands and command arguments carry user-
specific behavioral information sufficient to differentiate users in many
cases.

e An instance based learning algorithm (similar to one-nearest-neighbor)
can make use of the identifying information available in temporal se-
quences.

e The closed world assumption (that a user is characterized only by past
behaviors and new behaviors represent a different person) can allow
learning from positive examples only in this domain.

e The choice of similarity measure, which makes possible generalization
under the closed world assumption, has a distinct impact on identifica-
tion accuracy. Furthermore, the optimal similarity measure may depend
not only on the profiled user, but also on the tested (intrusive) user.

e Optimal dictionary size is user dependent.

o Intelligent instance selection is possible, but the choice of instance selec-
tion algorithms is user dependent.

Finally, we have made some progress toward a general (domain indepen-
dent) theory of concept drift.

Chapter 4

Proposed Research

In this chapter, we present the collected set of open issues, and present pro-
posed solutions. On the machine learning side, we need to address learning
discrete temporal data and the related problem of learning on spaces without
an obvious distance metric, the question of inducing hierarchical models of hu-
man problem solving behavior; the question of applicability of hidden Markov
models to the anomaly detection task and the underlying issue of HMM struc-
ture selection for this domain; and the issue of detecting and dealing with
concept drift as it occurs in this domain. On the computer security side, we
need to address not only the question of general feasibility of the machine
learning methods presented here, but also the question of differentiating ‘le-
gitimate’ concept drift from that caused by a malicious trusted insider or that
caused by hostile training.

4.1 Machine Learning Issues

In this section we describe the major questions that need to be resolved to
successfully apply machine learning techniques to the anomaly detection do-
main and give our initial thoughts on approaches to each question. Our central
hypotheses are:

1. Temporal sequences are useful models for this domain and can be induced
from user command data.

2. Hidden Markov models can be used to model the class of temporal
sequences encountered in this domain. Furthermore, HMM’s provide

49

50

higher accuracy, faster running times for comparison, and/or smaller
space requirements than does our current model of temporal sequences.

3. A hierarchical model of user behavior (as encountered in the anomaly
detection domain) can be induced from available data. Furthermore,
such a model is useful for the following reasons: accuracy, explanatory
power, ability to detect and correct for concept drift, and ability to
differentiate concept drift from intrusions and hostile training.

4. Concept drift can be detected and corrected for in this domain, and
model independent techniques exist for doing so.

4.1.1 On-line Learning

A fielded anomaly detection system must be on-line; that is, it must accept new
data for classification continuously, rather than in batch mode, and must be
capable of updating its learned model on the fly. On-line operation is necessary
for the investigation of concept drift, but it also has an impact on the design
of other components of a learning system. The prototype system presented in
Chapter 3 works in batch mode. We will first convert the current system to
function in an on-line mode, and will design the components described below
to function properly in on-line operation.

4.1.2 Temporal Sequence Learning

Currently, we identify command sequences only as fixed length groupings of
specific symbols (Chapter 3). Relative importance of sequences is measured
only in terms of age and of frequency that individual sequences are measured
as being ‘most similar’ to independent ‘parameter selection’ sequences. We
propose to investigate methods for identifying and extracting more complex
representations of sequences (allowing, for example, ‘don’t care’ states or reg-
ular expression-like representations). Sequence matching algorithms based on
minimum edit distance [15] can recognize arbitrary gaps in sequence matches,
equivalent to the * regular expression construct. Hidden Markov models are
also attractive in this context, as they can represent arbitrary regular lan-
guages.

We propose to develop alternative similarity measures based on edit dis-
tance measures and on hidden Markov models. Edit distance based measures

51

Until a single observation symbol remains, repeat:

1. Group all sequences into sequence clusters (representing
classes of behaviors) and ‘outliers’ (representing actions
that fit no known class of behaviors)

2. Replace all class members (sequences of symbols) with
their class label

Return the new observation sequence as a user profile

Figure 4.1: Proposed behavioral hierarchy construction algorithm.

would compare incoming sequences to historical ‘template’ patterns stored in
the user profile, much as the current similarity measures do. The principle dif-
ference is that edit distance would allow non-fixed-length patterns and would
allow gaps in matched patterns. We describe HMM based similarity measures
further in Section 4.1.4.

4.1.3 Induction of a Hierarchical Model of Behavior

We propose to model human-computer interactions as a hierarchy of increas-
ingly abstract ‘behavior clusters’. There are usually multiple ways to ac-
complish a given task with a computer, and one must be selected for each
occurrence of the task. Rather than formulating a novel solution each time a
task is encountered, humans tend to develop repeated patterns for accomplish-
ing frequently encountered tasks. These fixed patterns, in turn, form building
blocks for yet more complex behaviors. For example, in a UNIX context, a low
level behavioral pattern might be the command sequences a user employs to
navigate and search the directory tree while a higher level behavioral pattern
might be programming — a task that employs directory navigation as a sub-
task. Thus, we expect a large fraction of a user’s behavior to be representable
in terms of successively more complex behavior patterns, where each level of
the hierarchy is depends only on lower levels.

