
SOFTWARE VULNERABILITY ANALYSIS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Ivan Victor Krsul

In Partial Ful�llment of the

Requirements for the Degree

of

Doctor of Philosophy

May 1998

ii

To Jacqueline M. Martinez sensei, for giving me the Dojo Kun, and to my family for

giving me the life needed to understand it.

iii

ACKNOWLEDGMENTS

There are many people that contributed signi�cantly to my work and I would like to

acknowledge their contributions.

Thanks to the members of my examination committee, Eugene Spa�ord, Aditya Mathur,

Matthew Bishop, Carla Brodley, and Antony Hosking for their valuable suggestions and

support. Carla Brodley's guidance in the �elds of machine learning and data analysis, and

her support with the tools and equipment needed for part of the analysis, is gratefully

acknowledged.

I would like to thank Diego Zamboni, Tom Daniels, David Isaco�, Chapman Flack, and

Eugene Spa�ord for their help with the reviews of this dissertation. Thanks to Diego Zam-

boni, Tom Daniels, Kevin Du, Mahesh Tripunitara, and Tugkan Tuglular for all their help

and valuable suggestions during the vulnerability database weekly meetings. A signi�cant

portion of the ideas for this dissertation originated during our discussions there.

Tom Daniels and Adam Wilson helped enter data into the vulnerability database. I

am grateful for their contributions. Thanks to Tugkan Tuglular for helping me develop

most of the work relating to policies and the de�nitions of software vulnerability. Thanks

for Edward Felten of Princeton University, and Michael Dilger for their contributions on

software vulnerabilities. Thanks to Je� Bradford for his help with the mineset classi�cation

tools.

Thanks to David Isaco� and Mahesh Tripunitara for their contributions on the nature

of vulnerabilities and for clarifying many doubts with regards to the taxonomy of software

vulnerabilities developed in section 6.1.

Portions of this work were supported by contract MDA904-97-6-0176 from the Maryland

Procurement O�ce, and by the various sponsors of the COAST Laboratory | support that

is gratefully acknowledged.

iv

Diego Zamboni, Tugkan Tuglular, Tom Daniels and Mahesh Tripunitara deserve special

recognition for tolerating my personality changes during the last few weeks of writing.

Last, but not least, my friends, Susana Soriano, Maria Khan, Elli Liassidou, Engin

Uyan, Sidem Yavrucu, Pelin Aksit, Denis Lekic, Carlos Gonzales, Claudia Fajardo, Danielle

Bolduc, Colin Brammer, Robert Ferguson, Carlos Ortiz, Charles Meyer, Juli Phillips, Pat

Randolph, Lisa Anderson, and many others that I wish I could name, contributed signi�-

cantly to my mental and spiritual well-being during the writing of this dissertation. Words

are not su�cient to thank them.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

ABSTRACT . xiv

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Thesis Statement . 1

1.3 Contributions . 2

1.4 Organization of the Dissertation . 3

2 NOTATION AND TERMINOLOGY . 5

2.1 Terminology . 5

2.1.1 Error, Faults, and Failures . 5

2.1.2 Computer Policy . 5

2.1.3 Software Vulnerability . 6

2.1.4 Taxonomy and Classi�cation . 12

2.1.5 System Objects, Attributes and Constraints 12

2.1.6 De�nitions of Other Terms . 13

2.2 Notation . 13

3 RELATED WORK . 16

3.1 Classi�cation Theory . 16

3.1.1 Historical Background . 17

3.1.2 Taxonomic Characters, Object Attributes or Features 18

vi

Page

3.1.3 Taxonomies and Classi�cations . 21

3.1.4 Types of Classi�cations . 22

3.2 Prior Software Vulnerability Classi�cations 25

3.2.1 Aslam Classi�cation . 27

3.2.2 Knuth Classi�cation . 27

3.2.3 Grammar-based Classi�cation . 29

3.2.4 Endres Classi�cation . 30

3.2.5 Ostrand and Weyuker Classi�cation 30

3.2.6 Basili and Perricone Classi�cation 30

3.2.7 Origin and Causes Classi�cation . 31

3.2.8 Access Required Classi�cation . 31

3.2.9 Category Classi�cation . 32

3.2.10 Ease of Exploit Classi�cation . 32

3.2.11 Impact Classi�cation . 32

3.2.12 Threat Classi�cation . 33

3.2.13 Complexity of Exploit Classi�cation 34

3.2.14 Cohen's Attack Classi�cation . 34

3.2.15 Perry and Wallich Attack Classi�cation 35

3.2.16 Howard Process-based Taxonomy of Network Attacks 36

3.2.17 Dodson's Classi�cation Scheme . 36

3.3 Vulnerability Databases . 36

4 DEVELOPMENT OF NEW TAXONOMIC CHARACTERS 39

4.1 Threat Features . 39

4.2 Environmental Assumption Features . 40

4.3 Features on the Nature of Vulnerabilities . 42

4.3.1 Objects A�ected . 42

4.3.2 E�ect on Objects . 43

4.3.3 Method or Mechanism Used . 44

4.3.4 Input Type . 45

vii

Page

4.4 Chapter Summary . 45

5 EXPERIMENTAL ANALYSIS OF SOFTWARE VULNERABILITIES 47

5.1 Experiment Hypothesis . 48

5.2 Experimental Setup . 48

5.2.1 Sources for Data Collection . 49

5.2.2 Database Structure . 50

5.2.3 Data Characteristics . 55

5.2.4 Data Distribution . 55

5.3 Experiments . 66

5.3.1 Co-word Analysis . 66

5.3.2 Induction of Decision Trees . 86

5.3.3 Data Visualization Tools . 89

5.4 Chapter Summary . 90

6 A PRIORI CLASSIFICATIONS OF SOFTWARE VULNERABILITIES 93

6.1 A Taxonomy for Software Vulnerabilities . 93

6.1.1 Scope of the Taxonomy . 112

6.1.2 Application of the Taxonomy of Software Vulnerabilities 112

6.1.3 Formalization of the Taxonomy of Vulnerabilities 113

6.2 Evolutionary Classi�cation . 119

6.3 A Classi�cation for Software Testing . 120

6.4 Chapter Summary . 120

7 SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 122

7.1 Conclusions . 122

7.2 Summary of Main Contributions . 124

7.3 Future Work . 125

BIBLIOGRAPHY . 126

APPENDICES . 136

viii

Page

A SCHEMAS FOR PRIOR VULNERABILITY DATABASES 137

A.1 Vulnerabilty Databse at ISS . 137

A.2 Vulnerabilty Databse at INFILSEC . 137

A.3 Vulnerabilty Databse of Michael Dilger . 138

A.4 Eric Miller's Database . 141

A.5 The CMET Database at the AFIW . 141

A.6 Mike Neuman's Database . 146

B VULNERABILITY CLASSIFICATIONS - DETAILED LIST 148

B.1 Aslam Classi�cation . 148

B.2 Knuth Classi�cation . 150

B.3 Grammar-based Classi�cation . 150

B.4 Endres Classi�cation . 151

B.5 Ostrand and Weyuker's Classi�cation . 152

B.6 Basili and Perricone Classi�cation . 152

B.7 Origin and causes . 153

B.8 Access required . 153

B.9 Category . 153

B.10 Ease of Exploit . 154

B.11 Impact . 154

B.12 Threat . 156

B.13 Complexity of Exploit . 156

B.14 Cohen's Attacks . 157

B.15 Cohen's Attack Categories . 158

B.16 Perry and Wallich Attack Classi�cation . 158

B.17 Howard's Process-Based Taxonomy of Network Attacks 159

B.18 Dodson's Classi�cation Scheme . 159

C IMPROVEMENTS ON PRIOR CLASSIFICATIONS 162

C.1 Indirect Impact . 163

C.2 Direct Impact . 163

ix

Page

C.3 Access Required . 163

C.4 Complexity of Exploit . 163

C.5 Category . 164

C.6 OS Type . 164

VITA . 171

x

LIST OF TABLES

Table Page

5.1 Keywords used in the co-word analysis run. 70

B.1 Values allowed for each level of the Howard's Process Based Taxonomy of Net-

work Vulnerabilities . 159

xi

LIST OF FIGURES

Figure Page

2.1 Visualization of the de�nition of vulnerability 11

3.1 Natural classi�cations take advantage of taxonomic characters that are hierar-

chical in nature. 24

3.2 Natural clusterings group individuals together because they have similar char-

acteristics. 26

3.3 There is often more than one way to correct a software fault and hence grammar-

based classi�cations are not unique until a unique �x has been issued. 29

3.4 The Threat classi�cation is ambiguous because it uses nodes that have more

than one fundamentum divisionis . 33

3.5 Decision tree for the classi�cation of the direct impact of vulnerabilities. 38

5.1 Distribution of �lled �elds in the database . 56

5.2 Scatter plots for some classi�cations. 57

5.3 Scatter plots for some classi�cations. 58

5.4 Distribution Plot the Nature of Threat Features 59

5.5 Distribution Plot for Environmental Assumption Features 60

5.6 Distribution plot for the Nature of Vulnerability feature Object A�ected 61

5.7 Distribution plot for the Nature of Vulnerability feature E�ect on Object . . . 62

5.8 Distribution plot for the Nature of Vulnerability Method feature 63

5.9 Distribution plot for the Nature of Vulnerability Method Input feature 64

5.10 Distribution plot for the System Features . 65

5.11 Plot of Centrality vs. Density for the results of co-word analysis for the vulner-

ability database . 72

5.12 Principal network number 1 for co-word analysis. 76

xii

Figure Page

5.13 Isolated network number 2 for co-word analysis. 77

5.14 Isolated network number 3 for co-word analysis. 78

5.15 Isolated network number 4 for co-word analysis. 79

5.16 Principal network number 5 for co-word analysis. 80

5.17 Isolated network number 6 for co-word analysis. 81

5.18 Network number 7 for co-word analysis. 82

5.19 Network number 8 for co-word analysis. 83

5.20 Isolated network number 9 for co-word analysis. 84

5.21 Isolated network number 10 for co-word analysis. 85

5.22 A decision tree generated by MLC++ for predicting the direct impact of a

vulnerability. 88

5.23 Visualization techniques can derive knowledge from vulnerability data. Example 1 91

5.24 Visualization techniques can derive knowledge from vulnerability data. Example 2 92

6.1 A classi�cation for the identi�cation of environmental assumptions made by

programmers|Part 1. 97

6.2 Mapping the Classi�cation to the Vulnerability De�nition 98

6.3 A classi�cation for the identi�cation of environmental assumptions made by

programmers|Part 2. 99

6.4 Distribution of vulnerabilities classi�ed with the taxonomy presented in this

section. 104

6.5 Taxonomy of Software Vulnerabilities Top Level 106

6.6 Taxonomy of Software Vulnerabilities, Levels 2-1 and 2-2 107

6.7 Taxonomy of Software Vulnerabilities, Levels 2-3 and 2-4 108

6.8 Taxonomy of Software Vulnerabilities, Levels 2-5 and 2-6 108

6.9 Taxonomy of Software Vulnerabilities, Level 2-7 109

6.10 Taxonomy of Software Vulnerabilities, Levels 2-8 and 2-9 110

6.11 Taxonomy of Software Vulnerabilities, Level 2-10 110

6.12 Taxonomy of Software Vulnerabilities, Levels 2-11 and 2-12 111

6.13 Programs normally execute code from well de�ned regions in memory, even if

the memory is fragmented or the program contains dynamic executable code. . 116

xiii

Figure Page

6.14 A possible subtree of an evolutionary classi�cation of software vulnerabilities. . 119

6.15 An example of a goal-oriented classi�cation for software testing using environ-

mental perturbations. 121

B.1 Aslam Classi�cation decision tree (part 1 of 2) for the classification feature. 148

B.2 Aslam Classi�cation decision tree (part 2 of 2) for the classification feature. 149

C.1 Selection decision tree for the indirect impact classi�cation. 165

C.2 Selection decision tree for the direct impact classi�cation. 166

C.3 Selection decision tree for the access required classi�cation. 167

C.4 Selection decision tree for the complexity of exploit classi�cation. 168

C.5 Selection decision tree for the category classi�cation. 169

C.6 Selection decision tree for the os type classi�cation. 170

xiv

ABSTRACT

Krsul, Ivan Victor. Ph.D., Purdue University, May 1998. Software Vulnerability Analysis.
Major Professor: Eugene H. Spa�ord.

The consequences of a class of system failures, commonly known as software vulnerabil-

ities, violate security policies. They can cause the loss of information and reduce the value

or usefulness of the system.

An increased understanding of the nature of vulnerabilities, their manifestations, and

the mechanisms that can be used to eliminate and prevent them can be achieved by the

development of a uni�ed de�nition of software vulnerabilities, the development of a frame-

work for the creation of taxonomies for vulnerabilities, and the application of learning,

visualization, and statistical tools on a representative collection of software vulnerabilities.

This dissertation provides a unifying de�nition of software vulnerability based on the

notion that it is security policies that de�ne what is allowable or desirable in a system. It

also includes a framework for the development of classi�cations and taxonomies for software

vulnerabilities.

This dissertation presents a classi�cation of software vulnerabilities that focuses on the

assumptions that programmers make regarding the environment in which their application

will be executed and that frequently do not hold during the execution of the program.

This dissertation concludes by showing that the unifying de�nition of software vulnera-

bility, the framework for the development of classi�cations, and the application of learning

and visualization tools can be used to improve security.

1

1 INTRODUCTION

1.1 Problem Statement

Software development can be complex. Added problem complexity, design complexity,

or program complexity increases the di�culty that a programmer encounters in the design

and coding of the software system [Conte et al. 1986]. Errors, faults, and failures are

introduced in many stages of the software life-cycle [Beizer 1983; Myers 1979; DeMillo et al.

1987; Marick 1995].

The consequences of a class of system failures, commonly known as software vulnerabil-

ities, violate security policies. They can cause the loss of information, and reduce the value

or usefulness of the system [Leveson 1994; 1995; Amoroso 1994].

There is no single accepted de�nition of the term software vulnerability, and hence it

is di�cult to objectively measure the features of vulnerabilities, or make generalizations

on this class of failures. Since the publication of [Linde 1975], software researchers have

developed various programming guidebooks for the development of secure software and

analyzed in detail various vulnerabilities [Weissman 1995; Gar�nkel and Spa�ord 1996;

Gavin 1998; Bishop 1986; Smith 1994; CERT Coordination Center 1998c; Spa�ord 1989;

Kumar et al. 1995; Bishop 1995; Schuba et al. 1997; Carlstead et al. 1975; Bibsey et al.

1975; Abbott et al. 1976]. However, vulnerabilities that are the result of the problems listed

in these programming guides continue to appear [CERT Coordination Center 1998a; 1998b;

1997a; 1997b; 1997c; Gavin 1998].

1.2 Thesis Statement

An increased understanding of the nature of vulnerabilities, their manifestations, and

the mechanisms that can be used to eliminate them or prevent them can be achieved by

the development of a uni�ed de�nition of software vulnerabilities, the development of a

2

framework for the creation of taxonomies for software vulnerabilities, and the application

of learning, visualization, and statistical tools on a representative collection of software

vulnerabilities.

A unifying de�nition of software vulnerabilities can identify characteristics of vulnerabil-

ities and allows researchers to agree on the object of study. A unifying de�nition can also be

used to identify areas of focus for the development of taxonomies of software vulnerabilities.

An organizing framework can be used to generalize, abstract, and communicate �ndings

within the research community. Taxonomies, or the theoretical study of classi�cation,

structure or organize the body of knowledge that constitutes a �eld. As such, they are an

essential part of such a framework [Glass and Vessey 1995].

Researchers have attempted to develop such taxonomies and classi�cations for software

vulnerabilities or related areas [Bishop 1995; Kumar and Spa�ord 1994; Kumar 1995; Ku-

mar et al. 1995; Aslam 1995; Anderson 1994; Landwher et al. 1993; Cohen 1997a; 1997b].

However, as shown in Section 3.2, these classi�cations are ambiguous. The ambiguities

are in part the result of con
ictive de�nitions for software vulnerabilities, software faults,

errors, etc.

A framework for the development of taxonomies according to generally accepted prin-

ciples can be used to develop unambiguous classi�cations. These can result in an increased

understanding of the nature of software vulnerabilities. An increased understanding of

the nature of vulnerabilities can lead to improvements in the design and development of

software.

The taxonomic characters developed for the classi�cations in taxonomies of software

vulnerabilities can be used, in conjunction with the classi�cations themselves, to apply data

mining and data visualization tools. These tools can reveal characteristics and properties

of vulnerabilities that may not be apparent from the raw data.

1.3 Contributions

As shown in Section 2.1.3, the existing de�nitions of software vulnerability have one of the

following forms: Access Control de�nitions, State Space de�nitions, and Fuzzy de�nitions.

This dissertation provides a unifying de�nition based on the notion that it is security policies

that de�ne what is allowable or desirable in the system, and hence, the notion of software

3

vulnerability ultimately depends on our notion of policy. This dissertation also shows that

existing classi�cations and taxonomies for software vulnerabilities, or related �elds, do not

satisfy all the desirable properties for classi�cations and taxonomies.

Section 3.1 de�nes the properties of measurements or observations necessary for the de-

velopment of classi�cations; and provides a framework for the development of taxonomies

for software vulnerabilities and related �elds. This framework can be used as a basis for

measuring features of vulnerabilities that can be used for the generation of classi�cations.

These can be used to generalize, abstract, and communicate �ndings within the security

research community, and contribute to our understanding of the nature of software vulner-

abilities.

This dissertation presents an extension and revision of the classi�cation of vulnerabilities

presented by Aslam in [Aslam 1995]. Unlike its predecessor, this classi�cation focuses on the

assumptions that programmers make regarding the environment in which their application

will execute, and that frequently do not hold in the execution of the program. Those

vulnerabilities identi�ed with this classi�cation are not the result of software faults identi�ed

by common testing methods, because when tested in an environment that conforms to the

assumptions made by programmers, the programs execute correctly.

This dissertation shows that machine learning and statistical analysis tools can reveal

patterns and regularities that either reinforce our understanding of vulnerabilities, or pro-

vide new insights into the nature of vulnerabilities. Machine learning and statistical analysis

tools can also in
uence the development of a priori classi�cations.

Finally, this dissertation describes how the development of taxonomies for software

vulnerabilities can be used to build special domain-speci�c tools for the development of

security-sensitive software.

1.4 Organization of the Dissertation

This dissertation is organized as follows: Chapter 2 introduces the terminology and

the algorithmic conventions to be used throughout the dissertation. Chapter 3 presents

the related work. Chapter 4 presents the development of new taxonomic characters for

classi�cations and analysis. Chapter 5 shows how these taxonomic characters, measured

for a collection of vulnerabilities, can be used with data mining and visualization tools.

4

Chapter 6 presents examples of a priori classi�cations and a taxonomy that focuses on

vulnerabilities that result from mistaken environmental assumptions. Finally, Chapter 7

presents the conclusions, summarizes our �ndings, and discusses future directions.

5

2 NOTATION AND TERMINOLOGY

2.1 Terminology

In this section we introduce and de�ne some of terms that will be used through the

dissertation. Related terms are grouped by areas.

2.1.1 Error, Faults, and Failures

An error is a mistake made by a developer. It might be a typographical error, a

misreading of a speci�cations, a misunderstanding of what a subroutine does, and so on

[IEEE 1990]. An error might lead to one or more faults. Faults are located in the text of

the program. More precisely, a fault is the di�erence between the incorrect program and

the correct version [IEEE 1990].

The execution of faulty code may lead to zero or more failures, where a failure is

the [non-empty] di�erence between the results of the incorrect and correct program [IEEE

1990].

2.1.2 Computer Policy

There are multiple de�nitions possible for computer policies, and the de�nitions pre-

sented in this dissertation have one of the following forms:

1. Policy helps to de�ne what is considered valuable, and speci�es what steps should be

taken to safeguard those assets [Gar�nkel and Spa�ord 1996].

2. Policy is de�ned as the set of laws, rules, practices, norms, and fashions that regulate

how an organization manages, protects, and distributes sensitive information, and

that regulates how an organization protects system services. [Longley and Shain

1990; DoDCSEC 1985; Sterne et al. 1991; Dijker 1996]

6

3. Access to a system may be granted only if the appropriate clearances are presented.

Policy de�nes the clearance levels that are needed by system subjects to access objects

[DoDISPR 1982; Sterne et al. 1991].

4. In an access control model, policy speci�es the access rules for an access control

framework [Kao and Chow 1995].

The key concepts in these de�nitions are value, authorization, access control, protection,

and sensitivity of information. [Krsul et al. 1998] presents a de�nition of policy that takes

these key concepts into account. This de�nition explicitly requires that the speci�cation of

the policy include a detailed account of when the system is considered to be valuable. From

[Krsul et al. 1998], a Policy is the set of rules that de�ne the acceptable value of a system

as its state changes through time.

In operating systems such as Unix and Windows NT, the security policies that can be

enforced by the operating system are a subset of the policies that users and administrators

expect applications and the system to enforce. Expected policies are the rules that the

user expects the system and applications to enforce so as to maintain the value of the system

as it changes through time.