Our initial approach to hierarchy construction is described by the algo-
rithm in Figure 4.1. This process iteratively accumulates disjoint sequences of
symbols from the observation stream into sequence classes. Sequences can be
grouped via a clustering algorithm that attempts to minimize net inter-cluster

52

similarity and maximize net intra-cluster similarity. Sequences that do not
match any cluster sufficiently well are retained as ‘outliers’ and not assigned
a class label. Each non-outlier sequence of symbols is then replaced with its
class label, thereby reducing the total number of symbols in the observation
sequence. At the next iteration of the accumulation step, the class labels
function just as ordinary observation sequences, and sequence classes created
at this step express the relations between the behavioral groupings created
at previous steps. When only a single token remains or no further sequence
groupings can be made, the process is halted and the resulting structure is
returned.
A hierarchical model of behavior has the following advantages:

Model Efficiency Conceivably, a user’s behavioral patterns could be mod-
eled as a single, extremely complex, network of atomic actions interconnected
as an arbitrary graph. While appealing for its ability to model an broad set
of behaviors, it is likely that such a model cannot be practically induced from
real data. For an alphabet, ¥, of |¥| symbols with only first-order relations
(i.e. only pairwise relations between symbols are considered), there are |X|?
possible interconnections for such a network, and, thus, |X|* parameters to
select. Furthermore, first order relations may not be sufficient to model the
types of context information necessary for accurate behavioral representations.
For example, in the context of programming, the command vi might be most
likely followed by the command gcc while in the context of writing a PhD
prelim, the command vi might be most likely to be followed by the command
latex. But extension of the arbitrary graph model to include contexts via
higher order relations introduces an exponential complexity growth.

A hierarchical model possesses at most |X| interconnections (each node
having only a single parent). The alphabet is drawn from quite a different
set of symbols. The nodes of the hierarchical model we are proposing are
short sequences of events, each sequence possibly being equivalent to a regular
expression of fixed (short) length. Thus, each sequence of length k possesses k?
possible interconnections. The entire hierarchy thus has £?/V interconnections,
where N is the number of ‘important’ sequences. It is to be hoped that N <<
|¥|?. The hierarchical model, therefore, approximates the full explicit model
with a set of locally constructed patches and a hierarchical interconnection of
those patches.

33

Explanatory Power In many domains, detection of anomalies is most use-
ful when they can be explained. In a computer security context, each detected
anomalous situation must be reviewed by a human and appropriate action
taken. In such circumstances, a humanly comprehensible explanation for the
detection can be quite useful. For example, an explanation of a detection by
a first order statistical detector might be: “This activity is suspicious because
it involved 1.2 standard deviations fewer occurrences of the command 1s than
expected”; while explanations constructed from a hierarchical model might
read: “This activity is suspicious because it deviates from the ‘code develop-
ment’ behavioral pattern, while maintaining the expected distribution of all
atomic actions” or “This activity is suspicious because it does not match any
known behavioral pattern, yet maintains the expected distribution of atomic
events and macros.” The increased explanatory power of a hierarchical model
is derived from its attempt to induce the structure of the user’s problem solv-
ing hierarchy. To the extent that this effort is successful, we obtain not only
knowledge of the user’s behavioral patterns, but also of the user’s typical tasks,
work habits, and problem solving strategies.

Addressing the Hostile Training and Trusted Insider Problems It
is also possible to formulate approaches to the hostile training and trusted
insider problems of computer security in terms of a hierarchical behavioral
model. While we defer the full discussion of this aspect to Section 4.2, we
give a short summary here. We hypothesize that hostile training and insider
attacks will appear to the system as characteristic behavioral deviations at
certain levels of the hierarchy. Deviations at the lowest level of the hierarchy
may indicate only learning or change on the part of the valid user; deviations
at the middle levels of the hierarchy may indicate changing tasks (potentially
to malicious or hostile tasks) on the part of the valid user; and deviations at
the highest levels may indicate a knowledgeable hostile trainer. Evaluation of
our hypotheses will require data sets representing these types of attacks. If we
are unable to locate real data traces of these attacks, we intend to synthesize
these attacks as a baseline evaluation of our hypotheses.

4.1.4 Hidden Markov Models

We propose to investigate hidden Markov models as user behavioral models.
An HMM can capture aspects of both deterministic and stochastic user behav-

54

iors. The finite state transition matrix can describe the deterministic process
by which a certain task is accomplished, while transition probabilities allow
flexibility in the process or allow one procedure to be preempted in favor of
another. The stochastic output processes can account for noise or multiple
equivalent methods for accomplishing a single step of a task (for example,
awk, sed, and perl can all be used to accomplish the same batch mode edit).

For a given class of behaviors, an HMM can be constructed to represent
that class. A user profile will then be a dictionary (or, possibly, a hierarchy)
or HHM’s for behaviors. New incoming observations can be matched against
each model in the dictionary via the Forward-Backward algorithm, [50], and
the newly observed sequence can be labeled according to the closest match
model (i.e. the HMM with the highest probability of having generated that
observation sequence). Intuitively, this is similar to the application of HMM’s
to the continuous speech recognition problem, where HMM’s can model the
similarity of phonemes or words to speech observed during training.

One of the principle difficulties in the use of HMM’s as time sequence mod-
els is structure selection (sometimes referred to as model or topology selection).
It’s apparent that that the HMM parameter set discussed in Appendix A omits
the values N (number of states), M (output alphabet size), and V (output
alphabet symbols), though M and V can be reasonably estimated either from
O or from the known set of atomic events. Furthermore, although zero tran-
sition probabilities are encoded in A, they are not found by the Baum-Welch
training algorithm. We denote the set of such zero probability transitions
as Z = {z; = (1,7)|a;; = 0}. Then the structure of the HMM is the set
s={N,M,V, Z}.

Smyth et al. [63] indicate that it is, in principle, possible to solve for an op-
timal structure under a prior distribution on the space of possible structures,
p(&). They describe the technique of Bayesian model averaging, which con-
structs a mixture model whose predictions take into account the predictions
of all possible structures weighted by their prior probability. Unfortunately,
for most systems of interest this calculation is infeasible. Alternatives include
estimates of the Bayesian average model such as cross validation, hypothesis
testing, and a Monte Carlo estimates.

Alternatively, domain knowledge can be used to select the model structure.
This approach is promising when, for example, the underlying states and pro-
cesses driving the observed process are known. Denning’s proposal of mapping
audit events to Markov state variables is an example of this case [17].

35

Successful application of HMM’s to the anomaly detection domain will re-
quire determination of & that are appropriate for this domain. While the
general solution to the HMM structure selection problem is beyond the scope
of this research, a specific solution for the anomaly detection domain is reason-
able to undertake. Appropriate structures may may be selected by hand from
known properties of the domain, or may be inferred automatically from obser-
vations. Known properties include the grammatical structure of the command
line interface and semantic relations between commands (a compiler produces
an executable which may appear later as a command, for example). We will
initially investigate hand-built HMM structures.

Domain knowledge can also be used to improve automated structure in-
duction. Knowledge of, for example, grammatical structure of the command
line environment may allow us to constrain the space of possible models to one
that can be analyzed via Bayesian model averaging. A more general structure
inference algorithm (one not dependent on domain knowledge) would exam-
ine an event stream and derive an acceptable structure directly from observed
properties of that stream. For example, cycles in the HMM structure should
correspond to peaks in the autocorrelation function of the event stream. Ac-
cumulation of such observations may allow selection of a particular structure
or may narrow the space of possible structures to a more manageable one.
We propose to investigate semiautomatic (employing domain knowledge) and
automatic methods for inducing & . We also intend to investigate whether
optimal HMM structures are user dependent or are universal.

Once an appropriate HMM structure has been selected, we can compare the
performance of HMM’s to that of our established techniques to determine the
general applicability of HMM’s as detectors for the anomaly detection domain.
Our intent is to use HMM’s as sequence based similarity measures, similar to
the instance based technique we have used for our current results (see Chapter
3). HMM’s can be trained as recognizers for command sequences and the
user profile can be formed out of a set of such sequence models. Anomaly
detection would proceed much as currently implemented, with the observation
probability rule (see Appendix A) replacing the current similarity measure.
We can then test the utility of the HMM model against the instance based
model for accuracy and time/space efficiency. If HMM’s prove valuable in this
context, we may attempt a similar integration with the hierarchical behavior
model structure proposed above.

56

4.1.5 Concept Drift

We propose to analyze the theoretical properties of concept drift and the prac-
tical application to the specific formulation encountered in the anomaly de-
tection domain. In this section, we examine the theoretical and practical
formulations of concept drift in this domain.

Theoretical Analysis

We propose to continue the theoretical analysis of concept drift presented in
Section 3.3. In particular, restriction to metric feature spaces, handling noise,
and restriction to cover extant techniques (such as instance pruning, forgetting,
knowledge transfer, etc.) are needed. The most pressing issue, however, is
the need for methods for adapting current models in the face of drift. We
conjecture that the update rule for hypotheses is learning algorithm specific,
but that by further constraining the nature of the feature space, §, (requiring
it to be metric, for example) we will be able to obtain more information about
the drift function, D, such as regions of high and low drift velocity or possibly
an n dimensional ‘conceptual moment of inertia’.

Practical Implementation

Although it is generally more desirable to begin with a complete theory of a
phenomenon and to derive a specific application from that, our current level
of development in the theoretical branch of concept drift is not sufficient to
derive a working model. Therefore, we propose an empirically derived, domain
specific approach for use in the anomaly detection task so that we can work
concurrently on practice and theory. As the theory is developed, we may
reformulate the current approach.

One domain-specific concept drift issue is that of differentiating ‘legitimate’
concept drift (drift caused by normal changes on the user’s part) from anoma-
lies caused by an intruder or arising from abusive actions on the part of the
valid user. All such activities may appear anomalous to the detection system,
yet must be handled quite differently. Specifically, we categorize the possible
sources of anomalies as follows:

1. The user may learn how to accomplish an old task in a new manner, thus
partially or completely replacing previous behavior patterns for accom-
plishing that task but maintaining a similar context for those patterns.

57

2. The user may undertake a new task which can be solved with familiar
techniques. Here we expect to see familiar behavior patterns in novel
contexts.

3. The user may undertake new tasks in new ways.

4. An intruder may gain entrance to the user’s account, without attempting
to emulate the valid user’s behavior patterns.

5. Anintruder may gain access to the user’s account and attempt to emulate
the user’s behaviors.

The last case cited may not even appear anomalous to the detector, depending
on the talent of the intruder. In most cases of interest (i.e. when the intruder
has hostile intent), however, we expect that either the intruder will undertake
an abusive action and appear in category two or four, or the intruder will at-
tempt to train the user profile into accepting new behaviors as normal. We will
discuss implications of the various intruder scenarios and the abusive insider
problem in the next section, concentrating here on methods for handling the
first three cases.

We base our approach to concept drift on the hierarchical model of se-
quence learning presented previously. We hypothesize that each class of drift
will appear as a deviation from expected behavior at a different level of the
hierarchical model. In the first case above, for example, the system would
see previously unknown commands or sequences of commands. While such
a difference could be immediately flagged as an anomaly, the existence of a
surrounding model may allow the new phenomenon to be positioned within
the context of a higher level task or behavior. If the user is changing low level
behaviors (say, learning a new command or introducing a new alias) only incre-
mentally and relatively slowly, then each new command should occur within
a context of familiar commands.