Example 2.1: This example illustrates the di�erence between policy and expected policy. If

a user runs a WWW browser he expects that it will not access and modify user �les in

directories other than those managed by the browser itself. Exceptions must be cleared

with the user (the expected policy). The operating system, however, does not have any

mechanisms for enforcing this user expectation, and the browser is free to read and modify

any �le that can be accessed by the user (the policy). 2

2.1.3 Software Vulnerability

Existing de�nitions of software vulnerability have one of three forms: Access Control,

State-space, and Fuzzy.

[Denning 1983] states that an access control policy speci�es the authorized accesses of

a system and gives the following de�nitions of system states and policies:

7

The state of a system is de�ned by a triple (S;O;A), where:

1. S is a set of subjects, which are the active entities of the model. Subjects are also

considered to be objects; thus S � O.

2. O is a set of objects, which are the protected entities of the system. Each object is

uniquely identi�ed with a name.

3. A is an access matrix, with rows corresponding to subjects and columns to objects.

An entry A[s; o] lists the access rights (or privileges) of subject s over object o.

Changes to the state of a system are modeled by a set of commands, speci�ed by a sequence

of primitive operations that changes the access matrix.

A con�guration of the access matrix describes what subjects can do|not necessarily

what they are authorized to do. A protection policy (or security policy) partitions the set

of all possible states into authorized versus unauthorized states.

The exploitation of an access control vulnerability is whatever causes the operating

system to perform operations that are in con
ict with the security policy as de�ned by the

access control matrix.

This de�nition requires the speci�cation of a clear access control matrix that speci�es

what operations are allowed on system objects for every subject and object in the system.

Such clear and precise access control matrices are not speci�ed in operating systems such

as Unix, Macintosh OS, VMS, or Windows NT. Also, there are systems, as shown in the

following example, where there are clear con
icts between the access control speci�cations

in the operating system and the user's expectations.

Example 2.2: In Unix and Windows NT systems, applications that are run by users inherit

all the privileges that the access control mechanisms of the operating system provides to

the user. The Java virtual machine is one of these applications and it de�nes, and is

responsible for the enforcement of, its own access control matrix inside a sandbox. The

sandbox is comprised of a number of cooperating system components that ensure that

an untrusted|and possibly malicious|application cannot gain access to system resources

[SECJAVA 97].

If the access control mechanism of the virtual machine fails, a hostile applet can be

given access beyond the sandbox (as described in [McGraw and Felten 1997]). In such a

case, the operating system will allow the hostile applet full access to the users �les because

8

to the operating system there is no di�erence between the virtual machine and the applet.

In such cases there will be a clear violation of expected cumulative access control rules. 2

[Bishop and Bailey 1996] proposes a state-space de�nition of vulnerability:

A computer system is composed of states describing the current con�guration

of the entities that make up the computer system. The system computes through

the application of state transitions that change the state of the system. All

states reachable from a given initial state using a set of state transitions fall

into the class of authorized or unauthorized, as de�ned by a security policy. . . the

de�nitions of these classes and transitions is considered axiomatic. . .

A vulnerable state is an authorized state from which an unauthorized state

can be reached using authorized state transitions. A compromised state is the

state so reached. An attack is a sequence of authorized state transitions which

end in a compromised state. By de�nition, an attack begins in a vulnerable

state. . .

\A state-space vulnerability is a characterization of a vulnerable state which dis-

tinguishes it from all non-vulnerable states. If generic, the vulnerability may characterize

many vulnerable states; if speci�c, it may characterize only one. . . " [Bishop and Bailey

1996]

The de�nition of a software vulnerability in [Bishop and Bailey 1996] is di�cult to apply

to systems such as Unix or Windows NT because the identi�cation of states is dependent

on the intended functionality of the system. Even if we could enumerate all the possible

safe and unsafe states of the system, say by partitioning the state-space, every program

can have a unique state labeling that is a re
ection of its intended behavior. Each safe and

unsafe state labeled must take into account the environment of the system, including the

user.

The Data & Computer Security Dictionary of Standards, Concepts, and Terms [Longley

and Shain 1990] de�nes computer vulnerability as:

1) In computer security, a weakness in automated systems security proce-

dures, administrative controls, internal controls, etc., that could be exploited by

9

a threat to gain unauthorized access to information or to disrupt critical pro-

cessing. 2) In computer security, a weakness in the physical layout, organization,

procedures, personnel, management, administration, hardware or software that

may be exploited to cause harm to the ADP system or activity. The presence of

a vulnerability does not itself cause harm. A vulnerability is merely a condition

or set of conditions that may allow the ADP system or activity to be harmed by

an attack. 3) In computer security, any weakness or
aw existing in a system.

The attack or harmful event, or the opportunity available to a threat agent to

mount that attack.

Unlike the previous de�nitions, this one identi�es that vulnerabilities are a function

of perceived expectations at many levels. [Amoroso 1994] de�nes a vulnerability as an

unfortunate characteristic that allows a threat to potentially occur. A threat is any potential

occurrence, malicious or otherwise, that can have an undesirable e�ect on the assets and

resources associated with a computer system.

According to these de�nitions, a fuzzy vulnerability is a violation of the expectations

of users, administrators, and designers. Particularly when the violation of these expecta-

tions is triggered by an external object.

In the three previous de�nitions of computer vulnerability|access control, state-space,

and fuzzy|it is policies that de�ne what is allowable or desirable in the system and hence

the notion of computer vulnerability ultimately depends on our notion of policy.

We give two arguments for the development of a unifying and practical de�nition for

software vulnerabilities: improvement of systems, and identi�cation of protection domains.

Improvement of Software Systems: Software vulnerabilities have undesirable consequences

that go beyond the annoyance of common software system failures. The exploitation

of vulnerabilities can a�ect the lives and livelihood of people and can have potentially

disastrous e�ects [Leveson 1995]. Hence, an understanding of the nature of vulnera-

bilities would improve system design to reduce the risk of running critical or sensitive

systems.

Identi�cation of Protection Domains: Systems such as �rewalls and systems that check for

vulnerabilities attempt to reduce the risk of using computer systems by preventing the

10

exploitation of existing vulnerabilities [Farmer and Spa�ord 1991; Polk 1992]. In cir-

cumstances where it is not possible or feasible to eliminate the risk, intrusion detection

systems attempt to detect the exploitation of vulnerabilities [Denning 1987; Kumar

1995]. A clear de�nition of software vulnerabilities identi�es what these systems need

to protect.

The execution of a vulnerable software can violate the security policy, implied or ex-

plicitly speci�ed. Software can be vulnerable because of an error in its speci�cation, de-

velopment, or con�guration. A software vulnerability is an instance of an error in the

speci�cation, development, or con�guration of software such that its execution can violate

the security policy.

Note that the waterfall model of the software life cycle divides the development phase

into design and coding [Conte et al. 1986]. Note also that an important class of errors in the

development of a software system is the mismatch between the assumptions made during

the development about the execution environment of the software, and the environment in

which the program executes.

Example 2.3: As shown in Figure 2.1, and from the preceding de�nition, a software vulner-

ability can result from many errors, including errors in the speci�cation, design, or coding

of a system, or in environmental assumptions that do not hold at runtime. The following

are examples of vulnerabilities for each of the categories shown:

� An example of a vulnerability that results from an error in the requirements or spec-

i�cation is the TCP Land vulnerability, where the TCP protocol speci�cation has

ambiguities and contradictions [Krsul et al. 1998].

� An example of a vulnerability that results from a design error is the TCP SYN Flood

vulnerability, where the designer speci�es that an inadequate number of bu�ers should

be reserved for half-open connections [Schuba et al. 1997].

� An example of a vulnerability resulting from a coding error is the Java vulnerability

where package membership is decided from the �rst component of the package name

alone because a programmer delimited the package name with the �rst period in the

full name, rather than the last period in the full name [McGraw and Felten 1997;

Krsul et al. 1998].

11

Requirements
Specification

Design

Coding
Implementation

Operation

Assumptions about
the environment

Assumptions about
the environment

Assumptions about
the environment

Assumptions about
the environment

AT EXECUTION TIME
Vulnerabilities resulting from

mistaken assumptions about the
operational environment

AT DEVELOPMENT TIME

Vulnerabilities resulting
from errors in the

development process

Examples:
 ● P≠NP
 ● Bounded computation
 times

Examples:
 ● Network capabilities
 ● Algorithm correctness

Examples:
 ● See Section 5.1

Examples:
 ● Hardware executes
 instructions correctly
 ● OS implements access
 control correctly

Affects or influences

Figure 2.1: Vulnerabilities can result from errors in the speci�cation, design, or coding of

a system, or in environmental assumptions that do not hold at the time of execution of a

program.

� An example of a vulnerability that results from a mismatch between the assumptions

the programmer makes about the environment in which the program will execute, and

the environment in which the program actually executes, is the incorrect implemen-

tation of a system library.

� An example of a vulnerability that results from a con�guration error is the vulnera-

bility in which the NIS domain name is con�gured to be the same name as the DNS

domain name [Krsul et al. 1998].

� An example of a vulnerability that results from an assumption made at the time of the

requirement speci�cation is a system that only allows uppercase letters in its eight byte

12

password �eld. At the time of speci�cation, it was assumed that no computer system

would be capable of enumerating and trying all the possible password combinations.

2

2.1.4 Taxonomy and Classi�cation

A taxonomy is the theoretical study of classi�cation, including its bases, principles,

procedures and rules [Simpson 1945; Grolier Incorporated 1993; EBRIT 1997; WEBOL

1998]. A classi�cation is the separation or ordering of objects (or specimens) into classes

[WEBOL 1998]. Classi�cations that are created non-empirically are called a priori clas-

si�cations [Audi 1995; Simpson 1961; WEBOL 1998]. Classi�cations that are created

empirically by looking at the data are called a posteriori classi�cations [Audi 1995;

Simpson 1961; WEBOL 1998].

2.1.5 System Objects, Attributes and Constraints

The de�nition of software vulnerability presented in Section 2.1.3 includes mismatches

between the assumptions about the environment made during the development and opera-

tion of the program, and the environment in which the program executes. The de�nitions

in this section refer to these assumptions.

In a computer system, a system object is an entity that contains or receives infor-

mation, that has a unique name, and that has a set of operations that can be carried out

on it [Longley and Shain 1990; Tanenbaum 1987]. An attribute of an object is a data

component of an object. A derived attribute of another attribute is a data component of

the later attribute. A property of an attribute is a characteristic of the attribute that

can be derived from the attribute by the application of a function to the attribute.

An attribute re�nement is a �nite re�nement of attributes within attributes, and

results in the identi�cation of the attributes about which assumptions are made. The

attribute re�nement cannot contain a property of an attribute.

Example 2.4: The following example illustrates the attribute re�nement process: The object

is the running program. An attribute of the running program is its environment. The

PATH environment variable is an attribute of the program environment. The �rst path

13

in the PATH environment variable is a re�nement of the PATH environment variable.

Another re�nement is possible if we look at the �rst character of the �rst path of the

PATH environment variable.

Note that the length of the �rst path in the PATH environment variable is not an

attribute because the length of the path is computed by the application of a function that

counts the number of characters in the path. Hence, the length is a property. 2

The Attribute Constraint identi�es the property or set of properties that are being

assumed about that particular attribute.

2.1.6 De�nitions of Other Terms

Other terms in this dissertation are used according to their de�nitions in [Spencer 1983;

Longley and Shain 1990; WEBOL 1998; Longley and Shain 1990; Mockapetris 1987; Albitz

and Liu 1992; Bhushan et al. 1971; Crosbie et al. 1996; Postel 1981a; Borenstein 1992; Sun

Microsystems Inc. 1989; Stern 1991; 1991; Comer 1984; Bach 1986; Wall and Schwartz

1990; Sun Microsystems Inc. 1988; Walsh 1994; Postel 1981b; 1980].

2.2 Notation

In this section we present the algorithmic conventions that will be used throughout the

dissertation. The notation is an adaptation of that of [Cohen 1990; Sethi 1989].

Functions are speci�ed by indicating the types of parameters, the return type, and the

function body. If the function returns a value, the function name is used as a variable to

assign the return value. The format for a function is shown in equation 2.1.

Conditions and loops are indicated by the if and do keywords. The format of conditions

and loops is shown in equation 2.2. One line conditional operations can be speci�ed if the

operations are followed by a condition. For example, a conditional assignment would have

the following form:

x :=< value > if < condition >;

14

Statements and conditions are mathematical expressions where the following special

operators are de�ned:

) Some text(The text inside the arrows is a comment.

^ The short circuit AND logical operator. Used in logical expressions such as \if object is a

�le ^ �le name is empty then." Short circuit operators are those where the expression

is evaluated from left to right until a value can be determined for the operation but

not more. For example, x > 0 ^ y=x > 5 would not result in a division by zero error

if x = 0 because when the ^ operator is reached the left hand side of the operator is

false and hence the entire expression cannot be true. Hence, the expression y=x > 5

does not need to be evaluated.

_ The short circuit OR logical operator. Used in logical expressions such as \if object is

a �le _ object is a pipe then." Short circuit operators are those where the expression

is evaluated from left to right until a value can be determined for the operation but

not more. For example, in the expression x > 0 _ x < �100, the right hand side of

the expression, x < �100, would not get evaluated if x > 0 because the left hand side

of the expression is enough to yield the entire expression true.

8 The for all operator that iterates over all the elements of a set. For example, a loop

construct such as \8x 2 S do" would iterate x over all the elements of set S.

2 The in operator that tests for set membership.

:= Assignment operator.

::= the de�nition operator. Used to de�ne functions and terms.

j The such that operator. It can be used as a quali�er with the 8 operator. For example,

the expression \8x 2 S j x 2 E" would iterate over all the elements in set S that are

also in E.

. A string comparison and substring operator. The expression x . y evaluates to true if

the string y begins with string x (x is a substring of y starting with the �rst character

of y). The expression .x (n;m) returns the substring of x starting at the character in

15

position n and ending in the character in position m. The �rst character of a string

x is .x (0; 0).

Other operators, such as �; 6=;=; �; (), etc., have their generally accepted meaning.

Function Name : parameter type� � � � � parameter type! return type
fun Function Name (parameter name; � � � ; parameter name) ::=

Function Body Line 1;
...
Function Body Line n;

nuf

(2.1)

if Condition then Loop Condition do
Condition Body Line 1; Loop Body Line 1;
...

...
Condition Body Line n; Loop Body Line n;

� od

(2.2)

16

3 RELATED WORK

This chapter presents an overview of related work in classi�cation theory,

3.1 Classi�cation Theory

Taxonomies increase our understanding of the world. [Simpson 1945] summarizes the

value of [animal] taxonomies:

Taxonomy is at the same time the most elementary and the most inclusive part

of zoology, most elementary because animals cannot be discussed or treated in a

scienti�c way until some systematization has been achieved, and most inclusive

because taxonomy in its various guises and branches eventually gathers together,

utilizes, summarizes, and implements everything that is known about animals,

whether morphological, physiological, or ecological.

A function of these taxonomies is the separation or ordering of specimens so that gen-

eralizations can be made about them. Hence, we say that classi�cations have explanatory

value. Taxonomies can also be used to predict the existence of specimens that have not been

seen before by extrapolating from the known specimens. Hence, we say that taxonomies

have predictive value.

The periodic table of the elements is an example of a taxonomy that has explanatory

and predictive properties. It organizes the elements so that generalizations can be made in

regards to groups of elements, and it predicted the existence of unknown elements before

these were discovered [Bahr and Johnston 1995].

Taxonomies also establish organizing frameworks, essential for the development of a

�eld. \Without an organizing framework, researchers and practitioners �nd it hard to

generalize, communicate, and apply research �ndings. Taxonomies structure or organize

17

the body of knowledge that constitutes a �eld, with all the potential advantages that brings

for the advancement of the �eld." [Glass and Vessey 1995].

The existence of taxonomies and classi�cations in computer science and related �elds|

for example see [Cohen 1997b; 1997a; DeMillo and Mathur 1995; Duda and Hart 1973;

Kumar 1995; Olivier and Vonsolms 1994; Glass and Vessey 1995; Bier et al. 1995; Roskos

et al. 1990; Young and Taylor 1991; Bishop 1995; Landwher et al. 1993; Aslam et al.

1996; Oman and Cook 1991; 1990; Kumar et al. 1995; Aslam 1995]|is an indication that

computer scientists agree with the statements made in [Simpson 1945; Glass and Vessey

1995]. Many of these taxonomies or classi�cations, however, do not satisfy the predictive

and descriptive properties desirable because they do not adhere to the fundamentals of the

development of taxonomies (as shown in Section 3.2). Hence, their contribution to our

understanding of the �eld, as is suggested in the preceding quote, is limited.

This section presents an overview of the fundamentals of taxonomies to provide the

necessary background for the development of better taxonomies for the �eld of computer

security. In particular we focus on the classi�cation of vulnerabilities. The concepts pre-

sented in this section, however, can be applied to other areas in computer security and

computer science.

3.1.1 Historical Background

Making sense of apparent chaos by �nding regularities is an essential characteristic of

human beings, as argued by the Austrian-born British philosopher of natural and social

science Karl Popper: \we are born with expectations. . . one of the most important of these

expectations is that of �nding a regularity. It is connected with an inborn propensity to

lookout for regularities, or with a need to �nd regularities. . . " [Popper 1969]

The �rst attempt at constructing a systematic classi�cation was developed by the Greek

philosopher Aristotle (322-284 B.C.), who concentrated mainly on animals. His pupil

Theophrastus (371-287 B.C.) concentrated mainly on the ordering of plants. There were

no signi�cant advances in taxonomy for the next 2,000 years until the beginning of the 16th

century [Grolier Incorporated 1993; Durant 1961; Simpson 1961].

Originally, taxonomies were the exclusive domain of the biological sciences. The En-

cyclopedia Americana still de�nes Taxonomy as \the theory and practice of classifying

18

organisms. . . two branches of biology|systematics and taxonomy|cover this area. Sys-

tematics is concerned with the entire diversity of organisms and all its aspects includes

taxonomy" [Grolier Incorporated 1993].

With Darwin, who published in 1859 \The Origin of Species," starts the period of

modern evolutionary taxonomies. Since then, we have seen the development of taxonomies

in �elds as diverse as communication media [Bretz 1971], soil science [Bailey 1987], computer

graphics [Bier et al. 1995], computer databases [Olivier and Vonsolms 1994], and computer

security [Roskos et al. 1990; Young and Taylor 1991; Bishop 1995; Landwher et al. 1993;

Aslam et al. 1996; Oman and Cook 1991; Kumar et al. 1995].

3.1.2 Taxonomic Characters, Object Attributes or Features

The basis for the development of successful classi�cations are taxonomic characters

[Simpson 1961; Glass and Vessey 1995]. These are the properties or characteristics of the

objects that will be classi�ed. Taxonomic characters are also commonly called features,

attributes or characteristics. [Simpson 1961] argues that such properties should be readily

and objectively observable from the objects in question.

[OXFORD 1998] de�nes Objectivity as \the quality or character of being objective;

external reality; objectiveness," and objectiveness as \the character of dealing with or rep-

resenting outward things rather than inward feelings." [WEBOL 1998] de�nes objectivity

as \expressing or dealing with facts or conditions as perceived without distortion by per-

sonal feelings, prejudices, or interpretations." Objectivity implies that the property must

be identi�ed from the object known and not from the subject knowing.

If the property is being deduced, rather than observed, then its value will hold the ob-

server's bias, and other taxonomists cannot necessarily repeat the deduction without know-

ing the role of the bias, and the measurement cannot be validated. Objective and observable

properties simplify the work of the taxonomist and provide a basis for the repeatability of

the classi�cation. \The good [taxonomist] develops what the medieval philosophers called

a habitus, which is more than a habit and is better designated by its other name of secunda

natura. Perhaps, [as with] a tennis player or a musician, he works best when he does not

get too introspective about what he is doing." [Thompson 1852].

19

Taxonomic characteristics must satisfy the following properties:

Objectivity: The features must be identi�ed from the object known and not from the

subject knowing. The attribute being measured should be clearly observable.

Determinism: There must be a clear procedure that can be followed to extract the feature.

Repeatability: Several people independently extracting the same feature for the object

must agree on the value observed.

Speci�city: The value for the feature must be unique and unambiguous.

If any of these characteristics is not met then the classi�cation cannot be repeated, leads

to controversy, or is misleading. We illustrate this with a few examples from the �eld of

computer security.

Example 3.1: Consider the taxonomy of Unix system and network vulnerabilities proposed

in [Bishop 1995]:

To summarize, the taxonomy we use has six axes, and every vulnerability is

classi�ed on each axis. The �rst axis is the nature of the
aw, and we use the

Protection Analysis categories; the second axis is the time of introduction, and

we use the (modi�ed) classes of Landwehr. Third is the exploitation domain of

the vulnerability and fourth is the e�ect domain; for these, we use the classes

outlined above. The �fth axis is the minimum number of components needed

to exploit the vulnerability. The sixth axis is the source of the identi�cation of

the vulnerability.