For the second case, we expect to see only familiar commands and command
sequences. A detector based on atomic events or one based on sequences of
events would detect no anomaly in this case, yet change is occurring. To a
hierarchy-based detector, the change is apparent in anomalies at middle or
upper levels of the hierarchy, while none are detected in the lower tiers.

The third case should evidence anomalies at many levels of the hierarchy.
In this case, the activity may bear high resemblance to the fourth case, and
may have to be treated as an intrusion. But if, as above, the user is changing

38

behaviors only incrementally and slowly, it may be possible to recognize the
new behaviors within contexts and adapt to them.

Thus, we hypothesize that concept drift can be detected through the ap-
pearance of behavioral anomalies with respect to the current model. When the
anomalies can be classified as benign (when they fall definitely into categories
one or two, for example), then the new data can be incorporated into the user
model. When the anomaly is known to fall into category four or five, or cannot
be classified with confidence, then the system should forward the activity to
a human supervisor for feedback and appropriate action. The features that
allow us to detect and properly handle anomalous activities, therefore, are:

e The observation of deviations from expected behavioral patterns.
e The tier(s) of the hierarchy at which those deviations occur.
o The rate of behavioral change.

Effectively, change higher in the hierarchy indicates more drastic behavioral
changes, as does high rate of change. Because such drastic changes are more
likely to be dangerous, they should be investigated by the user, a security
officer, or a system administrator.

4.2 Computer Security Issues

While most of the previously presented material has direct bearing on the
computer security aspects of the anomaly detection domain, two issues have
little direct bearing on the machine learning facets: the trusted insider and the
hostile training problems. Our hypotheses on these issues can be summarized
as:

o A trusted insider undertaking abusive actions should appear to the anomaly
detector as a characteristic type of drift within the hierarchical behav-
ioral model previously proposed. Such drift may be similar to that caused
by certain types of normal change, but the incidence of this type of
change may be low enough to make it practical to analyze individual
incidents by hand.

e Hostile training by a sufficiently knowledgeable intruder may well be
beyond the abilities of this type of detector to identify. Nevertheless,

59

there are at least three possible factors that can mitigate the hazards of
this particular attack:

— The intruder may act quickly enough to become apparent as either
an intruder or as an abusive trusted insider and be detected.

— The valid user’s behavior may be baselined and change that drifts
too far from the baseline could be flagged for further investigation.

— A formal characterization of concept drift may allow a user’s char-
acteristic change pattern to be learned as well as the user’s charac-
teristic behaviors. Then change which deviates from the expected
drift patterns could be flagged as illegal.

4.2.1 The Trusted Insider Problem

Not all abusive actions on the part of a trusted insider may be detectable by
the anomaly detection system. Some actions may be abusive only when seen
within a larger context which is invisible to the anomaly detector. Nonetheless,
there are some scenarios that may fall within the domain of anomaly as defined
by the detection system we propose. Specifically, when the system abuse falls
outside the user’s normal behavioral patterns, it should be noticed by the
anomaly detector. We hypothesize that such occurrences will fall into either
category two or three (as defined in Section 4.1.5) and that they will appear as
drift at particular levels of the hierarchical behavior model (Sections 1.2.2 and
4.1.3). We propose to examine the characteristics of concept drift introduced
by a hostile insider in terms of these categories and the hierarchical behavior
model.

Data representing abusive trusted insiders will be required to evaluate our
hypothesis about the characteristics of abusive insider behavior patterns. If
we are unable to locate data traces of real instances of trusted insider attacks,
we intend to synthesize such data.

4.2.2 The Hostile Training Problem

A solution to the general hostile training problem is likely to be beyond the
scope of the anomaly detection techniques proposed in this document. Par-
ticular special cases, however, may be detectable by the system. We intend

60

to investigate the abilities of the system proposed here to handle a hostile
training scenario.

If a hostile teacher acts too quickly, the goal behaviors may become ap-
parent in class two of the concept drift categories introduced in Section 4.1.5,
and as deviations from expected behaviors at the corresponding level of the
hierarchical behavior model. In this case, the behavior could be flagged for
further investigation by a software or human agent. Alternatively, the user’s
profile could be baselined at some point and any change that drifts too far from
the baseline (in terms of, for example, degree of change within the behavior
hierarchy or number of new HMM’s introduced as pattern detectors) could be
flagged for further investigation. The utility of either of these solutions would
depend on the policies of the site in question and how they are willing to make
the tradeoff between detection accuracy and human inconvenience.

A third possibility is that a user’s behaviors may change in characteristic
and predictable ways (i.e. we may be able to learn an estimate of the D function
described in Section 3.3), and that a hostile teacher may violate these expected
drift patterns. For example, we hypothesize that hostile training will appear
as gradual introduction of new low-level structures (commands and command
patterns) during the training phase followed by an abrupt shift in the high
level structures mostly employing the new low level patterns (i.e. new tasks
employing the newly learned commands and patterns) during the attack phase.
This type of behavioral change is hopefully not characteristic of many users,
and may serve as a distinguishing feature. Thus, a user could be characterized
not only by known behaviors but also by the ways in which those behaviors are
characteristically modified. An intruder attempting to train the system would
then have to not only emulate the user’s behaviors but also the behavioral
drift function. Hopefully, this is a more difficult task.

To examine characteristics of hostile training and the capacity of our anomaly
detection system to notice it, data representing hostile training sessions will
be needed. If no real data traces can be located, we intend to synthesize such
data.

4.3 Summary and Prioritization

We acknowledge that a complete characterization of the anomaly detection
domain and thorough exploration of even the aspects presented here is beyond
the scope of this limited research project. We close, therefore, with a prior-

61

itization of the topics we have presented. This represents our view of which
topics are most interesting and important, and which will be undertaken if
time and resources permit.

1.

Construction and testing of a hierarchical model of use behavior in terms
of tiers of sequences, the lowest level sequences being comprised of atomic
events.

. Methods for hidden Markov model structure selection for the anomaly

detection domain.

Methods for detecting and adapting to concept drift, both in practice
(in terms of the behavior hierarchy, should it prove to be useful) and in
theory.

. Methods for representing and extracting more complex types of temporal

sequence relations.

Evaluation of all techniques on real user data and empirical comparison
to standard techniques from the machine learning and computer security
literature.

Collection of more data from more disparate sources (users with different
experience bases, abusive trusted insiders, hostile training episodes, etc.),
including synthesized data for otherwise unavailable cases.

Testing of the anomaly detection system against the trusted insider and
hostile training attacks.

Testing of the anomaly detection system against other event types and
sources (such as DOS command prompts, GUI event streams, audit log
data, network traffic, or system call traces).

References

1]

2]

7]

3]

D. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms.
In machine learning journal [36], pages 37-66.

D. W. Aha. Incremental constructive induction: An instance-based ap-
proach. In L. A. Birnbaum and G. C. Collins, editors, Machine Learn-
ing: Proceedings of the Fighth International Workshop, pages 117-121,
Evanston, 1L, 1991. Morgan Kaufmann.

D. Anderson, T. Frivold, and A. Valdes. Next-generation Intrusion-
Detection Expert System (NIDES). Technical Report SRI-CSL-95-07,
Computer Science Laboratory, SRI International, Menlo Park, CA, May
1995.

D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Safeguard
final report: Detecting unusual program behavior using the NIDES sta-
tistical component. Technical report, Computer Science Laboratory, SRI

International, Menlo Park, CA, Dec 1993.

J. P. Anderson. Computer security threat monitoring and surveillance.

Technical Report Technical Report, Washington, PA, 1980.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization tech-
nique occurring in statistical analysis of probabilistic functions in Markov

chains. The Annals of Mathematical Statistics, 41(1):164-171, 1970.

J. Baxter. A Bayesian/information theoretic model of learning to learn
via multiple task sampling. Machine Learning, 28(1):7-39, Jul 1997.

P. Boedges. Air force mounts offensive against computer crime. Govern-
ment Computer News, Jul 1988.

62

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

63

R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, Jul
1997.

R. Caruna. Multitask learning: A knowledge-based source of inductive
bias. In Machine Learning: Proceedings of the Tenth International Con-
ference, pages 41-48, Amherst, MA, 1993. Morgan Kaufmann.

R. Caruna, S. Baluja, and T. Mitchell. Using the future to ‘sort out’ the
present: Rankprop and multitask learning for medical risk evaluation. In
Touretzky et al. [72].

T. Chenoweth and Z. Obradovic. An explicit feature selection strategy for
predictive models of the S&P 500 index. NeuroVe$t Journal, 3(6):14-21,
1995.

T. Chenoweth and Z. Obradovic. A multi-component nonlinear prediction

system for the S&P 500 index. Neurocomputing, 10(3):275-290, 1996.

S. Cheung, K. N. Levitt, and C. Ko. Intrusion detection for network
infrastructures. In The 1995 IEEE Symposium on Security and Privacy,
May 1995. Short Presentation.

Thomas HOA. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to algorithms. The MIT Press, Cambridge, MA, 1992.

J. Denker, D. Schwartz, B. Wittner, S. Solla, J. Hopfield, R. Howard, and
L. Jackel. Large automatic learning, rule extraction, and generalization.

Complex Systems, 1:877-922, 1987.

D. E. Denning. An intrusion-detection model. [EFEE Transactions on

Software Engineering, 13(2):222-232, 1987.

D. Farmer and W. Venema. SATAN overview (Security Administrator

Tool for Analyzing Networks). Electronic release, Mar 1995. Program
documentation for the SATAN/SANTA tool.

S. Forrest, 5. Hofmeyr, and A. Somayaji. Computer immunology. Com-

munications of the ACM, 1996.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense
of self for Unix processes. In Proceedings of 1996 [EFEE Symposium on
Computer Security and Privacy, 1996.

[21]

[22]

23]

[24]

[25]

[26]

[27]

64

K. Fukunaga. Statistical Pattern Recognition (second edition). Academic
Press, San Diego, CA, 1990.

S. Gordon. Current computer virus threats, countermeasures, and strate-
gic solutions. White paper, McAfee Associates, 1996.

S. J. Hanson, C. L. Giles, and J. D. Cowan, editors. Advances in Neural

Information Processing Systems 5. Morgan Kaufmann, 1993.

L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and
D. Wolber. A network security monitor. In Proceedings of the 1990 IEFE

Symposium on Research in Security and Privacy, pages 296-304, May
1990.

W. Hunteman. Automated information system—(ais) alarm system. In
Proceedings of the Twentieth National Information Systems Security Con-
ference [40], pages 394-405.

H. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. In
Proceedings of the IEEE Symposium on Research in Security and Privacy,
pages 316-326, 1991.