The nature, exploitation domain, and e�ect domain taxonomic characters are themselves

classi�cations that are ambiguous (see Section 3.2 for a detailed analysis). The time of

introduction character is ambiguous if the vulnerabilities can reappear. The procedure for

determining the value of this character is given as:

For our purposes, we adopt the following de�nitions. Suppose we have some

software plugh, at version xyzzy. If a security vulnerability exists in all versions

of plugh up to version xyzzy, it is in the class \during development." (If we can

20

further identify the
aw as being introduced in design or in implementation,

we shall do so; but this is not always obvious.) If there is a version glorkz

before which no version of plugh had the vulnerability, but the vulnerability

exists in versions of plugh from glorkz to xyzzy, it will be in the class \during

maintenance." If the vulnerability depends only upon the operation of the entity,

then we shall put it in the class \during operation."

Assume that a software had a vulnerability in versions 1.1 and 3.1 and in no other

version of the software. Then xyzzy corresponds to 3.1. The vulnerability does not exist

in all versions up to 3.1 so the time of introduction cannot be \during development."

There exists a version 1.1 (glorkz) before which no version had the vulnerability but the

vulnerability does not exist in versions from 1.1 to 3.1 so the time of introduction cannot

be \during maintenance." The vulnerability does not depend on the operation of the entity

so the time of introduction cannot be \during operation." At this point there are no more

possibilities and the value of the characteristic is ambiguous.

It can be argued that the value of the characteristic is \during maintenance" because

the question in the de�nition can be interpreted as \. . . but the vulnerability exists in some

versions of plugh from glorkz to xyzzy. . . " However, the de�nition can also be interpreted as

\. . . but the vulnerability exists in all versions of plugh from glorkz to xyzzy. . . " The value of

the characteristic is then left to the interpretation of the taxonomist and the characteristic

fails the speci�city principle.

The de�nition of the minimum number characteristic fails to mention what can be

considered a component. The speci�cations for this characteristic reads \. . . the question

of number of components required to exploit the vulnerability is a good metric, because

it indicates the number of programs' audit records [that] must be analyzed to discover

the exploitation. . . " In the examples of classi�cation we see the following values for this

characteristic: \. . . the mkdir process and another process to delete the directory and link

the password �le to the name," \. . . the sendmail process," and \. . . the back-door in the login

program." Component is more than a process and includes a back-door. The characteristic

is not objective (it is not clear how a back-door is re
ected in the audit records), not

deterministic (there is no procedure), and not repeatable (it is not clear how a component

is de�ned). 2

21

Example 3.2: A taxonomy where the taxonomic characteristics do not satisfy the criteria

outlined in this section is presented in [Landwher et al. 1993]. One of their taxonomic

characteristics is genesis. In [Landwher et al. 1993] we read \Characterizing intention

is tricky. . . Although some malicious
aws could be disguised as inadvertent
aws, this

distinction should be easy to make in practice|inadvertently created Trojan horse programs

are hardly likely!" In practice, however, there does not exist a procedure that can be

followed to determine the value of genesis and hence the characteristic is not objective and

not speci�c. 2

Example 3.3: The classi�cation in [Howard 1997] acknowledges explicitly the need for the

deterministic and speci�city principles: \A taxonomy should have classi�cation categories

with the following characteristics: 1) Mutually exclusive . . . 3) Unambiguous . . . " In the

de�nition of the possible values for the tool level in the classi�cation (see Appendix B),

[Howard 1997] describes an Autonomous Agent as \. . . a program, or program fragment

which operates independently from the user to exploit vulnerabilities", and de�nes a Toolkit

as \. . . a software package which contains scripts, programs or autonomous agents that

exploit vulnerabilities." Hence, the speci�city principle cannot be ful�lled because the

autonomous agents and toolkits are not mutually exclusive.

The �rst dimension in [Howard 1997] is \Attackers." However, the same document

observes that only 0.8% of the network attacks the CERT observed (the attacks that were

to be classi�ed) had this information available. This is the �rst level in the classi�cation tree

but the value is not measurable for 99.2% of the data. Hence, the feature is not observable.

2

Although the examples presented fail to satisfy the requirements speci�ed, they enu-

merate some of the taxonomic characteristics used for classi�cation. Other taxonomies and

classi�cations in the �eld of computer science fail to present even these and simply enu-

merate a series of elements grouped into categories and call this grouping a taxonomy or

classi�cation; examples include [Roskos et al. 1990; Cohen 1997a; 1997b].

3.1.3 Taxonomies and Classi�cations

Section 3.1 mentions that a classi�cation is an ordering of objects into groups that have

explanatory and predictive value. [Simpson 1945] de�nes taxonomy as \. . . the theoretical

22

study of classi�cation, including its bases, principles, procedures and rules". Although there

are variations on this de�nition, (e.g. [Grolier Incorporated 1993; EBRIT 1997; WEBOL

1998; OXFORD 1998]) they agree that a taxonomy includes the theory of classi�cation,

including the procedures that must be followed to create classi�cations, and the procedures

that must be followed to assign objects to classes.

As the following examples show, computer security practitioners confuse the terms clas-

si�cation and taxonomy:

Example 3.4: The classi�cation presented in [Cohen 1997a] is neither a classi�cation nor

a classi�cation scheme because it does not provide the procedures that must be used to

assign individual attacks to the numerous classes enumerated in the paper. 2

Example 3.5: The taxonomy of security faults developed in [Aslam 1995], and later re�ned

in [Aslam et al. 1996], is not a taxonomy but a classi�cation scheme because it does not

present generalizations about the classi�cation and does not discus the explanatory and

predictive properties of the classi�cation scheme. 2

Example 3.6: The taxonomy of computer program security
aws developed in [Landwher

et al. 1993] fails to provide principles and generalizations about the classi�cation scheme

provided. 2

Example 3.7: The taxonomy of Unix system and network vulnerabilities developed in

[Bishop 1995] provides explanatory value by providing generalizations about the classes.

Unfortunately, it does this for only one of the six taxonomic characteristics. Other prob-

lems with this taxonomy were discussed in Section 3.1.2. 2

3.1.4 Types of Classi�cations

As stated in Section 2.1.4, a classi�cation is the separation or ordering of objects (or

specimens) into classes. Classi�cations can be generated a priori (i.e. non-empirically from

an abstract model) or a posteriori (empirically by looking at the data).

With a set of taxonomic characters that satisfy the criteria mentioned in Section 3.1.2,

classi�cation schemes that can be built include arbitrary selections, decision trees, natural

classi�cations, evolutionary classi�cations, and natural clusterings.

23

Arbitrary Selections

Arbitrary selections are groupings of individuals on a single characteristic. These are

the simplest classi�cation schemes and require that individuals be grouped according to a

simple selection criteria. For example, grouping programs by their programming language,

by their use or non-use of cryptography, etc.

Decision Trees

Classi�cation by a decision tree is the process of answering a series of questions to

walk down a decision tree until the individual is classi�ed by reaching a leaf in the tree.

Decisions trees can be generated a priori or a posteriori. Figure 3.5 is an example of an a

priori decision tree for classifying the direct impact of a vulnerability.

Classi�cations that use decision trees avoid the issue of ambiguity because by answering

the questions presented the individual always reaches a node. In practice, however, it may

be possible to create decision trees that are ambiguous, especially if the selection criteria in

each of the internal nodes of the tree have more than one fundamentum divisionis [Simpson

1945].

A fundamentum divisionis is a term from Scholastic Logic and Ontology that means

\grounds for a distinction" [Audi 1995]. Ambiguities arise when the selection criteria for

an internal node of the tree has more than one fundamentum divisionis. For example, a

single node in the classi�cation of a vulnerability may ask the question \is the vulnerability

a race condition, or a con�guration problem?" Vulnerabilities may appear that are both a

race condition and a con�guration error.

Consider an example of a decision that has multiple fundamentum divisionis from the

biological sciences: In a decision tree that is used to classify members of the canine family (i.e

dogs and wolves) we cannot have a single node that asks the question \does the animal have

legs or hair?" A single specimen can have both characteristics and hence the classi�cation

would be ambiguous.

Note that it is possible to use more than one characteristic to build the selection criteria

in a node of a decision tree so long as the fundamentum divisionis remains the same.

24

Natural Classi�cations

A natural classi�cation groups together individuals that seem to be fundamentally re-

lated [EBRIT 1997; Simpson 1945]. This type of classi�cation is useful when the taxonomic

characteristics themselves reveal natural groups. Figure 3.1 illustrates how taxonomic char-

acteristics that are hierarchical in nature favor natural classi�cations.

A A ∧ Q A ∧ R B B ∧ S B ∧ T

Taxonomic Characteristics

…

…

A B

Taxonomic
Characteristics

…

…

Q R

…

…

A ∧

S T

…

…

B ∧

U V

…

…

B ∧ S ∧

Figure 3.1: Natural classi�cations take advantage of taxonomic characters that are hierar-

chical in nature.

Features of computer programs are well suited for natural classi�cations, as specialized

measurements can only be made once a required characteristic has been identi�ed.

Example 3.8: The taxonomic character \program uses inheritance" requires that the pro-

gramming language is object oriented. Similarly, the taxonomic characteristic \program

uses native methods" requires that the program run in a virtual machine. 2

Evolutionary Classi�cations

Modern biological and botanical taxonomies are evolutionary [Simpson 1945] and its

basis involves phylogeny, or the history of development of an organism [WEBOL 1998;

OXFORD 1998]. Evolutionary classi�cations look at propinquity of descent (nearness in

25

time and place [WEBOL 1998; OXFORD 1998]) to judge similarities between individuals.

Because evolutionary classi�cations look at the development or evolution of an individual

by looking at propinquity of descent, it is necessary to include an explicit time axis.

In evolutionary taxonomies individuals do not belong to the same class because they

are similar, but rather are similar because they belong to the same class. Similarities are

indicators of propinquity of descent but it is possible to have similar individuals that are not

evolutionary related. In the �eld of biological taxonomy the terms homology, homoplasy,

parallelism, analogy, mimicry, and chance similarity are commonly used to describe di�erent

types of similarities in individuals that are being classi�ed using evolutionary classi�cations

[Simpson 1945].

Natural Clusterings

Unlike evolutionary classi�cations, natural clusterings group individuals together be-

cause they share the largest number of characteristics possible without regards to the rea-

sons these individuals share the characteristics. There are many algorithms that can be

used to �nd natural clusters given a data set (see [Jain and Dubes 1988] for an introduc-

tion). Figure 3.2 illustrates the process of clustering using volumes in three dimension,

linear separations in two dimensions or grouping by number of shared characteristics. Note

that clustering algorithms such as these can result in ambiguous classi�cations but are well

suited for discovering relationships that may not be readily apparent.

3.2 Prior Software Vulnerability Classi�cations

Several projects have dealt with the issue of identifying and classifying software faults,

including the Protection Analysis (PA) Project which conducted research on protection

errors in operating systems [Carlstead et al. 1975; Bibsey et al. 1975]; the RISOS project

that was aimed at understanding security problems in existing operating systems and to

suggest ways to enhance their security [Abbott et al. 1976]; [Landwher et al. 1993] lists a

collection of security
aws in di�erent operating systems and classi�es each
aw according

to its genesis, or the time it was introduced into the system, or the section of code where

each
aw was introduced; and [Marick 1990] presents a survey of software fault studies

26

Ambiguous
Classification

Ambiguous
Classification

Ch. 1

Obj. 1

Ch. 2 Ch. 3

Obj. 2

Obj. 3

Obj. 4

Obj. 5

A

A

Z

Y

Q

B

B

B

B

B

C

D

D

D

D

Ambiguous
Classification

Figure 3.2: Natural clusterings group individuals together because they have similar char-

acteristics. Note that classi�cation can be ambiguous if an individual has the same number

of similar characteristics with more than one group.

from the software engineering literature (the studies reported faults that were discovered

in production quality software)

In this section we list the classi�cations that were developed in relation to software

faults and vulnerabilities, discuss their limitations, and show that they do not adequately

meet the requirements that were speci�ed in Section 3.1. Hence these classi�cations are

ambiguous and of limited predictive and explanatory value.

Note that the limitations of these classi�cations are mostly the result of con
icting

de�nitions of software vulnerability or software fault.

27

3.2.1 Aslam Classi�cation

[Aslam 1995; Aslam et al. 1996] develops a classi�cation scheme that can aid in the

understanding of software faults that can subvert security mechanisms. This classi�cation

scheme divides software faults into two broad categories: Coding Faults that result from

errors in programming logic, missing requirements, or design errors; and Emergent Faults

resulting from improper installation or administration of software so that faults are present

even if the software is functioning according to speci�cations.

[Bishop and Bailey 1996] shows that this classi�cation does not satisfy the speci�city

requirement as it is possible to classify a fault in more than one classi�cation categories.

For example, while talking about the xterm log �le
aw they argue that:

The selection criteria for fault classi�cation places the
aw in class 1a from the

point of view of the attacking program (object installed with incorrect permis-

sions, because the attacking program can delete the �le), in class 3a4 from the

point of view of the xterm program (access rights violation error, as xterm does

not properly validate the �le at the time of access), and class 3b1 from the point

of view of the operating system (improper or inadequate serialization error, as

the deletion and creation should not be interspersed between the access and the

open). As an aside, absent the explicit decision procedure, the
aw could have

been placed in class 3b2, race conditions. . .

3.2.2 Knuth Classi�cation

Donald Knuth, author of the TEX typesetting system kept a detailed log of all the bugs

and faults �xed in TEX for a period of over ten years [Knuth 1989] and developed a detailed

classi�cation of types of faults found in his system.

It is di�cult to apply the Knuth classi�cation scheme to errors of programs where

the person performing the classi�cation is not the original programmer. As shown in the

following example, the classi�cation is subjective and ambiguous.

28

Example 3.9: Consider the following program segment:

if(strncmp(str1,str2,strlen(str1))==0 ||

strncmp(str2,str1,strlen(str2))==0)

if(strncmp(str1,str2,strlen(str1))<0)

/* str1 is a substring of str2 */

else

/* str2 is a substring of str1 */

The error in the program is in that the second if statement uses the strncmp function

to test whether a string is lexically smaller than the other. There are various ways in

which this error can classi�ed with the Knuth error classi�cation, in this particular case,

depending on our choice of a solution as follows:

If we assume that the programmer mistakenly used the strncmp function knowing that

what was really needed was the strcmp function, resulting in the correct program segment

following, then the error falls under the category of blunder or botch. As stated in [Knuth

1989]: \Here I knew what I ought to do, but I wrote something else that was syntactically

correct|sort of a mental typo."

if(strncmp(str1,str2,strlen(str1))==0 ||

strncmp(str2,str1,strlen(str2))==0)

if(strcmp(str1,str2)<0)

/* str1 is a substring of str2 */

else

/* str2 is a substring of str1 */

If, on the other hand, the programmer wanted to use the strncmp function then a

possible correct program segment following. Here the error is either algorithm awry because

the algorithm itself is incorrect or a language liability because the programmer failed to

understand the semantics of the strncmp function.

if(strncmp(str1,str2,strlen(str1))==0 &&

strncmp(str2,str1,strlen(str2))<0)

/* str1 is a substring of str2 */

if(strncmp(str2,str1,strlen(str2))==0 &&

strncmp(str2,str1,strlen(str1))<0)

/* str2 is a substring of str1 */

2

29

3.2.3 Grammar-based Classi�cation

[DeMillo and Mathur 1995] presents a grammar-based fault classi�cation scheme that

takes into account that syntax is the carrier of semantics. Any error of a program manifests

itself as a syntactic aberration in the code. The classi�cation is based on the operations that

need to be performed to correct the fault. In this classi�cation scheme, the classi�cation of

faults is based on the modi�cations that must be performed to �x the fault using syntactic

transformer functions.

Because there are many ways to �x a fault there can be many di�erent classi�cations

depending on which �x is used to eliminate the fault. Consider, for example, the fault shown

in Figure 3.3: The program segment will attempt to access unallocated memory when it

tries to �ll slot arr[MAX]. As the corrections suggested in the same �gure show, there is

more than one way to solve this problem. Hence, the fault classi�cation is not unique until

a de�nitive and unique �x to a fault is selected.

int arr[MAX];
for(i=0;i<=MAX;i++) {
 arr[i] = i*2;
}

int arr[MAX+1];
for(i=0;i<=MAX;i++) {
 arr[i] = i*2;
}

int arr[MAX];
for(i=0;i<MAX;i++) {
 arr[i] = i*2;
}

int arr[MAX];
for(i=0;i<=MAX;i++) {
 if(i==MAX)
 break;
 arr[i] = i*2;
}

①

②

③

Code with fault Solutions

Figure 3.3: There is often more than one way to correct a software fault and hence grammar-

based classi�cations are not unique until a unique �x has been issued.

30

When a vulnerability is found the �x is not unique and frequently the details of the �x,

when such a �x exists, are not released to the public. Hence, this classi�cation fails the

speci�city principle until a de�nitive �x has been chosen.

3.2.4 Endres Classi�cation

This classi�cation was developed in [Endres 1975] as an analysis of errors in system

programs. The fault classi�cation scheme of Endres is application and machine dependent

and hence does not apply to the classi�cation of vulnerabilities in general systems [DeMillo

and Mathur 1995; Endres 1975].

3.2.5 Ostrand and Weyuker Classi�cation

[Ostrand and Weyuker 1984] proposes an attribute categorization scheme for the clas-

si�cation of faults. [DeMillo and Mathur 1995] shows that the Ostrand and Weyuker clas-

si�cation scheme is ambiguous and it provides the following example as an illustration:

. . . consider the following erroneous program fragment written in C:

if (a = 1) p = q;

The condition a = 1 in the preceding fragment should be a == 1. The

incorrect program modi�es the value of data, namely the variable a, and hence

corresponds to major category data handling. However, the fault appears in the

condition part of the if statement. Hence, it also falls under the major category

decision in spite that the fault has no e�ect on the truth value of the condition

and the path followed thereafter.

3.2.6 Basili and Perricone Classi�cation

This classi�cation was in [Basili and Perricone 1984]. [DeMillo and Mathur 1995] shows

that it is ambiguous by giving the following example:

31

. . . consider the following program segment containing one fault:
...

A[j] = 0; i = 1;
...

if (A[i] < 0) : : :
...

In the preceding segment, A[j] should be A[i]. . . this fault belongs to the

data error category because an incorrect subscript, namely j, has been used to

index A. However, the e�ect of this fault is that an incorrect path may be taken

when the following if is executed. Thus, this fault also belongs to the control

error category.

3.2.7 Origin and Causes Classi�cation

This classi�cation was originally de�ned in [Longsta� 1997] to identify the origins of

vulnerabilities. This classi�cation is di�cult to use without detailed information about the

state of mind of the programmer during the development process. There is no de�nition

of a \debugging statement." An external reviewer cannot determine if the vulnerability

was caused by inconsistent speci�cations or lack of training of the programmers who im-

plemented the functionality.

3.2.8 Access Required Classi�cation

This classi�cation was originally de�ned in [Longsta� 1997] and de�nes the access that

is required to exploit the vulnerability.

There is no clear de�nition of each category. In Unix, for example, there is no consensus

about which of the following accounts can be considered a privileged account: root, bin,

ftp, http, nobody, krsul, etc. One possible interpretation of privileged access is that any

account where the user has UID or GID of 0 can be considered a privileged account. Other

interpretations may consider the user bin as a privileged account regardless of its UID or

GID.

32

3.2.9 Category Classi�cation

This classi�cation identi�es the system component to which a vulnerability belongs.

This classi�cation is common in the vulnerability databases described in Section 3.3.

The notion of an application, system utility, etc., varies among operating system types.

Micro-kernels, object oriented operating systems, and distributed systems have di�erent

views of what constitutes a system utility, or user-level application [Dasgupta et al. ; Tanen-

baum 1987].

3.2.10 Ease of Exploit Classi�cation

This classi�cation was originally de�ned in [Longsta� 1997] and identi�es the di�culty

of exploiting a vulnerability.

The taxonomist can not know if exploit scripts or toolkits are available, and these may

appear after the taxonomist has chosen the value for the classi�cation. The value of this

classi�cation is time dependent and the classi�cation should take this into account explicitly.

3.2.11 Impact Classi�cation

This classi�cation identi�es the impact of the vulnerability. It is used to de�ne both

direct and indirect impacts. Direct impacts are those that are felt immediately after the

vulnerability is exploited and indirect impact are those that ultimately result from the

exploitation of the vulnerability. This classi�cation is common in the vulnerability databases

described in Section 3.3.

This classi�cation is a decision tree of depth one that, as shown in the following example,

has more than one fundamentum divisionis:

Example 3.10: A vulnerability in Unix that allows an attacker to overwrite the �le /vmunix

will e�ectively disable the system and overwrite information at the same time. Hence, the

ultimate impact would be a denial of service and loss of system data. 2

33

3.2.12 Threat Classi�cation

This classi�cation of the threat that vulnerabilities create was extracted from [Power

1996]. It is attributed to Donn Parker of SRI International as a classi�cation of hostile

actions that your adversary could take against you.