I. Krsul, E. Spafford, and T. Tuglular. A new approach to the specification
of general computer security policies. Technical Report COAST TR-97-
13, Purdue University, West Lafayette, Indiana, 1997. Submitted to the
1998 IEEE Symposium on Security and Privacy.

S. Kumar. Classification and detection of computer intrusions. PhD
thesis, Purdue University, W. Lafayette, IN, 1995.

S. Kumar and E. Spafford. An application of pattern matching in intrusion
detection. Technical Report CSD-TR-94-013, Purdue University, West
Lafayette, Indiana, Jun 1994.

T. Lane and C. E. Brodley. An application of machine learning to anomaly
detection. In National Information Systems Security Conference, Balti-

more, MD., 1997.

T. Lane and C. E. Brodley. Detecting the abnormal: Machine learning in
computer security. Technical Report TR-ECE 97-1, Purdue University,
School of Electrical and Computer Engineering, West Lafayette, IN, 1997.

32]

33]

[34]

[35]

[36]
37]

38]

39]

[40]

[41]

[42]

65

T. Lane and C. E. Brodley. Sequence matching and learning in anomaly
detection for computer security. In Proceedings of AAAI-97 Workshop on
Al Approaches to Fraud Detection and Risk Management, 1997.

D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for super-
vised learning. In Machine Learning: Proceedings of the Eleventh Inter-
national Conference, pages 148-156, New Brunswick, NJ, 1994. Morgan
Kaufmann.

T. F. Lunt. IDES: An intelligent system for detecting intruders. In Pro-
ceedings of the Symposium: Computer Security, Threat and Countermea-
sures, Rome, Italy, 1990.

T. F. Lunt and R. Jagannathan. A prototype real-time intrusion-detection
expert system. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 5966, 1988.

Machine Learning.

C. D. Mitchell. Improving Hidden Markov Models for Speech Recognition.
PhD thesis, Purdue University, W. Lafayette, Indiana, May 1995.

T. M. Mitchell. The need for biases in learning generalizations. Technical
Report Report CBM-TR-117, Rutgers University, New Brunswick, NJ,
1980.

B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion
detection. IEEFE Network, 8(3):26-41, 1994.

The National Institute of Standards and Technology and the National
Computer Security Center. Proceedings of the Twentieth National Infor-
mation Systems Security Conference, 1997.

S. W. Norton. Learning to recognize promoter sequences in E. coli by
modelling uncertainty in the training data. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages 657-663, Seattle,
WA, 1994.

A. Oppenheim and R. Schafer. Discrete-Time Signal Processing. Signal
Processing. Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[52]

[53]

[54]

66

P. Porras and P. Neumann. EMERALD: Event Monitoring Enabling Re-
sponses to Anomalous Live Disturbances. In Proceedings of the Twentieth
National Information Systems Security Conference [40], pages 353-365.

L. Pratt. Discriminability-based transfer between neural networks. In
Hanson et al. [23], pages 204-211.

L. Pratt. Transfer between neural networks to speed up learning. Journal
of Artificial Intelligence Research, submitted 1996.

L. Pratt, J. Mostow, and C. Kamm. Direct transfer of learned information
among neural networks. In Proceedings of the Ninth National Conference

on Artificial Intelligence, Anaheim, CA, 1991. MIT Press.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106,
1986.

J. R. Quinlan. Learning logical definitions from relations. In machine
learning journal [36], pages 239-266.

J. R. Quinlan. C/.5: Programs for machine learning. Morgan Kaufmann,

San Mateo, CA, 1993.

L. R. Rabiner. A tutorial on Hidden Markov Models and selected ap-
plications in speech recognition. In Proceedings of the IEFE, volume 77,
February 1989.

M. Ring. Learning sequential tasks by incrementally adding higher orders.
In Hanson et al. [23], pages 115-122.

M. Ring. Continual Learning in Reinforcement Environments. PhD thesis,
University of Texas at Austin, Austin, Texas 78712, Aug 1994.

M. Ring. CHILD: A first step towards continual learning. Machine Learn-
ing, 28(1):77-104, Jul 1997.

S. Salzberg. Locating protein coding regions in human DNA using a
decision tree algorithm. Journal of Computational Biology, 2(3):473-485,
1995.

J. C. Schlimmer. Concept acquisition through representational adjustment.
PhD thesis, University of California, Irvine, 1987.

[56]

[57]

[58]

[59]

[64]

[65]

[66]

67

J. Schmidhuber. On learning how to learn learning strategies. Technical
Report FKI-198-94, Technische Universitat Minchen, 80290 Minchen,
Germany, 1994.

J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias
with success-story algorithm, adaptive levin search, and incremental self-
improvement. Machine Learning, 28(1):105-130, Jul 1997.

M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst. Expert systems
in intrusion detection: A case study. In Proceedings of the 11th National
Computer Security Conference, pages 74-81, Oct 1988.

S. E. Smaha. Haystack: An intrusion detection system. In Proceedings of
the Fourth Aerospace Computer Security Applications Conference, pages
3744, 1988.

P. Smyth. Hidden Markov monitoring for fault detection in dynamic
systems. Pattern Recognition, 27(1):149-164, 1994.

P. Smyth. Markov monitoring with unknown states. IFEE Journal on
Selected Areas in Communications, spectal issue on intelligent signal pro-
cessing for communications, 12(9):1600-1612, 1994.

P. Smyth. Clustering sequences with hidden Markov models. In M. C.
Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Infor-
mation Processing 9. MIT Press, 1997.