In Section 3.1 we state that classi�cation trees should use decision nodes that use one

fundamentum divisionis and, as can be seen in Figure 3.4, the threat classi�cation does not

follow this principle.

Destroy, damage
or contaminate

Deny, prolong, or
delay use of access

Threats to availabil ity and
usefulness

Enter, use or produce
false data

Modify, replace or
reorder

M isrepresent

Repudiate

Misuse or fail to use
as required

Acess

Disclose

Observe or monitor

Copy

Steal

Endanger by exposure
to any other threats

Threats to integrity and
authenticity

Threats to confidentiality
and posessions

Exposure to threats

Nodes do not branch
on the same funda-
mentum divisionis
and hence the classif i-
cation is ambiguous

1

2

3

1

2

3

It is possible repudiate by modifying
data, misrepresent byentering or pro-
ducing data, misuse by modifying or
replacing data.

Can we observe without access? Can
we copy without access? Can we Steal
without copying? To steal one would
normally have to copy, to observe one
would normally have to have access,
to disclose one would need access or
to copy.

Inherits the problems mentioned above.

to

Figure 3.4: The Threat classi�cation is ambiguous because it uses nodes that have more

than one fundamentum divisionis

34

In the threat classi�cation, a single node in the tree branches into Access, Disclose,

Observe, Copy, and Steal. The categories Observe and Access are concrete actions while the

category Steal is subjective and requires a value judgment. Hence, it is possible to Access

and Steal simultaneously.

Also, this classi�cation does not specify an explicit maximum level of indirection that

can be used for the determination of the threat of a vulnerability. Hence, a vulnerability

that causes the encrypted password of a user to be displayed is also a threat to integrity

if the password is decrypted, the user account is compromised, an encrypted administrator

password can be obtained using this account, this last password can be decrypted, and a

root shell can be obtained. Because root shells allow any operation to proceed, integrity

can be violated. A similar reasoning can be applied to most of the Unix vulnerabilities.

Also, in systems where the administrator has unbounded privileges, such as Unix or

Windows NT, access to this account implies all threats at once. For example, if an at-

tacker obtains a root account in Unix then he could erase the hard disk (destroy, damage

or contaminate), modify the password �le (enter, use or produce false data), send email

pretending to be another user (misrepresent), read any user's email (access), etc.

3.2.13 Complexity of Exploit Classi�cation

This classi�cation identi�es the complexity of the exploitation of a vulnerability, re-

gardless of whether a script or toolkit exists for the exploitation of the vulnerability. This

classi�cation is subjective as there is no accepted de�nition of \simple sequence of com-

mands," \complex set or large number of commands," etc.

3.2.14 Cohen's Attack Classi�cation

This classi�cation is a subset of a list of one hundred attacks possible on a system listed

in [Cohen 1997a; 1995].

[Cohen 1997a; 1995] notes that this classi�cation is descriptive, non-orthogonal, incom-

plete, and of limited applicability. And indeed, many of the classes are ambiguous, and

dependent on attributes that are not measurable.

This classi�cation mixes
oods and volcanoes, trojan horses and viruses, dumpster

diving, bribes and extortion, and invalid values on system calls and race conditions. Some of

35

these attacks are environmental conditions that can result in damage, some are techniques

to manipulate the human component of a system, and some are code faults that may or

may not result in a vulnerability.

3.2.15 Perry and Wallich Attack Classi�cation

This is a matrix-based classi�cation scheme in two dimensions: Potential perpetrators

and potential e�ects [Perry and Wallich 1984].

Consider the Java vulnerability where the restriction allowing an applet to only connect

to the host from which it was loaded was not properly enforced by the browser. This

vulnerability, combined with the subversion of the DNS system, allowed an applet to open

a connection to an arbitrary host on the Internet. In the browser Java implementations, the

Applet Security Manager allowed an applet to connect to any of the IP addresses associated

with the name of the computer from which it came.

An attacker in control of a DNS server, say at moria.mordor.com, could design an

applet that, when sent to a victim machine, would attempt to connect back to the server

where it came from by connecting to gollum.mordor.com. Because moria.mordor.com

is the DNS server for the mordor.com domain, it can return a set of IP addresses for

gollum.mordor.com in a tuple of the form fIP Address 1, IP Address 2, etc.g. If IP

Address 1 corresponds to a machine outside the mordor.com domain, and that could in-

clude a machine behind a �rewall if the client is behind the same �rewall, then the applet

will be allowed to connect to that IP address, regardless of where that machine really is

(For a more details description of the problem see [McGraw and Felten 1997]).

For the potential perpetrators dimension we could choose internal because the applet that

is attempting the connection is already running on the machine in an internal network, or

we could choose outside because the applet originated from an external site. The results of

the vulnerability could be theft of services because the applet is successfully using services

that may not be available (it could be consuming pay-per-use services), theft of information

because the applet may be scanning the ports on a machine and that information may be

sensitive or valuable, or browsing if the applet is acting as a proxy to an external agent.

36

3.2.16 Howard Process-based Taxonomy of Network Attacks

[Howard 1997] proposes a classi�cation of computer and network attacks that identi�es

the process that \links" attackers to their ultimate objectives. The \link" between attackers

and objectives is established through an operational sequence as follows: Attackers)

tools) access) results) Objectives. Section 3.1.2 presents some of the

limitations of this taxonomy.

3.2.17 Dodson's Classi�cation Scheme

This classi�cation was developed in [Dodson 1996] for the classi�cation of computer

vulnerabilities such that the classes identify generic
aws in software. These can be detected

by using the Tester's Assistant, a tool used to automate software testing [Fink et al. 1994].

This classi�cation is an extension of that proposed in [Aslam 1995].

3.3 Vulnerability Databases

Several groups have constructed vulnerability databases. Private databases of restricted

distribution include the CMET database at the Air Force Information Warfare (AFIW)

Center [Air Force Information Warfare (AFIW) Center 1996]; the database maintained

by Mike Neuman [Neumann 1995]; the database at the Computer Emergency Response

Team (CERT) [CERT Coordination Center 1998d]; the database of the Australian Com-

puter Emergency Response Team (AUSCERT) [AUSCERT Coordination Center 1998];

the database maintained by Michael Dilger [Dilger 1995]; and the internal vulnerability

databases at Netscape [Netscape Communications Corporation 1996], Sun [Sun Microsys-

tems Inc. 1997], and Haystack Labs [Haystack Labs, Inc. 1996].

Publicly available databases include the vulnerability database at Internet Security Sys-

tems (ISS) [Internet Security Services 1998]; the vulnerability database at INFILSEC [IN-

FILSEC Systems Security 1998]; the vulnerability and exploit collections of various groups

such as Firosoft Consulting [Firosoft Consulting 1998], Kao's Unix Security Library [VD-

BKAO 1998], Rootshell [VDBFIR 1998], The Brotherhood of Darkness [VDBBOD 1998],

The Legacy [VDBLEG 1998], Future Kill [VDBFKI 1998], Security Bugware [VDBBUG

1998], \Known NT Exploits" [Stout 1998], NegativeZero Exploit Page [VDBNZE 1998],

37

Elitehackers [VDBELI 1998], Dop's terribly geeky page of naughty hacks [VDBDOP 1998],

and Exploit World [VDBEXP 1998]. Other un-named databases are [VDBNN1 1998;

VDBNN2 1998; VDBNN3 1998; VDBNN4 1998; VDBNN5 1998; VDBNN6 1998].

The databases at Firosoft Consulting, NegativeZero Exploit Page, Elitehackers, \Known

NT Exploits," Kao's Unix Security Library, Security Bugware, Rootshell, The Brother-

hood of Darkness, The Legacy, and Future Kill are collections of exploit scripts, messages

extracted from security mailing lists such as BUGTRAQ and NTBUGTRAQ, and advi-

sories from the CERT, the Department of Energy's Computer Incident Advisory Capabil-

ity (CIAC), the AUSCERT, the 8lgm security advisories, etc. These databases are freely

available in the Internet.

The database at Exploit World provides, in addition, a simple characterization that

includes information regarding the systems a�ected by the vulnerability and the potential

ultimate impact that the vulnerability can have in a system. This database is freely available

on the Internet.

The vulnerability databases of ISS, INFILSEC, and Michael Dilger make allowances for

characterizations and classi�cations. However, none of these characterizations satisfy the

properties required in in Section 3.1.2.

38

C an the vu lnerab ility resu lt in a

user executing a program or

scrip t in v io lation o f expected

po lic ies , o r w ith perm iss ions in

v io lation o f expected po lic ies?

C an the vu lnerab ility resu lt in

the m od if ication or deletion o f

ex is ting f ilesor their attr ibu tes,

o r the creation o f new f iles?

D oess the exp lo itation o f

the vu lnerab ility resu lt in

the use o f resources in

v io lation o f expected

po lic ies?

C an thevu lnerab ility

resu lt in the insertion or

m od if ication o f code in to

a runn ing program ,

m od ify ing it’s behav ior?

C an the vu lnerab ility resu lt in

the d isclosure o f in fo rm ation in

v io lation o f expected po lic ies?

C an the

vu lnerab ility resu lt

in the degradation

or b lock ing o f

resource?

U nknow n

D oes the vu lnerab ility

affect p rogram s that run

on ly w ith user pr iv ileges?

Y es

N o

D oes the vu lnerab ility

ex is t in a p rogram that

runs ex lus ively as root o r

adm in is trato r?

R oot A ccess

U ser A ccess

M ixed A ccess

Y es

Y es

N o

A re the m od if ications

done so lely to f iles in

unpriv ileged user’s

space?

C or rup tion

of use r data

Y es

Y es

A re the m od if ications

done so lely to f iles in

pr iv ileged space?

C or rup tion of

system data
Y es

C or rup tion of

m ixed data

N o

N o

D oes the d isclosure o f

in fo rm ation app ly

so lely to sys tem or

p r iv ileged in form ation

D isc losu re of

system data

Y es

A re the d is losures

lim ited to user data?
D isc losu re of

U ser D ata

Y es

D isc losu re of

M ixed D ata

N o

N o

Y es

N o

N o

N o

N o

N o

D en ia l o f

Se rv ice

Y es

Y es

T he ft o f

Se rv ice

N o

C an the vu lnerab ility

resu lt in the program s or

scr ip ts that norm ally

w ou ld not be access ib le?

C an the vu lnerab ility resu lt

in the program s or scrip ts

w ith perm iss ions in

v io lation o f expected po licy?

A re the d is losures

lim ited to user data?

Y es

Y es

Y es

N o

N o

Incor rec t

execu tion of

p rogram

E xecu tion of

p r iv ileged

p rogram

E xecu tion w ith

incor rec t

pe rm iss ions

Start

Figure 3.5: Decision tree for the classi�cation of the direct impact of vulnerabilities.

39

4 DEVELOPMENT OF NEW TAXONOMIC CHARACTERS

A limitation of current classi�cations is the lack of taxonomic characters (or features)

as detailed in Section 3.1.2. In this section we suggest new taxonomic characters that can

be used as a foundation for improved classi�cations and taxonomies. Where possible, the

taxonomic characters are observations or measurements that do not require the application

of decision trees to avoid ambiguities resulting from the nodes having more than one fun-

damentum divisionis. A similar approach is used in [Dodson 1996] as an extension of the

classi�cation developed in [Aslam 1995].

4.1 Threat Features

One comprehensive threat classi�cation|extracted from [Power 1996]|was developed

to identify hostile actions that an adversary could take against your system. We split the

classi�cation into a list of binary action and consequence features, and we clearly specify

that we are interested in the immediate threat that is present with the vulnerability, and

not the ultimate threat. This clari�cation is necessary to avoid the ambiguity that comes

from indirect threats..

The action features identi�ed are (1) The exploitation of the vulnerability can result in

a user observing objects, data, etc., in violation of expected policy. (2) The exploitation of

the vulnerability can result in a user destroying objects, data, etc., in violation of expected

policy. (3) The exploitation of the vulnerability can result in a user modifying objects, data,

etc., in violation of expected policy. (4) The exploitation of the vulnerability can result in

a user creating objects in violation of expected policy.

The consequence features identi�ed are (1) The exploitation of the vulnerability can

result in a change of availability of the system. (2) The exploitation of the vulnerability can

result in the disclosure of information in violation of expected policy. (3) The exploitation

40

of the vulnerability can result in the misrepresentation of information. (4) The exploitation

of the vulnerability can result in repudiation of information. (5) The exploitation of the

vulnerability can result in a change of integrity of the system. (6) The exploitation of the

vulnerability can result in the loss of con�dentiality of information.

Each of these features can take the values \Yes," \No," \Does Not Apply," and \Un-

known." Hence, each feature is a decision tree with a depth of one that has a single

fundamentum divisionis.

4.2 Environmental Assumption Features

These features identify the environmental assumptions that were made by programmers

or designers and that, if correct, would eliminate the vulnerability. Each of these features

can take the values \Yes," \No," \Does Not Apply," and \Unknown." Hence, each feature

is a decision tree with a depth of one that has a single fundamentum divisionis.

The following environmental assumption features are de�ned:

permsdir: A programmer assumes that a

set of directories have a speci�c set of

permissions (or minimum set of

permissions)

nocore: A programmer assumes that a

user cannot see the internals of the

program as it is executing (i.e., no

user readable core dumps in Unix).

nameinv: A programmer assumes that a

name (i.e., a path) is strongly bound

to a speci�c system object.

objinv: A programmer assumes the

invariance of an object during the

execution of a program (i.e., the

program assumes that no other

subject can change the object while

the program is running).

objne: A programmer assumes that an

object does not exist at the time of

execution (i.e., a program assumes

that a �le with a speci�c name does

not exist).

tempdel: A program assumes that a

temporary item it created cannot be

deleted by any other subject while the

program is running.

memavail: A programmer assumes that

su�cient memory for its execution

will always exist.

41

netdata: A programmer assumes that data

from a network service will always be

valid and bounded.

envdata: A programmer assumes that the

data in environment variables is valid

and bounded.

userdata: A programmer assumes that

user-provided input is valid and

bounded.

�ledata: A programmer assumes that the

input from a �le is valid and bounded.

reassembly: A programmer assumes that

the re-assembly of a data object from

fragments will not a�ect the essential

properties of the original object.

execpath: A programmer assumes a

speci�c execution path.

objatt: A programmer assumes that

certain attributes of certain objects

have prede�ned values.

perstore: A programmer assumes that

persistent store is immutable (i.e.,

assumes that a �le it writes cannot be

modi�ed by any other subject in

between program runs).

dataexec: A programmer assumes that the

modi�cation of program data (by

external subjects) will not a�ect the

semantics of the program.

nameover: A programmer assumes that,

while creating a �le, any existing �le

that has the same name can be

overwritten.

falseconst: A programmer falsely assumes

that a constraint or property holds in

the system.

insufverif: A programmer falsely assumes

that a set of operations are su�cient

for the veri�cation of the property of

an object

namepurpose: A programmer assumes

that there is a strong binding between

the name and purpose of an object.

reservedobject: A programmer assumes

that an object with a speci�c name

will not be used by any other entity in

the system by virtue of its name

alone.

turstnetobj: A programmer assumes that

a network object that claims an

identity can be trusted.

42

4.3 Features on the Nature of Vulnerabilities

These features capture the e�ects of vulnerabilities by looking at the object that is

immediately a�ected by the vulnerability, the e�ect that the vulnerability has on that

object, the method or means that lead to the e�ect on the object, and, if appropriate, the

type of input that leads to the e�ect on the object.

Each of these features can take the values \Yes," \No," \Does Not Apply," and \Un-

known." Hence, each feature is a decision tree with a depth of one that has a single

fundamentum divisionis.

4.3.1 Objects A�ected

The features that identify the objects a�ected directly by the vulnerability are:

command prompt: A command prompt

presented to the user.

user �les: User �les in the system.

system �les: System-related or

administrative �les in the system.

public �les: Publicly available �les in the

system.

directory: Directories in the system.

partition: A �le system partition.

heap data: Data in the heap of a running

program.

heap code: Executable code in the heap

of a running program.

stack data: Data in the stack of a running

program.

static data: Data that is statically

allocated in a running program.

stack return: Return address of a

function in the stack of a running

program.

stack code: Executable code in the stack

of a running program.

password: Password or access token. Can

also be a pass-phrase.

shell command: Shell command.

system program: System program.

user program: User installed or owned

program.

system info: Information regarding the

system.

out�les: Files outside a restricted space.

43

classloader: A ClassLoader or object

responsible for loading dynamic

classes.

library: System function or service library.

a net connection: Network connections

to arbitrary hosts.

web pages: WWW page.

web session: A WWW browsing session.

names: User names, domain names,

work-group names, etc.

pass known: Well-known nonce encrypted

with user password.

o attributes: System-managed object

attributes.

cpu: CPU time.

os: Operating System.

email: Electronic Mail.

netport: Network Port.

packets: Network Packets.

system names: Internal system names (in

control of the system).

device: A device in the system.

addr mapping: Address mapping

maintained by the system. i.e., an

ARP cache.

4.3.2 E�ect on Objects

The features that identify the e�ect that the vulnerability has on the objects a�ected

are:

replaced: Contents are completely

replaced.

changed: Can be written to or can be

changed.

read: Can be read.

append: Information can be appended.

created: Can be created.

displayed: Can be displayed or revealed.

change owner: Ownership can be

changed.

change permission: Permissions can be

changed.

predictable: Is predictable or can be

guessed.

executed: Can be executed in violation of

expected policy.

44

loaded: Can be dynamically loaded and

linked.

clear text: Is transmitted or stored in

clear text.

exhausted: Is exhausted.

crash: Crashes.

bound: Can be bound to in violation of

expected policy.

exported: Can be exported for mounting.

mounted: Is mounted or attached.

locked: Can be locked.

debugged: Can be debugged or attached

to with a debugger.

presented: Presented to the user in a

console or terminal.

closed: Can be closed.

terminated: Can be terminated or killed.

4.3.3 Method or Mechanism Used

The features that identify the method or mechanism that is used to a�ect the objects

are:

symlink: Program follows symbolic link or

late binding link.

memcpy: Program uses strcpy, sprintf

or bcopy to copy data to a stack

bu�er.

con�g: Con�guration error.

back ticks: Back ticks in parameter or

input string.

special chars: Special characters in input

string.

dotdot: Uses \.." to climb up a directory

tree past allowable bounds.

verify fail: Code veri�er allows to catch

security exception when creating an

object loader.

mod name: Modifying compiled code to

alter the name of objects.

mod env: Modifying environment

variables.

inherit privs: Program inherits

unnecessary privileges.

capability: System provides inappropriate

capability.

hidden mount: System provides hidden

system mount point.

45

syscall disclose: System call discloses

sensitive information.

incorr imp: Incorrect implementation

given current environment (mistaken

environmental assumption).

rel paths: Program refers to relative

paths.

incprot: System fails to implement the

protection mechanisms correctly.

proxy: Program uses a trusted

intermediary or proxy to bypass

protection mechanisms.

coresymlink: A program dumps a core �le

that follows symbolic links or late

binding link.

in
oop: Program uses an in�nite and tight

loop that consumes resources.

criticalsect: Program fails to protect or

isolate a critical section.

coredump: Program dumps a core-�le

that users can read.

4.3.4 Input Type

The features that identify the source of the input, if any, that is necessary for the object

to be a�ected are:

env: Environment variable.

command: User command line option.

netdata: Network data.

store: Persistent store.

temp�le: Temporary �le.

con�le: Con�guration �le.

data�le: Data �le.

gecos: System User information (Name,

phone number, etc.)

parameter: Parameter to a system call

libparameter: Parameter to a library call

oppy: Removable media

4.4 Chapter Summary

In Section 3.1 we argue that the basis for successful classi�cations are taxonomic char-

acters that satisfy the properties of objectivity, determinism, repeatability, and speci�city.

46

Features that will be used in analysis using tools such as data mining and data visualiza-

tion, also need to satisfy the properties for taxonomic character as speci�ed in section 3.1.2.

This chapter presents examples of such taxonomic characters, and these can be used as

a foundation for improved classi�cations and taxonomies. The taxonomic characters are

observations or measurements that do not require the application of decision trees to avoid

ambiguities resulting from the nodes having more than one fundamentum divisionis.

47

5 EXPERIMENTAL ANALYSIS OF SOFTWARE VULNERABILITIES

[Dorner 1996] argues that complex systems that fail often have four characteristics that

make them especially prone to failure: complexity, intransparence1, internal dynamics, and

incomplete or incorrect understanding of the system. Although [Dorner 1996] analyzes

highly dynamic systems such as nuclear power plants, management of entire cities, etc.,

many of these ideas can apply to the development of software because software systems

have similar characteristics [Brooks 1995; Conte et al. 1986; Ghezzi et al. 1991]. The

work presented in [Brooks 1995] makes the argument that \Since software construction

is inherently a systems e�ort|an exercise in complex interrelationships|communication

e�ort is great, and it quickly dominates the decrease in individual task time brought about

by partitioning."

The complexity, intransparence, and volume of code in computer systems makes it

di�cult to �nd patterns and dependencies. As shown in this chapter, existing data mining

techniques and feature-extracting tools can be used e�ectively to extract information that

allows a better understanding of why and how vulnerabilities get introduced in computer

systems.

Given a database of taxonomic characters for a representative population of software

vulnerabilities, we can apply a variety of statistical and analysis tools to extract patterns,

distributions, and regularities that may not be obvious at �rst sight. The analysis resultant

from these tools may also result in a posteriori classi�cations that can provide insights into

the nature of vulnerabilities, or can con�rm a priori classi�cations by reconstructing them

from the data.

1Intransparence is de�ned as the fact that an observer of the operation of a system cannot see the inner

workings of a program. It contributes to the development of faulty software because developers can not see

the execution of the program without the help of sophisticated monitoring tools, and sometimes even these

tools are not useful because their presence alters the behavior of the system.

48

5.1 Experiment Hypothesis

As stated in Section 3.1.4, decision trees can be induced a posteriori from a set of

data or examples [Quinlan 1986]. Other types of classi�cations can also be generated

a posteriori, including neural networks [Hertz et al. 1991; Holsheimer and Siebes 1994],

clusterings [Jain and Dubes 1988; Kukolich and Lippmann 1995], and pattern classi�cation

algorithms [Kukolich and Lippmann 1995]. We can also search for relationships, patterns,

and regularities a posteriori from data or examples, applying machine learning algorithms

in a process called data mining [Holsheimer and Siebes 1994; KDDSIF 1998; Hedberg 1995;

Quinlan 1986].

The hypothesis for our experiments is that it is possible to �nd patterns and regularities

in a collection of vulnerabilities by applying machine learning, statistical analysis, and

visualization tools. These patterns and regularities contribute to a better understanding of

why and how vulnerabilities get introduced in computer systems.

5.2 Experimental Setup

Data mining and statistical analysis techniques, applied to software vulnerabilities, re-

quire a collection of vulnerabilities with a set of characteristics (also known as features or

dimensions) that satisfy the properties described in Section 3.1.2. In this dissertation, this

collection is referred to as the vulnerability database [Krsul 1998].

The vulnerability database was built as a repository of software vulnerability informa-

tion with a strong emphasis on quality and completeness of information. The information

in the database is useful for a variety of purposes, including classi�cations of vulnerabilities,

software engineering research on coding faults, and testing for the existence of vulnerabili-

ties.

Without detailed knowledge of the distribution and characteristics of the data in ques-

tion, we cannot know a priori the number of samples required for this database. The

machine learning community, however, provides heuristics that help us estimate the num-

ber of samples required.

An error in a classi�er is simply a misclassi�cation [Weiss and Kulikowski 1991].

The true error of a classi�er is statistically de�ned as the error rate of the classi�er

49

on an asymptotically large number of new cases that converge in the limit of the actual

population distribution [Weiss and Kulikowski 1991]. The apparent error of a classi�er

is the error rate on the sample cases that were used to design of build the classi�er [Weiss

and Kulikowski 1991].

[Weiss and Kulikowski 1991] argues that for classi�ers and learning systems, a surpris-

ingly small number of test cases are needed for test sample error to be essentially the true

error: \at 50 test cases and a test sample error of 0%, there is a good chance that the true

error is as large as 10%, while for 1000 test cases the true error rate is almost certainly

below 1%". Traditionally, a small statistical sample size is about 30 samples [Weiss and

Kulikowski 1991]. Many simplifying assumptions were made for this particular heuristic,

including assumptions about the distribution of the test cases. These are assumed to be a

good representation of the true population.

A heuristic that provides further insight as to the size of the state space is that linear-

hyperplane learning systems need samples that must exceed two to three times the number

of features [Duda and Hart 1973]. If we have 30 features in the state space, we must have

at least 60-90 samples. Other heuristics can be found in [Weiss and Kulikowski 1991; Duda

and Hart 1973; Quinlan 1986; Quinlan and Cemeron-Jones 1995; Breiman 1994; Freund

and Schapire 1996].

Our initial estimate, based on these heuristics, is that we will need approximately 100{

200 samples and 20{30 features. In Sections 5.2.1 and 5.2.3 we con�rm that our data

collection, based on this initial approximation, is a good distribution of known software

vulnerabilities.

5.2.1 Sources for Data Collection

Most records in the database combine information from various sources. CERT, CIAC,

and AUSCERT advisories are good indicators for the existence of a vulnerability but provide

little information useful for the extraction of our taxonomic characters. The following

sources were used in the collection of data for the database:

� Computer security mailing lists: BUGTRAQ, NTBUGTRAQ, IDS, Best of Security.

� Advisories: CERT, CIAC, AUSCERT, L0pht Security Advisories, Vendor Security

Bulletins, Secure Networks Incorporated Security Advisories.

50

� Academic publications: [Dean and Wallach 1995; Dean et al. 1996; Cohen 1997b;

1997a; Gar�nkel and Spa�ord 1996; Bishop and Dilger 1996; Kumar 1995; Aslam

1995; Kumar et al. 1995]

� Security tools: COPS [Farmer and Spa�ord 1991], SATAN, ISS.

� Hacker toolkits.

� Private vulnerability databases: Michael Dilger, Eric Miller, Eugene Spa�ord

� Private electronic mail correspondence: Edward Felten of Princeton University.

� Vulnerability Databases: [Internet Security Services 1998; INFILSEC Systems Se-

curity 1998; Firosoft Consulting 1998; VDBKAO 1998; VDBFIR 1998; VDBBOD

1998; VDBLEG 1998; VDBFKI 1998; VDBBUG 1998; Stout 1998; VDBNZE 1998;

VDBELI 1998; VDBDOP 1998; VDBEXP 1998; VDBNN1 1998; VDBNN2 1998;

VDBNN3 1998; VDBNN4 1998; VDBNN5 1998; VDBNN6 1998].

5.2.2 Database Structure

The database was designed to be a superset of all the databases and sources of vulnera-

bility information enumerated in Section 5.2.1, includes the taxonomic characters developed

in Chapter 4, and the classi�cation developed in Section 6.1. Fields from previous databases

that were shown to be ambiguous in Section 3.2 were modi�ed as described in Appendix C.

The database is a
at �le that has the following schema:

Identi�cation Section

title Title of the vulnerability

Modi�cation History

modifications Person(s) who have modi�ed this record, the date of modi�ca-

tion, and the modi�cations made.

51

Description and impact

desc Description of the vulnerability.

indirect impact Ultimate consequences of an attack exploiting the vulnerability

by a threat agent. See Figure C.1.

direct impact Rather than the ultimate impact of the vulnerability, the direct

or immediate impact. See Figure C.2.

impact verbatim Textual description of the impact of exploiting the vulnerability.

Information Regarding the Source of the Information

source address Detailed information on the source of the information. The

WWW address, email address, books, etc. from which the in-

formation was gathered.

System Identi�cation

system System(s) vulnerable.

system version System Version.

vendor System Vendor.

system verbatim Additional textual description of system.

os type Type of operating systems a�ected. See Figure C.6.

Application Information

app Application that contains the vulnerability.

app version Application Version.

app verbatim Long description of applications that contain vulnerabilities.

References

advisory Advisory/ies that warn/describe about the vulnerability.

reference References to the vulnerability in literature or in the net.

related docs Documents that describe the vulnerability, related to the vul-

nerability or that are useful in the analysis of the vulnerability.

52

Detailed Analysis, Detection Techniques, and Fixes

analysis A detailed analysis of the vulnerability.

core vulner If the vulnerability is in a piece of code, the smallest piece of

code that still has the vulnerability.

detection Method of detecting that the vulnerability is being exploited.

fix A �x that can be used to eliminate the vulnerability.

test Method that can be used to detect whether the vulnerability is

present in a system.

workaround A temporary workaround for the vulnerability. Used until a

patch can be applied.

patch A patch or a series of patches that can be used to eliminate the

vulnerability.

Detailed Information About Exploitation

exploit Reference to exploit scripts or programs.

ease of exploit How easy is it to exploit the vulnerability.

idiot IDIOT Pattern used to detect the exploitation of the vulnera-

bility. See [Crosbie et al. 1996].

access required Access is required for the exploitation. See Figure C.3.

complexity of exploit Complexity of the exploitation of the vulnerability. See Fig-

ure C.4.

Source code and pointers to source code for the systems that contain the vul-

nerabilities.

system source Source code or a pointer to the source code for the system that

contains the vulnerability.

Fault Classi�cation

envass Environmental assumptions that were made by designers or pro-

grammers that, if they were to hold, would make the program

correct. See Section 4.2.

class Aslam Classi�cation. See Figures B.1 and B.2.

53

Category and Component Classi�cation

category The system or component to which the vulnerability belongs

to. See Figure C.5.

Identi�cation of Nature of the Vulnerability

nature object The object fundamentally a�ected by the vulnerability. See

Section 4.3.1.

nature effect The e�ect that the vulnerability has on the object. See Sec-

tion 4.3.2.

nature method The method or means by which the object is a�ected. See

Section 4.3.3.

nature method input The type of input, if any, that leads to the e�ect. See Sec-

tion 4.3.4.

Veri�cation of Vulnerability

verif Person or entity who veri�ed the vulnerability. Veri�cation

should imply that the vulnerability is know to exist and had

been exploited or veri�ed by the person named.

Identi�cation of Policy Violation

policyvio Expected Policy Violated by the Vulnerability. These policies

need not be formally speci�ed and are the expectation that users

feel have been violated.

Identi�cation of Environmental Factors

environment What environmental conditions contribute to the vulnerability?

What assumptions are made about the environment that don't

hold? What about the environment makes this vulnerability

possible?

features What other characteristics and features are relevant for the un-

derstanding of the vulnerability?

54

Identi�cation of the Nature of Threat (See Section 4.1).

thac observe The vulnerability can result in a user observing objects, data,

etc., in violation of expected policy. Value can be yes, no, ?, or

NA.

thac destroy The vulnerability can result in a user destroying objects, data,

etc., in violation of expected policy. Value can be yes, no, ?, or

NA.

thac modify The vulnerability can result in a user modifying objects, data,

etc., in violation of expected policy. Value can be yes, no, ?, or

NA.

thac create The vulnerability can result in a user creating objects in viola-

tion of expected policy. Value can be yes, no, ?, or NA.

thac cavail The vulnerability can result in the change of availability of the

system. Value can be yes, no, ?, or NA.

thac disclose The vulnerability can result in the disclosure of information in

violation of expected policy. Value can be yes, no, ?, or NA.

thac exec The vulnerability can result in the execution of applications in

violation of expected policy. Value can be yes, no, ?, or NA.

thac misrep The vulnerability can result in misrepresentation of informa-

tion. Value can be yes, no, ?, or NA.

thac repudiate The vulnerability can result in repudiation of information.

Value can be yes, no, ?, or NA.

thac integrity The vulnerability can result in change of integrity of the system.

Value can be yes, no, ?, or NA.

thac conf The vulnerability can result in the loss of con�dentiality of in-

formation. Value can be yes, no, ?, or NA.

55

5.2.3 Data Characteristics

As of March 18, 1998, the vulnerability database contained information relevant to 210

vulnerabilities. These entries include, but are not limited to, 57 CERT advisories2, seven

CERT vendor-initiated bulletins3, and 21 AUSCERT advisories4.

Not all CERT advisories describe software vulnerabilities. Some CERT advisories, for

example, are descriptions of trojan horses, warnings regarding hacking techniques, descrip-

tions of several vulnerabilities grouped together, warnings about rumors and alleged attacks,

reports of security probes, warnings about false emails, reports of social engineering tech-

niques, descriptions of email scams, virus reports, reports on Internet intruder activities,

con�guration guidelines, and checksums for �les. Of the 175 advisories published by CERT

by March of 1998, 51 do not describe vulnerabilities. We have detailed documentation for

approximately 50% of the remaining advisories.

5.2.4 Data Distribution

The minimum information required for each record in the database is a record identi�er

and a title, although there are no records in the database that have so little information.

Let the size of a record be the number of �elds that have information for that record.

The size of a record depends on the amount of detailed information that can be found for

each vulnerability. A CERT advisory, for example, typically is su�cient to �ll �fteen �elds in

the database (title, modifications, desc, impact verbatim, source address, system,

system version, vendor, system verbatim, os type, app, app version, app verbatim,

advisory, and workaround). The other �elds require more detailed information regarding

the vulnerability than what advisories|CERT, CIAC, AUSCERT, etc.|provide.

2The CERT advisories included or referenced in the database are CA-93:01, CA-93:02, CA-93:06, CA-

93:09, CA-93:17, CA-94:02, CA-94:06, CA-94:09{CA-94:11, CA-95:02, CA-95:08, CA-95.10, CA-95:13{CA-

95:16, CA-96.04, CA-96.05, CA-96.08, CA-96.12, CA-96.13, CA-96.15{CA-96.19, CA-96.21, CA-96.22, CA-

96:24, CA-96.25, CA-96.27, CA-97.01{CA-97.06, CA-97.08{CA-97.10, CA-97.12{CA-97.17, CA-97.19, CA-

97.20, CA-97.27, CA-97.28, and CA-98.01{CA-98.04
3The CERT vendor initiated bulletins in the database are VB-96.04, VB-96.05, VB-97.01, VB-97.02,

VB-97.05, VB-97.06, and VB-97.13
4The AUSCERT advisories referenced in the database are AA-96.03, AA-96.04, AA-96.06, AA-96.11{

AA-96.14, AA-96.16, AA-97.02, AA-97.03, AA-97.07, AA-97.12{AA-97.14, and AA-97.18{AA-97.23.

56

A
s
sh
ow

n
in

F
igu

re
5.1,

th
e
sm

allest
record

in
th
e
d
atab

ase
h
as

on
ly

6
�
eld

s
an
d
th
e

largest
46.

T
h
e
m
ed
ian

(26)
an
d
average

(30)
are

w
ell

ab
ove

th
e
�
fteen

�
eld

s
m
en
tion

ed
.

H
en
ce

th
e
record

s
in

th
e
d
atab

ase
h
ave,

on
average,

m
ore

d
etailed

in
form

ation
th
an

sim
p
le

h
igh

-level
d
escrip

tion
s
of

v
u
ln
erab

ilities.

6
7

8
9

10
11

12
13

14
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
44

46
0 5 10 15 20 25 30

N
um

ber of F
ields F

illed

Number of Records

Average Fields Filled Per Record

Median Fields Filled Per Record

F
igu

re
5.1:

D
istrib

u
tion

of
�
lled

�
eld

s
in

th
e
d
atab

ase

T
h
e
n
on
-tex

tu
al
d
ata

in
th
e
d
atab

ase
(i.e.

lists
an
d
ch
oices),

as
sh
ow

n
n
ex
t,
h
as
variation

an
d
d
o
es

n
ot

p
resen

t
h
ot-sp

ots
(w
h
ere

all
th
e
record

s
h
ave

a
sin

gle
valu

e).

T
h
e
�
eld

s
i
n
d
i
r
e
c
t
i
m
p
a
c
t
,
d
i
r
e
c
t
i
m
p
a
c
t
,
o
s
t
y
p
e
,
a
c
c
e
s
s
r
e
q
u
i
r
e
d
,
c
a
t
e
g
o
r
y
,

an
d
c
o
m
p
l
e
x
i
t
y
o
f
e
x
p
l
o
i
t
are

�
lled

in
175

of
th
e
210

record
s
in
th
e
d
atab

ase.
F
igu

res
5.2

an
d
5.3

sh
ow

scatter
p
lots

for
th
ese

�
eld

s.

57

indirect_impact

 0
 5

 1
0

 1
5

 2
0

direct_impact

 0
 5

 1
0

 1
5

? (0), denial (1), system_read (2),
privileged_access (3), internal_root_access (4),
internal_privileged_access (5),
external_root_access (6), internal_denial (7),
read (8), internal_user_access (9),
root_access (10), other (11), external_read (12),
internal_system_write_modify (13),
internal_system_read (14),
external_privileged_access (15),
external_denial (16), system_write_modify (17),
external_user_access (18), user_access (19),
external_system_read (20), write_modify (21),
internal_write_modify (22)

? (0), denial_of_service (1), system_disclosure (2),
system_augmentation (3), mixed_corruption_data
(4), mixed_access (5), root_access (6),
mixed_disclosure (7), privileged_execution (8),
other (9), corruption_system_data (10),
user_access (11), user_disclosure (12),
permissions_execution (13), incorrect_execution
(15), corruption_user_data (14)

Figure 5.2: Scatter plot for �elds indirect impact and direct impact.

58

os_type

 0
 2

 4
 6

? (0), unix (1),
os_independent (2),

 multiple_OS (3), windows (4),
other (5), VMS (6)

category

 0
 2

 4
 6

 8
 1

0

? (0), kernel (1),
interpreter (2), network (3),
os_other (4), system_utilities (5),
other (6),
applications (7),
mail (8), logging (9) access_required

 0
 2

 4
 6

? (0), remote_access (1),
user_account (2), other (3),
trusted_system (4),
physical_access (5),
privileged_access (6)

complexity_of_exploit

 0
 2

 4
 6

? (0), program (1), other (2),
 simple (3), timing (4),
complex (5)

Figure 5.3: Scatter plot for �elds os type, access required, category, and

complexity of exploit.

59

Figure 5.4 show a distribution plot for the Nature of Threat identi�cation �elds. The

nature of threat identi�cation �elds are �lled for 175 records in the database.

thac_ob ser v
e

th ac_dest r o
y

th ac_m od i f y

th ac_ c reate

th ac_ cav ai l

th ac_d i sc l o se

th ac_ex ec

th ac_m i srep

th ac_ repud i ate

th ac_ i n teg r i t
y

th ac_ con f NA

 ?

 YES
 NO

0

20

40

60

80

100

120

140

160

Figure 5.4: Distribution Plot the Nature of Threat Features

Figures 5.5, through 5.10 show distribution plots for the �elds environmental assump-

tion, identi�cations of the nature of the vulnerability, and system. 170 records in the

database have information regarding the system �eld, 148 records have information re-

garding the nature of the vulnerability �elds, and only 61 records in the database have

information regarding the environmental assumptions �eld.

The envass �eld is one of the most di�cult �elds to �ll because it requires detailed

information regarding the environment in which the program runs, the source code for the

vulnerable system, and information regarding the exploitation of the vulnerability.

60

0 2 4 6 8 10 12 14

?
NA

dataexec
envdata

execpath
falseconst

filedata
insufverif
memavail
nameinv

nameover
namepurpose

netdata
nocore
objatt

objinv
objne
other

permsdir
perstore

reassembly
reservedobject

tempdel
turstnetobj

userdata

Figure 5.5: Distribution Plot for Environmental Assumption Features

61

0 5 10 15 20 25 30 35 40 45

?
NA

a_net_connection
addr_mapping

classloader
command_prompt

cpu
device

directory
email

heap_code
heap_data

library
names

netport
o_attributes

os
other

outfiles
packets

partition
pass_known

password
public_files

shell_command
stack_code
stack_data

stack_return
static_data

system_files
system_info

system_names
system_program

user_files
user_program

web_pages
web_session

Figure 5.6: Distribution plot for the Nature of Vulnerability feature Object A�ected

62

0 10 20 30 40 50 60 70

?
NA

append
bound

change_owner
change_permission

changed
clear_text

closed
crash

created
debugged
displayed
executed

exhausted
exported

loaded
locked

mounted
other

predictable
presented

read
replaced

terminated

Figure 5.7: Distribution plot for the Nature of Vulnerability feature E�ect on Object

63

0 5 10 15 20 25 30 35 40

?
NA

NTML_auth
bac_kticks
capability

config
coredump

coresymlink
criticalsect

dotdot
hidden_mount

incorr_imp
incprot
infloop

inherit_privs
memcpy

mod_env
mod_name

other
proxy

rel_paths
special_chars

symlink
syscall_disclose
system_mislabel

verify_fail

Figure 5.8: Distribution plot for the Nature of Vulnerability Method feature

64

0 5 10 15 20 25 30 35 40 45

?

NA

command

conffile

datafile

env

floppy

gecos

libparameter

netdata

other

parameter

store

tempfile

Figure 5.9: Distribution plot for the Nature of Vulnerability Method Input feature

65

0 5 10 15 20 25 30 35

?
A/UX

AIX
AUX

All Unix
Athena

BSDI
Caldera
Cygnus

DECOSF1
DEC_UNIX

DG
DOS

Debian
FreeBSD

Goah
HP-UX

Linux
MGFTP
MacOS

MkLinux
NA

NECUX
NEXT

NeXTstep
NetBSD
Netware

NovellUnix
ODT
OSF

OpenBSD
OpenLinux
OpenServer

OpenStep
OpenVision
OtherLinux

Redhat
ReliantUNIX

SGIRIX
Slackware

Solaris
SunOS
Ultrix

UnixWare
VMS

Windows
Windows95

WindowsNT
WindowsWG

ascend
nextstep

unicos

Figure 5.10: Distribution plot for the System Features

66

5.3 Experiments

In this section we present the application of three analysis techniques to the data de-

scribed in Section 5.2. The �rst is an example of a statistical analysis technique similar

to traditional association analysis [Agrawal and Srikant 1994] and graphical modeling [Ed-

wards 1995]. The second is an example of a machine learning technique. The last technique

demonstrated is an example of graphical visualization of multivariate data.