P. Smyth, D. Heckerman, and M. Jordan. Probabilistic independence
networks for hidden Markov models. Neural Computation, 9, in press.

E. Spafford. The Internet Worm program: An analysis. ACM Computer
Communication Review, 19(1):17-57, Jan 1989.

S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank,
J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS — a graph-
based intrusion detection system for large networks. In Proceedings of The
19th National Information Systems Security Conference. The National In-
stitute of Standards and Technology and the National Computer Security
Center, Oct 1996.

C. Stoll. The Cuckoo’s Fgg. Pocket Books, 1989.

[67]

[68]

[72]

73]

68

H. S. Teng, K. Chen, and S. C. Lu. Adaptive real-time anomaly detection
using inductively generated sequential patterns. In Proceedings of the
IEEE Computer Society Symposium on Research in Computer Security
and Privacy, pages 278-284, Los Alamitos, CA, 1990. IEEE Computer
Society, IEEE Computer Society Press.

H. S. Teng, K. Chen, and S. C. Lu. Security audit trail analysis using in-
ductively generated predictive rules. In Proceedings of the 6th Conference
on Artificial Intelligence Applications, pages 24-29. IEEE, IEEE Service
Center, Piscataway, NJ, Mar 1990.

S. Thrun. Lifelong learning: A case study. Technical Report CMU-CS-
95-208, School of Computer Science, Carnagie Mellon University, Nov
1995.

S. Thrun. Is learning the n-th thing any easier than learning the first? In
Touretzky et al. [72].

S. Thrun and J. O’Sullivan. Discovering structure in multiple learning
tasks: The TC algorithm. In L. Saitta, editor, Proceedings of the Thir-
teenth International Conference on Machine Learning, San Mateo, CA,

1996. Morgan Kaufmann.

D. Touretzky, M. Mozer, and M. Hasselmo, editors. Cambridge, MA,
1996. MIT Press.

R. Violino. The security facade. Information Week, Oct 1996.

Appendix A

An Overview of Hidden Markov
Models

In the following discussion, we adopt the notation and general framework
presented in [50]*. An HMM consists of four components:

1. A set of N states denoted Q = {q1,¢2,...,qn}. The state of the system
at time t is denoted s;.

2. A state transition probability matrix, A, of the form:

11 12 - 41N

(g1 Q22 -+ AN
A =

anyy anz +°° A4ANN

where a;; denotes the probability of transitioning from state ¢; to state
g;. That is, the transition probabilities express the relationship: a;; =
P(siy1 = qi|st = ¢;). A transition probability of a;; = 0 indicates that
state ¢; cannot be reached from state ¢; in a single time step. Because of
the nature of the training algorithms, zero probability transitions must
be initialized as such before training. Thus, the graphical structure of
the network must be known a priori.

'HMMs can also be described as special cases of Bayesian belief networks, though we
omit that characterization here. For such an analysis, see [63].

69

70

3. An output (or observables) distribution for each state, B = {b;}. For
the case of discrete observations (as encountered in the anomaly de-
tection domain, where observations correspond to commands), the out-
put distributions are characterized by a discrete alphabet of M symbols
denoted V. = {vy,vq,... v} and a discrete probability distribution,
b, on that alphabet. The distribution b; gives the probability of ob-
serving symbol v; at time ¢ when the system is in state j. That is,

b;(k) = P(vi, observed |s; = g;).

4. An initial state distribution, 7 = {m; = P(s1 = ¢;)}, expressing the
probability that the system starts in state ¢;.

By the parameter set of the model, we mean the set A = {A, B, 7}. There are
a number of notable properties associated with this definition of HMMs. First,
the transition probabilities are independent of time, as are the output distri-
butions. Thus, the process described by the HMM is stationary. Second, the
HMM has a finite memory (a single state, for this case, although more general
cases with deeper memories are possible). This is the Markov property, and
allows calculation of marginal probabilities without exhaustive enumeration of
all state sequences (that is, P(s; = ¢|st—1 = iry St—2 = Giny oo, 81 = Gi-1)) =
P(si = qilsi-1 = qir)).

There are three fundamental problems associated with the practical imple-
mentation of HMMs as prediction or estimation models:

Observation Probabilities: Given a sequence of observations, O = Oy, 0,, ...

and a model, A, calculate the probability of observing that sequence of
observations under that model, P(O)).

State Sequence Selection: Given a sequence of observations, O = Oy, O, ...

and a model, A, calculate the sequence of states, Q) = g1, ¢2, ..., gr, most
likely (under some optimality criterion) to have generated O.

Model Training: Given a sequence of observations, O = 0Oy,0,,...,0Or,
select the parameter set, A = (A, B, 7), that maximizes P(O|).

We present brief descriptions of the commonly employed techniques for the
solutions of these problems here.

7OT7

7OT7

71

Calculation of Observation Probabilities The first problem is solved
with the forward-backward algorithm (F-B). This is a dynamic programming
algorithm that employs the Markov property (finite memory) to avoid com-
putation of all N7 possible state sequences of length T. The forward step is
sufficient to calculate observation probabilities, so we defer discussion of the
backward step until later.

The forward step calculates successive probabilities of partial observation
sequences (1) = P(0O1,04,...,0¢, 8 = ¢;|A) (the probability that model A
is in state ¢;, having seen observations Oq, Oz, ...,0;). The partial sequence
probabilities are initialized to:

Then the partial sequences are incrementally extended according to the rule:

N

ar1(j) = lZ o(d)aw] bj(Ory1).