5.3.1 Co-word Analysis

Co-word analysis is a content analysis technique that is e�ective in mapping the strength

of association between keywords in textual data. Co-word analysis reduces a space of

descriptors (or keywords) to a set of network graphs that e�ectively illustrate the strongest

associations between descriptors [Coulter et al. 1997; Whittaker 1989].

Co-word analysis is an example of a graphical modeling technique that applies some of

the ideas of association analysis [Edwards 1995; Kaufman and Rousseeuw 1990]. Graph-

ical modeling is a variant of statistical modeling that uses graphs to display models. \In

contrast to most other types of statistical graphics, the graphs do not display data, but

rather and interpretation of the data, in the form of a model. . . Graphs have long been used

informally. . . to visualize relations between variables." [Edwards 1995].

We have chosen co-word analysis because the models that can be generated with this

technique illustrate associations between keywords by constructing multiple networks that

highlight associations between keywords, and where associations between networks are pos-

sible.

Co-Word Analysis Algorithm Description

In this section we describe the algorithms used in [Coulter et al. 1997] for constructing

the networks that highlight the strongest associations between keywords, modi�ed to �t

our needs.

For our purposes, the set of descriptors corresponds to the keywords used in the vulner-

ability database as shown in Section 5.3.1. Two keywords co-occur if they are used in the

same records in the database. Let ck represent the number of occurrences of the keyword

67

k in the entire database. Let cij represent the number of co-occurrences of keywords i and

j. The strength S of association between descriptors i and j is given by equation 5.1:

S : integer� integer� integer! real
fun S (cij ; ci; cj) ::=

if ((ci � 0) _ (cj � 0)) then
S := unde�ned;

else
) S is in the range 0 � S � 1(

S :=
c2ij
cicj

;

�
nuf

(5.1)

Keywords that often appear together will have strengths closer to 1, and keywords that

appear together infrequently will have strengths closer to 0. In co-word analysis, strengths

of larger value constitute the links between nodes in a network depicting the strongest

associations in the database.

The co-word algorithm uses two passes through the data to produce the desired net-

works. The �rst pass constructs the networks depicting the strongest associations, and links

added in this pass are called internal links. The second pass adds to these networks links

of weaker strengths that form associations between networks. The links added during the

second pass are called external links.

Note that two keywords that appear infrequently in the database but always appear

together, will have larger strength values than keywords that appear many times in the

database almost always together. Hence, possibly irrelevant or weak associations may dom-

inate the network. A solution to this problem|incorporated into the algorithm described in

this section|is to require that only the keyword pairs that exceed a minimum co-occurrence

are considered potential links while building networks during the �rst pass of the algorithm.

During the �rst pass, the link that has the largest strength is selected �rst, its nodes

becoming the starting nodes of the �rst pass-1 network. Other links and their corresponding

nodes are added to the graph using a breath-�rst search on the strength of the links (i.e.

the strongest link connecting a node that is not in any graph to the graph being constructed

is added �rst), until there are no more links that exceed the co-occurrence threshold, or a

maximum pass-1 link limit is exceeded. The next network is generated in a similar manner

starting with the link with the largest strength that is not in any existing graph.

68

During the second pass of the algorithm we add nodes to each existing graph, choosing

the links that have the largest strength that exceed the co-occurrence threshold, and that

are in some pass-1 network.

As described in [Coulter et al. 1997], the algorithm for the generation of the networks

is as follows:

1. Select a minimum for the number of co-occurrences, cij, for descriptors i and j, select

maxima for the number of pass-1 links, and select maxima for the total (pass-1 and

pass-2) links;

2. Start pass-1;

3. Generate the highest S value from all possible descriptors to begin a pass-1 network;

4. From that link, form other links in a breadth-�rst manner until no more links are

possible due to the co-occurrence minima or to pass-1 link or node maxima. Remove

all incorporated descriptors from the list of subsequent available pass-1 descriptors;

5. Repeat steps 3 and 4 until all pass-1 networks are formed; i.e., until no two remaining

descriptor pairs co-occur frequently enough to begin a network;

6. Start pass-2;

7. Restore all pass-1 descriptors to the list of available descriptors;

8. Start with the �rst pass-1 network.

9. Generate all links to pass-1 nodes in the current network to any pass-1 nodes having

at least the minimal co-occurrences in descending order of S value; stop when no

remaining descriptor pairs meet the co-occurrence minima, or when the total link

maxima is met. Do not remove any descriptors from the available list;

10. Select the next succeeding pass-1 network, and repeat step 9.

Networks are interconnected by pass-2 links. The centrality of a network measures

the degree of interaction to other networks and is de�ned as the square root of the sum of

the squares of the S values of the pass-2 links of the network. The density of a network

measures the internal strength of the network and is de�ned as the mean of the S values of

the pass-1 links of the network.

Isolated Networks are those that have low centrality values. Principal Networks

are those that have high centrality and high density values.

69

Selection of Keywords

Every �eld in the database described in Section 5.2 can be used as a keyword, or can

be transformed to a series of keywords for co-word analysis by applying the following rules:

1. If a �eld in the database can have the values yes, no, ?, and NA, then a keyword with

the name of the �eld is generated if the value of the �eld is yes.

2. If a �eld in the database is running text then a keyword with the name of the �eld

name followed by the string \Defined?" is generated if the �eld is not empty.

3. If the �eld in the database can have a single value from a list then a keyword with

the name of the �eld followed by the value of the �eld is generated.

4. If the �eld in the database can have a list of values from a well de�ned set, then for

every value in the �eld we generate a keyword with the name of the �eld followed by

the value of the �eld.

Applying these rules to the database we can generate the keywords for the database as

shown in Table 5.1. The keywords in group K1 are present in every record in the database

and hence are not useful in our analysis. The keywords in group K2 do not satisfy any of

the requirements for taxonomic characters as stated in Section 3.1.2 and are not reliable

indicators. The keywords in group K9, as shown in Section 3.2.1, also fail to satisfy these

properties. The keyword in group K11, as shown in Section 3.2.1, is not a reliable indicator.

Analysis can be performed with the remaining groups: K3, K4, K5, K6, K7, K8, K9,

K10, K12, K13, K14, K15, and K16.

70

Table 5.1: Keywords used in the co-word analysis run.

Group Keywords Source Field(s) Rule

K1 2 title and modification 2

K2 25 desc, impact verbatim, source address,
system version,system verbatim,
app version,app verbatim, advisory,
reference, related docs, analysis,
core vulner, detection, fix, test,
workaround, patch, exploit,
ease of exploit, idiot, system source,
verif, policyvio, environment, and
features

2

K3 11 indirect impact 3

K4 17 direct impact 3

K5 11 thac observe, thac destroy, thac modify,
thac create, thac cavail, thac disclose,
thac exec, thac misrep, thac repudiate,
thac integrity, and thac conf

1

K6 44 system 4

K7 9 os type 3

K8 6 access required 3

K9 5 complexity of exploit 3

K10 24 envass 4

K11 40 class 4

K12 9 category 3

K13 35 nature object 4

K14 23 nature effect 4

K15 23 nature method 4

K16 12 nature method input 4

71

Experimental Results

The results presented in this section correspond to the co-word algorithm presented in

Section 5.3.1 applied to the keywords generated for groups K3, K4, K5, K6, K7, K8, K9,

K10, K12, K13, K14, K15, and K16. This choice of keyword groups produces networks with

su�cient variability in centrality and density to demonstrate the full range of possibilities

of the technique.

There are three parameters that can be changed in the generation of networks with the

co-word analysis tools. These are the number of pass-1 links, the total number of links

in the network, and the minimum co-occurrence necessary for a link to be included in a

network.

In the co-word analysis tool, raising the minimum co-occurrence requirement produces

smaller and fewer networks, revealing the most prominent groups of related keywords.

Lowering the minimum co-occurrence produces larger and more networks that show more

subtle relationships among keywords.

In both cases, the most prominent networks will be similar because the �rst network is

created in descending co-occurrence strength, and keywords that co-occur frequently will

be added �rst in all cases. Hence, it is frequently desirable to choose a small minimum

co-occurrence value.

Similarly a higher value for the number of pass-1 links and the total number of links in

the network will produce larger and fewer networks. A lower value will produce smaller and

more networks. Larger networks reveal more complex relationships among keywords and

are frequently di�cult to interpret. Small networks produce simpler networks that reveal

smaller groups of related keywords.

The values chosen for the results presented here are as follows: A minimum co-occurrence

of �ve (5), a maximum number of pass-1 links of nine (9), and a maximum number of pass-1

and pass-2 links of eighteen (18). These values were chosen after several trials because they

produce networks that have both high and low values for density and centrality, so we can

demonstrate the meaning of each combination.

Ten networks were generated by the co-word analysis tool and are shown in �gures 5.12

through 5.21. Figure 5.11 shows the distribution of their centrality and density values.

Each network has been labeled according to the interpretations that follow.

72

1

2

3

5

4

6

7

8

9

10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Median (0.44,0.64)

Density

C
en

tr
al

ity
(Overflows)

(File Modification)

(UNIX Attack
Types)

(Escaped Shell
Commands)

(Overflows II)

(UNIX Environment
Vulnerabilities)

(Remote Attacks)

(NT Attacks)

(Linux)

(Disclose, Read,
 Observe)

Figure 5.11: Plot of Centrality vs. Density for the results of co-word analysis for the

vulnerability database

In these networks, solid lines connecting nodes represent pass-1 links and dotted lines

represent pass-2 nodes. Each link is labeled with a triple<number, co-occurrence, strength>

that indicates the order in which the links were added (1 corresponds to the �rst link), the

co-occurrence for the key pair, and the strength of the link.

The principal networks of our database, and for the given groups, are networks 1 and 5.

These are shown in Figures 5.12 and 5.16. These networks have the highest centrality and

density values and hence represent the more predominant relationships among the keywords

in our data.

Network 1, or the Over
ows network, shows that one of the predominant groups of

related keywords corresponds to a group that is commonly called \bu�er over
ows" by the

computer security community. These are vulnerabilities where the object that is a�ected

73

by the vulnerability is the stack (both the return address and the content of the stack),

where the e�ect is that the contents of the stack are changed using an operation that copies

bytes from one memory location to another5, and where the impact is root access in Unix

machines. Other links indicate that frequently the applications where this happens are

system utilities.

The name \Over
ows," however, does not necessarily imply that a bu�er was over
owed

in the program that contains the vulnerability. As shown in the following example, it is

possible to create a program that would �t in this category (i.e. would have the keywords

that indicate memory changes to the stack with a memory copy operation) without an array

to over
ow. We note, however, that we found no vulnerability that matches this scenario.

Example 5.1: The program that follows illustrates how a program that can provide an

attacker an index into arbitrary stack memory can be vulnerable to the same problem

without overwriting the program's local memory or altering anything other than the return

address in the stack and the portion of memory that will be used to store the code to be

executed. The program segment was extracted from a project for a graduate-level operating

system course and its function is to allow the programmer to change the value of debugging

ags without having to recompile the code.

main() {

int dbg1, dbg2, dbg3, dbg4, numiter,index, i, j;

FILE *fp;

/* Read from a file the values of the debugging variables

as a series of (position, value) pairs: (1,5) would set dbg1 to 5

and (4,0) would clear the dbg4 flag. */

if((fp = fopen("conf","r"))!=NULL){

/* How many flags to change? */

fscanf(fp,"%d",&numiter);

printf("numiter = %d\n",numiter);

for(i=0;i<numiter;i++) {

fscanf(fp,"%d%d",&index,&j);

*(&dbg1-index+1) = j;

}

}

}

2

5Recall from Section 4.3.2 that the memcpy feature is used to indicate that the mechanism that is used

to a�ect the object are the strcpy, sprintf or bcopy system calls.

74

Network 5, or the File Modi�cation network, shows that Unix �les (public, user, and

system) are modi�ed or replaced taking advantage of problems with late binding links (or

symbolic links), and that the e�ect frequently is root access obtained by a user who has

an account in the system. This network identi�es the group of vulnerabilities commonly

referred to as \symbolic link vulnerabilities" by the computer security community.

Note that these groups were identi�ed using mostly the taxonomic characters de�ned in

Chapter 4. Hence, the co-word analysis tool can reconstruct classes of vulnerabilities from

the taxonomic characters themselves.

Networks 7 and 8, or the Unix Attack Types and Escaped Shell Command networks,

have low density and high centrality values, indicating that relationships in the network

are weak and that the features (or keywords) used in this network are also a part of many

other networks. Network 7 shows that Unix vulnerabilities lead to internal root access, that

frequently a user account is needed to exploit the vulnerability, that the objects a�ected are

system �les and system utilities, and that bu�er over
ows are frequent and have complex

exploits (as de�ned by the complexity of exploit feature de�ned in Section C.4).

Network 8 identi�es the class of vulnerabilities where users use escape characters in shell

commands to run applications or system programs in violation of policies.

The isolated networks are 2, 3, 4, 6, 9, and 10. These networks identify relationships

with keywords that have low centrality values and hence the keywords are infrequently used

in other networks. Isolated networks with high density values indicate strong relationships

among keywords in isolated groups, and point to dominant features of the database.

The strong isolated networks are 2, 3, and 4, or the Disclose{Read{Observe, Linux, and

NT Attacks networks.

Network 2, 3, and 9 are examples of networks that identify sets of keywords that have

such high correlations that can e�ectively be compressed into a single feature. Network 2

identi�es that reading, disclosing, observing, displaying, and threats to con�dentiality are

tightly related. Network 3 reveals that vulnerabilities that appear in one variant of Linux

frequently appear in other variants. Network 9 reveals a similar result for the Unix systems

BSDI, AIX, NetBSD, FreeBSD, HP-UX, SunOS, and Linux.

Those results do not imply that the features should be collapsed, and the interpretation

of these high correlations is not unique. The result of network 3 is intuitive because many

75

Linux distributions share a common code base and Linux system utilities frequently cross-

compile for multiple Linux distributions.

Network 9 shows that frequently vulnerabilities apply to more than one variant of Unix

system that do not share a common code base. We note that system utilities for Unix

are frequently designed so they will cross-compile for multiple variants of Unix, and tools

such as Imake were designed speci�cally to allow machine dependencies (such as compiler

options, alternate command names, and special make rules) to be kept separate from the

descriptions of the various items to be built [Oram and Talbott 1993].

Network 2 shows that vulnerabilities that result in the disclosure of information are

frequently exploited remotely and are either operating system independent (i.e. Java), or

exist in Windows NT.

76

(N) Effect
changed

6, 53, 0.648

(N) Method
memcpy

7, 34, 0.541

(N) Object
stack_return

5, 36, 0.59

(N) Method
input_command

15, 14, 0.28

Threat
integrity

Direct Impact
root_access

16, 17, 0.258

(N) Object
stack_data

Complex. Exploit
complex

13, 22, 0.381
2, 26, 0.715

9, 20, 0.529

3, 26, 0.695

(N) Object
stack_code

14, 12, 0.307

Indirect Impact
internal_root_access

Threat
modify

12, 42, 0.388

OS Type
unix

10, 58, 0.442

Access Required
user_account

11, 51, 0.393

Direct Impact
mixed_corruption_data

18, 22, 0.213

Category
system_utilities

17, 22, 0.227

8, 23, 0.539

1, 33, 0.864

4, 26, 0.67

The label indicates
the order in which
the link was added,
 the co-occurrence,
 and the link
strength

Figure 5.12: Principal network number 1 for co-word analysis.

77

OS Type
windows

Threat
observe

10, 10, 0.19

(N) Effect
displayed

Direct Impact
mixed_disclosure

8, 7, 0.408

OS Type
os_independent

(N) Effect
read

18, 5, 0.077

(N) Method
input_netdata

17, 8, 0.082

System
WindowsNT

12, 10, 0.129

(N) Object
public_files

Threat
conf

15, 8, 0.088

Complex. Exploit
simple

14, 12, 0.095

(N) Object
system_files

11, 11, 0.132

4, 17, 0.642

6, 15, 0.52

Threat
disclose

3, 15, 0.657

(N) Object
user_files

16, 8, 0.086

2, 21, 0.735

1, 19, 0.759

9, 11, 0.403

Access Required
remote_access

13, 12, 0.104

5, 16, 0.561

7, 10, 0.438

Figure 5.13: Isolated network number 2 for co-word analysis.

78

S
ys

te
m

O
pe

nL
in

ux

S
ys

te
m

R
ed

ha
t

6,
 1

8,
 0

.5
4

S
ys

te
m

S
la

ck
w

ar
e

4,
 1

5,
 0

.5
62

S
ys

te
m

D
eb

ia
n

1,
 1

8,
 0

.7
04

S
ys

te
m

M
kL

in
ux

8,
 8

, 0
.4

In
di

re
ct

 Im
pa

ct
in

te
rn

al
_r

oo
t_

ac
ce

ss

15
, 8

, 0
.0

5

O
S

 T
yp

e
un

ix
12

, 1
9,

 0
.1

12

A
cc

es
s

R
eq

ui
re

d
us

er
_a

cc
ou

nt

18
, 1

1,
 0

.0
43

(N
)

M
et

ho
d

in
pu

t_
ne

td
at

a

16
, 8

, 0
.0

49

C
om

pl
ex

. E
xp

lo
it

co
m

pl
ex

14
, 9

, 0
.0

57
5,

 1
8,

 0
.5

4

(N
)

E
ffe

ct
ex

ec
ut

ed13
, 6

, 0
.0

63

2,
 2

2,
 0

.7
01

S
ys

te
m

B
S

D
I

10
, 1

1,
 0

.1
68

D
ire

ct
 Im

pa
ct

ro
ot

_a
cc

es
s

17
, 5

, 0
.0

44
3,

 1
7,

 0
.6

28

7,
 8

, 0
.4

S
ys

te
m

F
re

eB
S

D

11
, 9

, 0
.1

53

9,
 8

, 0
.3

47

F
ig
u
re
5.
14
:
Is
ol
at
ed
n
et
w
or
k
n
u
m
b
er
3
fo
r
co
-w
or
d
an
al
y
si
s.

79

Threat
cavail

Indirect Impact
denial

Direct Impact
denial_of_service

4, 6, 0.285

envass_netdata

11, 6, 0.171

OS Type
windows

13, 7, 0.111

Category
network

14, 9, 0.108

Threat
destroy

17, 7, 0.065

OS Type
unix

18, 14, 0.061

(N) Effect
exhausted

9, 5, 0.238

(N) Method
input_netdata

12, 12, 0.159

(N) Object
os

5, 6, 0.244

(N) Effect
crash

6, 5, 0.51

Complex. Exploit
simple

15, 14, 0.103

Indirect Impact
external_denial

3, 10, 0.333

1, 21, 0.699

Access Required
remote_access

10, 17, 0.175

System
WindowsNT

16, 8, 0.098

Indirect Impact
internal_denial

8, 5, 0.238

2, 9, 0.385

7, 6, 0.244

Figure 5.15: Isolated network number 4 for co-word analysis.

80

Threat
destroy

Threat
create

11, 18, 0.36

Category
applications

(N) Object
user_files

18, 18, 0.168

Access Required
user_account

13, 33, 0.285

6, 27, 0.555

5, 27, 0.592

Complex. Exploit
simple

12, 28, 0.303

3, 31, 0.616

(N) Effect
created

1, 24, 0.639

8, 23, 0.516

(N) Effect
replaced

(N) Method
symlink

10, 14, 0.435

envass_objne

14, 6, 0.239

2, 28, 0.531

Indirect Impact
internal_root_access

Direct Impact
mixed_corruption_data

16, 21, 0.215

OS Type
unix

15, 28, 0.228

(N) Object
public_files

7, 23, 0.551

(N) Object
system_files

9, 25, 0.513
Threat
modify

17, 22, 0.213

4, 26, 0.592

Figure 5.16: Principal network number 5 for co-word analysis.

81

OS Type
windows

1, 20, 0.614

18, 12, 0.108

13, 7, 0.129

10, 10, 0.19

System
WindowsNT

Complex. Exploit
simple

(N) Effect
read

Threat
observe

Threat
conf

14, 8, 0.126

System
Windows95 2, 6, 0.116

3, 8, 0.116

Category
network

(N) Method
input_netdata

6, 15, 0.209

Access Required
remote_access

5, 19, 0.262

envass_netdata

7, 9, 0.188

Direct Impact
denial_of_service

12, 6, 0.171

8, 10, 0.181

OS Type
os_independent

9, 13, 0.17

(N) Effect
exhausted

17, 5, 0.116

Complex. Exploit
complex15, 16, 0.126

4, 38, 0.61

Threat
cavail

11, 17, 0.175

Indirect Impact
external_denial 16, 8, 0.116

Figure 5.17: Isolated network number 6 for co-word analysis.

82

Indirect Impact
internal_root_access

OS Type
unix

3, 58, 0.491

Access Required
user_account

2, 58, 0.565

(N) Effect
changed

11, 50, 0.383

Threat
integrity

6, 33, 0.2541, 76, 0.58

Complex. Exploit
simple

5, 43, 0.274
Threat
modify

10, 58, 0.442

8, 28, 0.244 Category
system_utilities

(N) Method
input_command

9, 12, 0.239

Complex. Exploit
complex

7, 22, 0.257

Direct Impact
mixed_corruption_data

16, 29, 0.2824, 42, 0.301

(N) Object
system_files

18, 31, 0.271

(N) Object
stack_data

12, 22, 0.381

(N) Method
memcpy

13, 23, 0.321

Direct Impact
root_access

17, 19, 0.274

(N) Object
stack_return

14, 23, 0.312

(N) Object
user_files

15, 28, 0.303

Figure 5.18: Network number 7 for co-word analysis.

83

(N) Effect
executed

9, 6, 0.315

8, 7, 0.368

Category
applications

4, 12, 0.145

Complex. Exploit
simple

16, 17, 0.218

5, 12, 0.36

(N) Method
special_chars

(N) Object
shell_command

(N) Object
system_program

Threat
exec

7, 8, 0.374

Threat
destroy

Direct Impact
mixed_corruption_data

12, 15, 0.281

(N) Object
system_files

17, 14, 0.206

(N) Effect
replaced

1, 14, 0.435

Threat
create

11, 18, 0.36

Access Required
user_account18, 30, 0.205

3, 7, 0.057

(N) Object
public_files

13, 12, 0.266

(N) Effect
created

15, 10, 0.222

10, 14, 0.435

14, 14, 0.265

(N) Method
symlink

(N) Object
user_files

envass_objne

2, 5, 0.231

Direct Impact
privileged_execution

6, 10, 0.404

Figure 5.19: Network number 8 for co-word analysis.

84

System
OpenLinux

System
FreeBSD

14, 8, 0.139

System
NetBSD

Complex. Exploit
complex

18, 6, 0.095 1, 7, 0.266

System
BSDI

3, 6, 0.187
System
Redhat

10, 11, 0.168

System
SunOS

9, 6, 0.093

System
AIX

System
HP_UX

5, 11, 0.219

7, 5, 0.126

8, 8, 0.121 6, 9, 0.14

4, 10, 0.166

System
Slackware

13, 8, 0.139

envass_envdata

(N) Object
stack_data

17, 5, 0.102

(N) Method
memcpy

15, 6, 0.114

Direct Impact
root_access

12, 6, 0.142

(N) Object
stack_return

16, 6, 0.111

System
Debian

11, 9, 0.153

2, 12, 0.26

Figure 5.20: Isolated network number 9 for co-word analysis.

85

Complex. Exploit
other

(N) Object
stack_code

3, 5, 0.174

Direct Impact
mixed_access

1, 6, 0.251

Threat
modify

7, 10, 0.128

Indirect Impact
internal_root_access

12, 8, 0.076

(N) Effect
changed

6, 12, 0.181

OS Type
unix

9, 12, 0.103

Category
applications

(N) Method
input_env13, 5, 0.053

Access Required
user_account

8, 10, 0.107

(N) Object
stack_data 11, 5, 0.092

2, 5, 0.192

(N) Method
memcpy

5, 11, 0.265

Direct Impact
root_access

10, 6, 0.098

(N) Object
stack_return

4, 12, 0.307

Figure 5.21: Isolated network number 10 for co-word analysis.

86

5.3.2 Induction of Decision Trees

The class of decision tree induction algorithms can be used to induce decision trees

from a set of observations to classify new test cases [Quinlan 1986; Holsheimer and Siebes

1994; Breslow and Aha 1996]. As well as solving the classi�cation problem, induction trees

provide insights regarding the predictive structure of the data [Quinlan 1986].

Decision trees are used to classify an observation by traversing a tree along a path from

its root to one of its leaves. Internal nodes of the tree are tests on the attributes that

determine which path to take during the traversal. The labels associated with the leaves

are the classes assigned to observations.

Decision trees are usually induced from the root downwards using a recursive algorithm

that searches for the best partitioning of the known samples. A detailed description and

analysis of the development of induction trees can be found in [Breslow and Aha 1996;

Quinlan 1986; 1993].

Decision trees can be used with the taxonomic characters developed in Chapter 4 and

the classi�cations mentioned in Appendix C to reveal relationships in the samples collected

for the vulnerability database described in Section 5.2.

Example 5.2: We applied the top down tree induction algorithm as implemented in MLC++

[Kohavi et al. 1997] with a C4.5's con�dence-based pruning of 0.7 [Quinlan 1993] to the

entries of the database described in section 5.2. The con�dence-based pruning value was

chosen because it produced trees of interpretable size.

The �elds used were: the direct impact classi�cation described in Section C.2; the

operating system classi�cation described in Section C.6; the access required classi�cation

described in Section C.3; the vulnerability classi�cation developed in Section 6.1; the en-

vironmental assumption features described in Section 4.2; and the features for the nature

of vulnerabilities described in Section 4.3. These �elds were chosen because they are either

the taxonomic characters described in Chapter 4, or classi�cations using decision trees that

satisfy the requirements speci�ed in Section 3.1.

The classi�cation algorithm was able to produce a variety of decision trees with classi-

�cation error rates below 40%. In this section we present the decision tree generated for

predicting the direct impact classi�cation described in Section C.2 from the remaining �elds.

87

This tree, shown in Figure 5.22, was selected from the possible trees because it illustrates

some of the conclusions that can be derived from these trees even though the error rates

for the classi�cations produced with these trees are as high as 40%.

Error rates and the number of samples used to generate the tree are shown by the

shading and the line thickness of the nodes in the tree as shown by the scales in the lower

right corner of the �gure. Because this decision tree is not being used to classify new

observations, but rather to derive information regarding the predictive structure of the

data, we can ignore the paths to leaves that have high error rates, and deduce information

from those paths that have low error rates.

Note that the learning algorithm found that the \Object|Stack return" feature is

a good predictor for the vulnerabilities that result in the modi�cation of running code

(the root access value). The direct impact classi�cation does not use this feature to

determine the value of the classi�cation. Hence, the tree reveals a strong connection between

vulnerabilities whose exploitation a�ect the stack of the program (from the tree), and those

that result in the dynamic modi�cation of the executable code of the program (from the

classi�cation). 2

88

na
tu

re
_o

bj
ec

t
st

ac
k_

re
tu

rn

na
tu

re
_o

bj
ec

t
sy

st
em

_f
ile

s

N
o

ro
ot

_a
cc

es
s

Y
es

na
tu

re
_e

ffe
ct

ex
ec

ut
ed

N
o

Y
es

Y
es

na
tu

re
_e

ffe
ct

re
ad

N
o

na
tu

re
_o

bj
ec

t
us

er
_f

ile
s

N
o m
ix

ed
_d

is
cl

os
ur

e

Y
es

na
tu

re
_m

et
ho

d_
in

pu
t

ne
td

at
a

N
o na

tu
re

_m
et

ho
d

in
co

rr
_i

m
p

Y
es

de
ni

al
_o

f_
se

rv
ic

e

Y
es

V
ul

n_
cl

as
s

 (
S

ec
 5

.1
)

N
o

m
ix

ed
_c

or
ru

pt
io

n_
da

ta

Y
es

co
rr

up
tio

n_
us

er
_d

at
a

N
o

de
ni

al
_o

f_
se

rv
ic

e

?

m
ix

ed
_a

cc
es

s

2-
3-

2-
1

ro
ot

_a
cc

es
s

2-
1-

2-
2

m
ix

ed
_d

is
cl

os
ur

e

4 m
ix

ed
_c

or
ru

pt
io

n_
da

ta

M
is

si
ng

na
tu

re
_e

ffe
ct

di
sp

la
ye

d

3

de
ni

al
_o

f_
se

rv
ic

e

1

m
ix

ed
_c

or
ru

pt
io

n_
da

ta

2-
7-

1-
4

ot
he

r

N
o

m
ix

ed
_d

is
cl

os
ur

e

Y
es

ac
ce

ss
_r

eq
ui

re
d

na
tu

re
_o

bj
ec

t
sh

el
l_

co
m

m
an

d

re
m

ot
e_

ac
ce

ss

na
tu

re
_o

bj
ec

t
sh

el
l_

co
m

m
an

d

user_account

in
co

rr
ec

t_
ex

ec
ut

io
n

ot
he

r

pr
iv

ile
ge

d_
ex

ec
ut

io
n

pr
iv

ile
ge

d_
ac

ce
ss

pr
iv

ile
ge

d_
ex

ec
ut

io
n

N
o us

er
_a

cc
es

s

Y
es

pe
rm

is
si

on
s_

ex
ec

ut
io

n

N
o

pr
iv

ile
ge

d_
ex

ec
ut

io
n

Y
es

na
tu

re
_e

ffe
ct

re
ad

na
tu

re
_o

bj
ec

t
us

er
_f

ile
s

N
o

na
tu

re
_e

ffe
ct

re
pl

ac
ed

Y
es

na
tu

re
_e

ffe
ct

ch
an

ge
d

N
o

m
ix

ed
_c

or
ru

pt
io

n_
da

ta

Y
es

na
tu

re
_o

bj
ec

t
di

re
ct

or
y

N
o

sy
st

em
_a

ug
m

en
ta

tio
n

Y
es

sy
st

em
_d

is
cl

os
ur

e

N
o

co
rr

up
tio

n_
sy

st
em

_d
at

a

Y
es

sy
st

em
_d

is
cl

os
ur

eN
o

m
ix

ed
_d

is
cl

os
ur

e

Y
es

1-
2

3-
5

6-
10

11
-2

0

21
-4

0

41
-8

0

81
-1

60

16
1-

32
0

S
am

pl
e

V
ol

um
e

S
ca

le

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

E
rr

or

S
ca

le

0%

F
ig
u
re
5.
22
:
A
d
ec
is
io
n
tr
ee
ge
n
er
at
ed
b
y
M
L
C
+
+
fo
r
p
re
d
ic
ti
n
g
th
e
d
ir
ec
t
im
p
ac
t
of
a
v
u
ln
er
ab
il
it
y.

89

5.3.3 Data Visualization Tools

Multivariate data visualization tools, such as XGgobi [Swayne et al. 1998] or the visual-

ization utilities of Mineset (see http://www.sgi.com/Products/software/MineSet), can

be e�ective in the identi�cation of patterns or regularities in vulnerabilities when used with

the taxonomic characters listed in Chapter 4 and the classi�cations listed in Appendix B.

As shown in the following example, multivariate visualization tools can be used to

discover or infer information that may not be readily apparent from the data.

Example 5.3: XGobi implements a visualization technique called linked brushing. The de-

scription of this technique is given in [Swayne et al. 1998] as:

In brush mode, a user can manipulate a rectangular \paintbrush" to change the

glyphs and/or colors of points under the brush... The real power of brushing

stems from linking multiple XGobi windows: As a user brushes points and/or

lines in one XGobi window, the changes are automatically re
ected in all other

\linked" XGobi windows.

This technique was applied to the data in the vulnerability database described in Sec-

tion 5.2. The graph to the left of Figures 5.23 and 5.24 shows the feature that is being

\brushed." The graphs on the right of the �gures show, automatically, the vulnerabilities

for which this feature is set. The graphs to the right show the distribution of the vulnera-

bilities for the classi�ers Direct Impact (see Section C.2), OS Type (see Section C.6), and

the vulnerabilities classi�ed with the classi�cation system presented in section 6.1.

In Figure 5.23, the brushed feature is the taxonomic character \Input Type, netdata"

described in section 4.3.4. The value of this feature is \Yes" when the source of the input

that is necessary to a�ect the the object is network data. When this feature is brushed, the

vulnerabilities|in the linked graphs|for which the brushed feature is set are represented

with the plus glyph (+).

The graphs on the right show that vulnerabilities whose exploitation require network

data are not speci�c to a single direct impact, are not speci�c to a single operating system,

and are predominantly the result of design errors or coding faults. This result is in accor-

dance with the results in [Miller et al. 1990; Miller et al. 1995], where random inputs were

not su�cient to crash Unix network daemons.

90

In Figure 5.24, the brushed feature is the taxonomic character \Object, stack return"

described in section 4.3.1. The value of this feature is \Yes" when the object a�ected by

the exploitation of a vulnerability is the return address, stored in the stack, of a function.

When this feature is brushed, the vulnerabilities in the linked graphs for which the brushed

feature is set are represented with the plus glyph (+).

The graphs on the right show that vulnerabilities whose exploitation a�ect the return

address of a function are mostly limited to a single operating system (Unix), and mostly

have two impacts: root access and mixed access. However, there is no single environmental

assumption that is responsible for most of these vulnerabilities.

2

5.4 Chapter Summary

In this chapter we show that given a database of taxonomic characters for a represen-

tative population of software vulnerabilities, we can apply statistical and analysis tools to

extract patterns, distributions, and regularities that may not be readily obvious. These

result in added insights into the nature of vulnerabilities.

As shown in the following examples, in this chapter we applied a statistical analysis

technique (co-word analysis), a machine learning technique (induction trees), and a data

visualization tool (Xgobi) to demonstrate the experimental hypothesis described in Sec-

tion 5.1.

Example 5.4: Among the results for application of the co-word analysis technique we can

highlight that it reconstructed, from taxonomic characters, groups of vulnerabilities that

are intuitive to seasoned computer security professionals. It also shows that vulnerabilities

apply to more than one variant of Unix even if these do not share the same code-base. A

possible explanation is that system utilities are commonly designed to be cross-compiled in

multiple variants of Unix. 2

Example 5.5: The Xgobi multivariate data visualization tool was e�ective in the realization

that vulnerabilities in network utilities (predominantly in Unix) are often the result of

design and coding faults, rather than mistaken assumptions about the environment in which

programs execute. 2

91

 0
 2

 4
 6

Operating System Type
See Figure E.6

 0
 5

 1
0

 1
5

Vulnerability Classification
See Section 5.1

 0
 5

 1
0

 1
5

Direct Impact
See Figure E.2

Nature Method Input = Network Data

N
o

Y
es

Paintbrush

?

Unclassified

Class 3

Class 1

Figure 5.23: The application of visualization techniques to derive knowledge from the vulnerability database. Bush linking Method

Input = Network Data.

92

 0
 2

 4
 6

Operating System Type
See Figure E.6

 0
 5

 1
0

 1
5

Vulnerability Classification
See Section 5.1

 0
 5

 1
0

 1
5

Direct Impact
See Figure E.2

Nature Object = Stack Return
N

o
Y

es

Paintbrush

Mixed Access
Unix

Root Access

Figure 5.24: The application of visualization techniques to derive knowledge from the vulnerability database. Bush linking Method

Object = Stack Return

93

6 A PRIORI CLASSIFICATIONS OF SOFTWARE VULNERABILITIES

As mentioned in Section 3.1.4, classi�cations can be made a priori (i.e. non-empirically

from an abstract model) or a posteriori (empirically by looking at the data). In this section

we present examples of a priori classi�cations.

6.1 A Taxonomy for Software Vulnerabilities

Complexity is the label we will give to the existence of many interdependent

variables in a given system. The more variables and the greater their inter-

dependence, the greater the system complexity. Great complexity places high

demands on a planner's capacities to gather information, integrate �ndings, and

design e�ective actions [Dorner 1996].

Modern computer systems are built from interrelated subsystems, and each of these

subsystems can have considerable complexity. A modern operating system, such as Linux,

is composed of hundreds of subsystems and each can have thousands or tens of thousands of

lines of code. The security of the system depends on the interaction between these complex

subsystems as well as on the behavior of the components themselves.

The developer of each of these subsystems makes a series of assumptions about the

behavior of the other subsystems, implicitly or explicitly. If the security of the system

depends on these assumptions, then their violation can result in critical failures, and some-

times these failures belong to the category of failures we call vulnerabilities because they

violate the security policy for that system. [Brooks 1995] makes a note of this \The most

pernicious and subtle bugs are system bugs arising from mismatched assumptions made by

the authors of various components."

Programmers and designers must make assumptions about the environment in which

their programs will execute. For example, the Bell and LaPadula model for information

94

ow makes the assumption that the security level of an active object cannot change [Bell

and LaPadula 1973; Denning 1983]. This assumption is called the tranquility assumption

and without it, it is not possible to enforce the model proposed. In systems that are not

fault-tolerant, such as Unix or Windows NT, programmers must at least assume that the

hardware of the system that will execute the code is correct and that the execution of the

instructions is deterministic and well de�ned.

Programmers in high-level languages such as C, C++, or Java, and in operating sys-

tems such as Unix or Windows NT, make implicit assumptions about their environment.

Software testing strategies and compiler support tools, such as Lint, Purify, and Insure++,

attempt to perform checks that users often do not perform [Myers 1979; DeMillo et al. 1987;

Beizer 1983; Kolawa and Hicken 1997].

There are several classes of assumptions that programmers can make about the envi-

ronment in which their programs will execute. A class of these assumptions regard the

correctness of the implementation of the primitives o�ered by the programming language

or the operating system. These assumptions are axiomatic and their violation does not

entail a vulnerability in the program but in the operating system or the compiler itself.

A second class of assumptions that programmers can make|about the environment in

which their programs will execute|cannot be represented by a decidable function that can

be evaluated at the time the program is executed. These assumptions may be undecidable

because the language that describes the assumption is not recursive (i.e. there in no algo-

rithm that takes as an input an instance of the environment to determine if the assumption

holds or not [Hopcroft and Ullman 1979]), or because the assumption is subjective.

Example 6.1: The following assumptions cannot be decided as described in the preceding

paragraph:

� The input string read from a �le describes a Turing Machine that will halt [Hopcroft

and Ullman 1979].

� The contents of a �le are evil (or good).

� The machine will never run out of memory (decided at the beginning of a complex

program).

2

95

A third class of assumptions can be expressed by a decidable algorithm where the objects

of the environment are data types for the language used in this speci�cation. These assump-

tions are encoded so that the algorithms can be evaluated to determine if the assumption

holds at any given time, and the algorithm must result in a yes/no answer deterministically

[Hopcroft and Ullman 1979].

We can further divide these assumptions into two categories: the �rst where the pro-

grammer cannot verify the assumption within the program because the primitives provided

within the language are not su�ciently expressive (but where the compiler or interpreter

could). The second where the programmer could verify the assumption if he added the

necessary code to the program. If programmers add checks to programs to verify that these

assumptions hold at runtime, these checks usually add complexity and size to programs,

making it harder to develop or maintain existing programs. Hence, in practice programmers

often do not perform them. Also, programmers often are not aware that the assumptions

they are making may not hold at runtime.

Example 6.2: An informal poll was taken of approximately 50 commercial developers and

graduating seniors in the United States and in Bolivia1. The poll asked the developers

if in their programs they perform the checks needed to verify that their environmental

assumptions hold.

Approximately 10% claimed to know and perform the checks necessary for the devel-

opment of secure programs, 40% admitted that they do not, and 50% did not even know

what these checks were, and why they should perform them. 2

The classi�cation presented in this section is oriented towards the identi�cation of the

assumptions that programmers make about their environment, and whose violation results

in software vulnerabilities.

This classi�cation initially divides vulnerabilities into four hierarchical classes, only one

of which will be expanded further. The classes are Design Flaws, Environmental Flaws,

Coding Flaws, and Con�guration Flaws. As shown in Figure 6.1, there exists a decision

1The poll included developers from Xerox PARC, Sun Microsystems, Hewlett Packard, Microsoft, Ars

Logica, Anderson Consulting, Oracle, IBM, Lotus, and graduating seniors and graduate students of Purdue

University and The Catholic University in Bolivia. 12 of these developers and students were in Bolivia. The

poll was performed explicitly for this dissertation.

96

tree that is used to eliminate any ambiguities from this �rst step in the classi�cation. The

four questions for this decision tree are as follows:

Q1: Is the vulnerability the result of a
aw in the design of the software? Did the designer

misunderstand the requirements? Did the designer of the software assume that the

environment in which the program was going to run had di�erent characteristics than

those of the actual environment?

Q2: [The designer made correct assumptions about the environment and requirements of

the program] Is the vulnerability the result of the implementer making simplifying

assumption about the environment in which the program was going to be run, and if

this assumption were to be true the vulnerability would not exist?

Q3: [Both the designer and the programmer made correct assumptions about the environ-

ment, and the designer understood the requirements of the program] Is the vulnerability

a result of software faults or programming errors?

Q4: [Both the designer and the programmer made correct assumptions about the environ-

ment, and the designer understood the requirements of the program, and the program

is (or appears to be) correctly implemented] Is the vulnerability in that the program

was installed with improper con�guration parameters, and correcting these would

remove the vulnerability?

It is possible that the taxonomist might not be able to answer one of these four questions

because of insu�cient information. As shown in Figure 6.1, vulnerabilities that cannot be

classi�ed because of this reason are tagged as unknown.