=1

This is the point at which the Markov property is employed. Lacking a guar-
anteed finite memory, the sum over a,(:) would explode to ay(s; = ¢;, 8;-1 =
ity St—2 = Qiny ... , 1 = -1). Finally, when the partial sequences have been
extended to t = T', the total probability of observation sequence O can be
calculated as:

O|)\ ZOéT

The probability of observation sequence O under model A can, therefore, be

calculated in O(N?*T') steps.

Determination of Optimal State Sequences For most HMMs of inter-
est, there are a variety of different state sequences that can produce the same
observation sequence (possibly even with similar or even equal probabilities).
Thus, it’s impractical or even impossible to identify a single ‘correct’ sequence
state corresponding to a given observation sequence. It is, however, possible to
introduce an optimality criterion and to select the optimal state sequence un-
der that assumption. While a number of such criteria are possible, a commonly
used one is to select the state sequence that maximizes P(Q|O, \) (or, equiva-
lently, maximize P(Q,O|X)). This is the optimality criterion employed in the
Viterbi algorithm. The Viterbi algorithm employs dynamic programming in

72

a fashion similar to the F-B algorithm, differing mainly in that it calculates
a maximum probability among state paths, rather than a total probability
across all such paths. Also, an auxiliary array is kept so that the optimal state
path may be retrieved at termination.

Analogously to the partial sequence probabilities, a;(z) employed by the
F-B algorithm, the Viterbi algorithm uses the quantity

8:(1) = o, Jdnax P(s1,89,8 = q;,01,02,... ,0)
which is the value (probability) of the most likely path of length ¢ that ends
in state ¢; and accounts for the first ¢ observations. The array, (), is kept
simultaneously to track the state that maximized the path value ending in
state ¢; at time t. The arrays are initialized to:

Pi(1) =0, 1 <i<N.

The ¢ paths are incrementally extended and the ¢ array is updated to track
the best path passing through state j at time ¢ by:

0(j) = max {0;-1(1)aij}0;(0;), 1<j<N

1<i<N
i(j) = argmax{d;_1(i)ai;}, 1 <j<N.
1<i<N

When the paths have been extended to ¢t = T', the final path probability and
most likely state path are retrieved by:

P* = max {é71}

1<i<N
¢y = argmax{dr(7)}
1<i<N
Qf:@/)tﬂ(qt*“), t=T-1,T—-2,...,1.

Again, this calculation requires O(N?T') steps.

Training the Model To select the parameter set, A = (A, B, 7) such that
the probability of a given observation sequence, O, is maximized, we employ
the Baum-Welch (B-W) algorithm. B-W is a case of the EM (estimation-
maximization) method and fundamentally works by gradient descent on the
P(O|)) space. There are two important consequences of this approach. First,

73

we can only expect to converge to a locally optimal solution for the value of A,
and, second, the value to which we initialize X is likely to have a great impact
on the final solution.

For the B-W algorithm, we introduce the backward partial sequence vari-
ables, 8:(1) = P(Ot41, Otg2, ... ,Or|s: = ¢i, A), analogous to the forward vari-
ables a;(t). The backward variables encode the probability of observing the
partial sequence beginning with 0,44 and continuing to time T', and are calcu-
lated in a manner similar to the forward partial sequence variables. Together,
the calculation of the forward and backward variables constitutes the entire
F-B algorithm.

With both a’s and 3’s in hand, we can define the observed state transition

probability variable, &(i, j) as:

§i(i,7) = P(st = qi, 5011 = |0, A)
P(st = qi, 841 = q5,0|N)
P(O[A)

_ (1) aijb;(Ory1)Bee1 ()
P(O[A)
_ (1) aijb;(Oy1)Bra(J)

> 2 aa(i)aiibj(O) B (7)

Thus, &(7,7) is an a posteriori estimate of a;;; it represents the probability
that the model is in state ¢; at time ¢ and in state ¢; at time £ 4+ 1 given the
observation sequence O. Now we define (i), the probability that the model
1s in state ¢; at time ¢ as:

’Yt(i) = P(St = Qi|07)‘)
Z;‘\le ft(lv.])

Then the sum of v,(¢) over all t = 1...T — 1 is the expected number of times
that a transition takes place away from state ¢;. Similarly, the sum of &1, j)
from 1 to T"— 1 expresses the expected number of times that the transition
gi — ¢; is made. Now we can write a set of reestimation formulae for the

74

parameters 7;, a;;, and b;(k):

i = ()
T—1
th(lv.])
@ o= L

Wk = O
Z_; Ye(1)

We denote the reestimated parameter set A = (A, B,7). Rabiner notes that
in [6], Baum et al. have showed that P(O|X) > P(O|)\) and, therefore, the
iterative process of replacing A with A converges to a local maximum on the
probability space P(O|)).

An important feature of the parameter reestimation procedure given here
is that the term a;; appears in the numerator of the calculation of &(1, 7) and,
therefore, of @;;. Thus, a zero probability transition will never be updated
to a non-zero probability by the B-W algorithm. Furthermore, the updated
transition probability, @;;, can be zero only if a;; = 0, ou(i)G41(j) = 0 VI
(i.e. no path ever includes the transition ¢, — ¢;), or b;(Op1) = 0 Vit (i.e.
no observation is ever associated with the transition ¢; — ¢;). But all of
these conditions fundamentally imply a;; = 0. Thus, a non-zero transition
probability can never be updated to a zero transition probability by the B-W
algorithm. Therefore, the model must be initialized with the appropriate zero
transitions before training. This is equivalent to stating that the graphical
structure of the HMM must be known a priori.