The classes shown in Figure 6.1 correspond to groups of vulnerabilities as de�ned in

Section 2.1.3. As shown in Figure 6.2, Class 1 vulnerabilities correspond to those in the area

marked with the symbol �. Class 3 vulnerabilities correspond to those in the area marked

with the symbolF. Class 4 vulnerabilities correspond to those in the area marked with the

symbol �. The classi�cation described in this sections corresponds to the vulnerabilities in

the area marked with the symbol N.

There are an in�nite number of assumptions that a user can make about the envi-

ronment in which a program executes, and exhaustively listing these assumptions is not

97

Env.
Flaws

Class 3
Coding Faults

Class 4
Configuration
Errors

Q1

Q2

Q3

Q4

Yes

Yes

Yes

Yes

No

No

No

No

Other
Vulnerabilities

Class 1
Design

Unknown

?

?

?

?

Figure 6.1: A classi�cation for the identi�cation of environmental assumptions made by

programmers|Part 1.

possible. However, as we show in this dissertation, there are a small number of assump-

tions commonly made by programmers that are responsible for a signi�cant fraction of the

known vulnerabilities. Hence, a signi�cant number of vulnerabilities we know of could be

prevented if either compiler support was provided to enforce these assumptions by default|

and programmers were able to specify the assumptions they are making as they develop

their programs|or if the operating system could provide a virtual execution environment

that enforces these assumptions at runtime.

Assumptions made by programmers can be described by an algorithm and a list of object

attributes (that the algorithm operates on) as an n tuple < o1; o2; : : : ; on�1; algorithm >.

In this section, the algorithm is referred to as an attribute constraint.

As shown in Figure 6.3, the environmental assumptions class can be subdivided by

branching three or more times. The fundamentum divisionis used by the branches are

Environment Object, Object Attributes, and Attribute Constraint.

98

Requirements
Specification

Design

Coding
Implementation

Operation

Assumptions about
the environment

Assumptions about
the environment

Assumptions about
the environment

Assumptions about
the environment

AT EXECUTION TIME
Vulnerabilities resulting from

mistaken assumptions about the
operational environment

AT DEVELOPMENT TIME

Vulnerabilities resulting
from errors in the

development process

★

■

▲

◆

Affects or influences

Figure 6.2: The classi�cation developed in this section corresponds to the vulnerabilities in

the area identi�ed with the symbol N.

Recall from the de�nition of attribute of an object (see Section 2.1.5), that attributes

can be derived from other attributes. Attribute re�nement on sets do not require that all

attributes in the set be re�ned. An attribute re�nement in a set of attributes is possible

if at least one of the attributes in the set can be re�ned to specify the attributes that are

su�cient to specify the constraints in the assumption.

Sets of attributes are used when a single assumption made about the environment

requires multiple attributes, possibly from multiple objects. They should not be used to

specify more than one assumption.

Example 6.3: The following class illustrates the use of sets of objects and sets of attributes

for the speci�cation of a single environmental assumption made by a programmer for a

99

Env.
Flaws

Fundamentum Divisionis:
Environmental Object

Fundamentum Divisionis:
Attribute

Fundamentum Divisionis:
Attribute Property

Final Classes

...

Figure 6.3: A classi�cation for the identi�cation of environmental assumptions made by

programmers|Part 2.

system: (Running program, �le | Program privilege, �le name | program is SETUID or

SETGID, and the �nal object for the name is /tmp/abc)

The property \�nal object for the name" is not considered an attribute of the �le name

because a function must be applied to determine if the name is a �nal object (i.e. it does

not refer to a late-binding link). 2

To summarize, a class in this classi�cation requires the speci�cation of an object, or set

of objects, an attribute expansion (that results in an attribute or set of attributes), and a

constraint speci�cation that de�nes the assumption made about the environment.

Figures 6.5, through 6.12 show an instantiation of the classi�cation tree. In these �gures

the �nal classes (or the leaves of the tree) are indicated by underlined text, and classes in

italics represent those classes for which we have no evidence that a vulnerability exists (i.e.

these represent predicted classes).

100

Without loss of generality, the instantiation presented in this section is speci�c to the

vulnerabilities in the database described in Section 5.2, and is speci�c to Unix, Windows

NT, and Java. Objects, or sets of objects, speci�c to other operating systems can be added

to the class as vulnerabilities for those systems are collected.

The constraint speci�cations for some of the environmental assumptions made by pro-

grammers can be complex and cannot be shown in the �gures. These instances are labeled

in the tree with a note number that corresponds to one of the following notes:

Note 2-1-3-1: (Running program | environment | is system() safe) The vulnerabilities

in this class correspond to those in which the programmer assumed that the environ-

ment for the program has the default values. The IFS environment variable should be

the default, the PATH environment variable should include only the default system

directories, etc.

Note 2-4: (Network stream) A network stream is a TCP or UDP connection that provides

a stream of bytes rather than a packet.

Note 2-7-1-4: (Running program | name | is the same object as x) The vulnerabilities

in this class correspond to those in which the programmer assumed that two or more

operations on a single �le name would a�ect a single �le object.

Note 2-7-1-5: (Running program | name | is �nal) The vulnerabilities in this class

correspond to those in which the programmer assumes that a �le name refers to an

actual �le object and not to a late binding reference or symbolic link.

Note 2-7-2-3: (Running program | content | is a known program) The vulnerabilities

in this class correspond to those in which the programmer assumes that a given string

corresponds to the name of a registered program. These are the programs in the

system that are marked as executable (for example, in Unix �les that the file utility

identi�es as executable binaries or scripts), and that are owned by the system.

Note 2-7-2-4: (Running program | content | is a text log �le) The vulnerabilities in this

class correspond to those in which the programmer assumes that a �le is a known log

�le. If the �le exists then it cannot be a type (as indicated by the file system utility

101

in Unix) other than text, and it must either have a header that identi�es it as the

valid log type or its content must match a regular structure (or regular expression).

Note 2-7-2-5: (Running program | content | is of a known type) The vulnerabilities

in this class correspond to those in which the programmer assumes that a �le is of a

known type (shell script, text �le, executable binary, etc.)

Note 2-9-1-3: (Program string | content | is free of shell meta-characters) The vul-

nerabilities that correspond to this class are for programs in which the programmer

assumes that a string is free of shell escape meta-characters. These strings are typically

passed to the shell as the name of a command. InUnix systems these meta-characters

are command separators, pipes, synchronous and asynchronous execution indicator

(; | & && ||), and command substitution characters (` `). In Windows NT, these

characters are command separators and conditional command execution indicators

(& && ||).

Note 2-10: (Network IP packet) A network IP packet is a connection that allows the

manipulation of network data packets without hiding the packet details.

Note 2-11-1-1: (Directory, running program | directory name, name of user who ran

the program | is in valid user space for the user who invoked the program) The

vulnerabilities that correspond to this class are for programs that typically run with

privileges that exceed those of the user who invoked the program. These program

can read and write to directories that the original user would not be allowed to

access. In programs that have these vulnerabilities, the programmer assumes that

the directory being read, created, or modi�ed ultimately refers to (following all late

binding references) a directory that the user who invoked the program would have

access to.

Note 2-12-1-1: (File, running program | �le permissions, name of user who ran the

program | user who invoked the program can read the �le) The vulnerabilities that

correspond to this class typically run with privileges that exceed those of the user

that invoked the program and hence can read �les that the user would normally not

102

be allowed to access. In these vulnerabilities the programmer assumes that the user

who invoked the program has access to a �le being read.

Note 2-12-1-2: (File, running program | �le permissions, name of user who ran the

program | user who invoked the program can write to the �le) The vulnerabilities

that correspond to this class typically run with privileges that exceed those of the user

who invoked the program and hence can write to �les that the user would normally

not be allowed to access. In these vulnerabilities the programmer assumes that the

user who invoked the program has write access to a �le.

Note 2-12-2-1: (File, running program | �le name, program privileges, name of user

who ran the program | is a valid temporary �le) The vulnerabilities in this class

correspond to those in which the programmer assumes that the ultimate object a �le

name refers to (following all late binding references) is a temporary �le and does not

exist.

Note 2-12-2-2: (File, running program | �le name, program privileges, name of user

who ran the program | is in valid space for the user who invoked the program) The

vulnerabilities that correspond to this class typically run with privileges that exceed

those of the user who invoked the program and hence can read and write �les that the

user would normally not be allowed to access. In these vulnerabilities the programmer

assumes that object that the �le name ultimately refers to (following all late binding

references) a �le that the user would normally be allowed to access or modify.

The classi�cation presented in this section requires detailed information about the sys-

tem and the design and development stages of the software systems. Otherwise there are

cases in which it is di�cult to answer the questions in the �rst part of the classi�cation

(Q1, Q2, Q3, and Q4).

Example 6.4: In some Unix systems derived from BSD Unix, there is a vulnerability that

allows unprivileged users to obtain su�cient information from the operating system to

generate arbitrary NFS �le handles [Krsul et al. 1998] (record bsd filehandles). The

stat() system call, and related functions, return a four byte �eld called st gen that is

di�erent for each item in the �le system, and which is used in the obfuscation of NFS �le

103

handles, making these di�cult to guess. Because all information used to generate a �le

handle is available to users, a user can generate �le handles identical to those given to NFS

client hosts by accessing �le systems on the local server.

The incorrect code in the vn stat() function, called by stat() reads:

...

sb->st_gen = vap->va_gen;

sb->st_blocks = vap->va_bytes / S_BLKSIZE;

return (0);

}

A correct implementation will permit only root users to access this number, as shown

in the following example source code:

...

sb->st_flags = vap->va_flags;

if (suser(p->p_ucred, &p->p_acflag))

sb->st_gen = 0;

else

sb->st_gen = vap->va_gen;

sb->st_blocks = vap->va_bytes / S_BLKSIZE;

return (0);

}

This change will cause the st gen �eld of the stat structure returned to unprivileged

users to be zero, thus preventing ordinary users from determining �le handles simply from

the information returned by stat().

If the designer of the system speci�ed that the user should receive a copy of the st gen

�eld, then we would answer yes to question Q1. Otherwise the vulnerability must be a

coding error because there is no assumption that the programmer can make that removes

the vulnerability.

If the designers made it explicit that the value of this �eld is used to obfuscate the gen-

eration of NFS �le handles, and clearly meant to keep this value away from the users, then

the vulnerability is a code fault. However, this conclusion can be made with information

regarding the design speci�cation of the system, and not only with the faulty code. 2

The taxonomy described in this section was applied to the vulnerabilities in the vulner-

ability database described in Section 5.2. 32% of the vulnerabilities classi�ed did not have

detailed enough information in the database to determine the appropriate class in the clas-

si�cation. Hence, these were excluded from our analysis. Figure 6.4 shows the distribution

of vulnerabilities classi�ed with the taxonomy presented in this section.

104

Class 1
11%

Class 2 - *
63%

Class 3
18%

Class 4
8%

2-5-1-1
10%

3
18%

4
8%

2-7-1-4
3%

2-7-1-5
6%

2-5-1-3
1%2-6-1-1

2%

2-7-2-1
1%2-7-2-3

1%

2-7-2-4
2%

2-7-2-5
1%

2-9-1-1
2%

2-9-1-4
1%

2-9-1-6
1%

2-1-3-1
1%

2-10-2-1
1%

2-12-1-2
1%

2-11-1-1
1%

2-1-1-1
2%

2-1-1-2
1%

2-1-2-2
2%

2-12-1-1
1%

2-1-4-1
1%

2-4-1-3
1%

2-4-1-2
1%

2-4-1-1
2%

2-9-1-3
5%

2-2-1-4
1%

2-2-1-1
1%

2-12-2-2
2%

1
11%

2-12-2-1
5%

2-3-2-1
6%

Figure 6.4: Distribution of vulnerabilities classi�ed with the taxonomy presented in this

section.

The classi�cation presented in this section has both predictive and descriptive prop-

erties. Each class in the classi�cation describes an environmental assumption made by

programmers that results in a vulnerability, and the vulnerability could be prevented or

eliminated by enforcing the environmental assumption with a specialized compiler or by

running the program in a special virtual environment that can enforce the assumptions.

Hence, the classi�cation has descriptive value.

The classi�cation tree was built a priori and con�rmed with the classi�cation of 90

vulnerabilities of the 210 in the database described in section 5.2. Some classes of vulner-

abilities were predicted from these samples by extrapolating from existing classes, and the

remaining vulnerabilities were classi�ed. As shown in the following examples, the classi�-

cation has predictive value because it allows the prediction of vulnerabilities that we have

not seen before and that are the result of programmers making assumptions that can be

extrapolated from existing classes.

Example 6.5: The class 2-4-1-2 (Network stream | Content Length | is at least x) was

extended from the class 2-4-1-1 (Network stream | Content Length | is at most x). The

database had vulnerabilities where a program assumes that the network stream will never

have more than a certain number of bytes, and we predicted that a vulnerability exists

105

where the programmer assumes that the network stream has a least a certain number of

bytes. During the classi�cation of the remaining vulnerabilities, we found a vulnerability

(bind Denial of Service) where the bind program receives less information that it expects

from the network and goes into a tight endless loop with all interrupts disabled waiting for

the rest of the data. 2

Example 6.6: Class 2-5-1-3 (Command Line Parameters | Content | is 7 bit ASCII) was

generated a priori and predicted that some programmer assumes that the input string is 7

bit ASCII and will use its characters as an o�set into an array.

During the classi�cation of the remaining vulnerabilities we encountered a vulnerability

(bash command line vulnerability) where the program stores the input character in an

integer variable and uses this variable for processing the command lines of the program.

The program uses the value -1 in this variable to indicate the end of a command. When a

user gives this program a string with the character code 255 decimal (377 octal) it will serve

as an unintended command separator because the character value will be sign-extended

when it is assigned to an integer variable. 2

Similarly, we found vulnerabilities for the predicted classes 2-11-1-1 (Directory, Running

program | Directory name, running program privileges, name of user that ran the program

| is in valid user space for the user who invoked the program), 2-1-2-2 (Running Program

| Name | length of name is at most x), 2-10-2-1 (Network IP Packets | Data Segment

| length is at least x), and 2-12-1-2 (File, Running program | File permissions, user that

ran the program | use that invoked the �le can write to the �le)

106

Q
3

Q
4

(1) Design

(3) Coding faults

?

Q
1

Q
2 (2) Environmental assumptions

(4) Configuration errors

(2-1) Running program

(2-2) User input

(2-3) Environment variable

(2-4) Network stream. See note (2-4)

(2-5) Command line parameter

(2-6) System library

(2-7) File

(2-8) Directory

(2-9) Program string

(2-10) Network IP packet. See note (2-10)

Figure 6.5: Taxonomy of Software Vulnerabilities Top Level

107

Name (2-1-2)

(2-1-2-2) length of name is at most x

(2-1-2-1) is free of shell metacharacters

User Input (2-2) (2-2-1) Content (2-2-1-1) is at most x

(2-2-1-2) is at least x

(2-2-1-3) matches regular expression

(2-2-1-4) is free of shell metacharacters

(2-2-1-5) is 7 bit ASCII

(2-1-1-1) contains x

(2-1-1-2) is at most x

(2-1-1-3) is at least x

Execution path (2-1-1)

Running
program (2-1)

(2-1-1) Execution path

(2-1-2) Name

(2-1-3) Environment (2-1-3-1) is System() safe
See note (2-1-3-1)

(2-1-4) User running the program (2-1-4-1) user is root or administrator

Figure 6.6: Taxonomy of Software Vulnerabilities, Levels 2-1 and 2-2

108

Network
stream (2-4)

(2-4-1) Content (2-4-1-1) is at most x

(2-4-1-2) is at least x

(2-4-1-3) is free of shell metacharacters

Environment
variable (2-3)

(2-3-2) Content (2-3-2-1) length is at most x

(2-3-2-2) length is at least x

(2-3-2-3) matches regular expression

(2-3-2-4) is free of shell metacharacters

(2-3-1) Name

Figure 6.7: Taxonomy of Software Vulnerabilities, Levels 2-3 and 2-4

System
Library (2-6)

(2-6-1) Return (2-6-1-1) length is at most x

(2-6-1-2) length is at least x

(2-6-1-3) is 7 bit ASCII

Command Line
Parameters (2-5)

(2-5-1) Content (2-5-1-1) length is at most x

(2-5-1-2) length is at least x

(2-5-1-3) is 7 bit ASCII

Figure 6.8: Taxonomy of Software Vulnerabilities, Levels 2-5 and 2-6

109

File (2-7)

(2-7-2) Content

(2-7-1) Name

(2-7-3) Owner

(2-7-4) Permissions
(Mode)

(2-7-1-2) is a valid file name

(2-7-1-5) is final. See note (2-7-1-5)

(2-7-1-4) is the same object as x
See note (2-7-1-4)

(2-7-1-3) (--- not assigned ---)

(2-7-1-1) (--- not assigned ---)

(2-7-2-1) length is at most x

(2-7-2-2) length is at least x

(2-7-2-7) matches regular expression x

Content (2-7-2)

(2-7-2-6) is 7 bit ASCII

(2-7-2-4) is a log file. See note (2-7-3-4)

(2-7-2-3) is a known program. See note (2-7-3-3)

(2-7-2-5) is of a known type. See note (2-7-3-5)

Figure 6.9: Taxonomy of Software Vulnerabilities, Level 2-7

110

Directory (2-8)

(2-8-2) (-- not assigned ---)

(2-8-1) Name

(2-8-3) Owner

(2-8-4) Permissions (Mode)

(2-8-1-1) length is at least x

(2-9-1-3) is free of shell metacharacters.
See note (2-9-1-3)

(2-9-1-4) is a valid file name

(2-9-1-5) matches regular expression x

Program String (2-9) (2-9-1) Content

(2-9-1-2) is 7 bit ASCII

(2-9-1-1) length is at most x

(2-9-1-6) is free of HTML tags

Figure 6.10: Taxonomy of Software Vulnerabilities, Levels 2-8 and 2-9

Network IP packets (2-10) (2-10-1) Source Address

(2-10-2) Data Segment

(2-10-3) Checksum

(2-10-2-1) Length is at least x

Figure 6.11: Taxonomy of Software Vulnerabilities, Level 2-10

111

Directory, Running Program (2-11) (2-11-1) Directory Name,
Running Program Privileges,
Name of user that ran the program

(2-11-1-1) is in valid user space for the user that
invoked the program. See note (2-11-1-1)

(2-11-1-3) User that invoked the program
can create files in the directory

(2-11-1-2) user that invoked the program
can read the directory

(2-11-1-4) user that invoked the program
can write to files in the directory

(2-12-1-1) User that invoked the program
can read the file

(2-12-1-2) User that invoked the program
can write to the file

(2-12-1) File permissions,
Running program privileges,
User that ran the program

File, Running Program (2-12)

(2-12-2-2) is in valid user space for the user that
invoked the program. See note (2-12-2-2)

(2-12-2-1) is a valid temporary file.
See note (2-12-2-1)

(2-12-2) File name,
Running program privileges,
User that ran the program

(2-12-1-2) User that invoked the program
can write to the file

Figure 6.12: Taxonomy of Software Vulnerabilities, Levels 2-11 and 2-12

112

6.1.1 Scope of the Taxonomy

The taxonomy presented in this section can be applied to any system where environmen-

tal assumptions can be speci�ed as constraints on attributes of objects (or other attributes).

Such systems include modern operating systems such as Unix, Windows NT, and Macin-

tosh MacOS, as well as object oriented operating systems, distributed operating systems,

and micro kernels. The classi�cation is extensible and assumptions about specialized ob-

jects are possible by creating a new second level node (object) that corresponds to the

specialized object.

The classi�cation is suitable for representing complex environmental assumptions that

take into account multiple objects and multiple attributes by using sets of objects and

attributes. Furthermore, the classi�cation was designed so that a one-to-one mapping

exists between the environmental assumption and a formal policy speci�ed with the model

presented in [Krsul et al. 1998]. Section 6.1.3 gives two examples of such formalization.

6.1.2 Application of the Taxonomy of Software Vulnerabilities

The taxonomy of software vulnerabilities presented in Section 6.1 identi�es the en-

vironmental assumptions that programmers make about the environment in which their

applications will run, and whose violation can result in vulnerabilities.

In this section we argue that the vulnerabilities resulting from the violation of these

assumptions can be prevented by the design of a domain-speci�c compiler, or by the design

of a virtual environment that can enforce these assumptions at runtime.

Assume that programming languages, and in particular the C programming language,

can be extended by adding compiler pragmas or processor directives as described in [Kernighan

and Ritchie 1988], incorporating application semantics as described in [Engler 1998], or by

extending the language by adding a special aspect to the language as de�ned in [Kiczales

et al. 1997].

For each of the classes in Section 6.1, the compiler can be extended to enforce the

constraint on the attribute of the object speci�ed for the class. In this section we suggest

modi�cations that can be made automatically to a program to achieve this goal.

113

Class 2-1-3-1: The compiler can add an assertion, at the point of the pragma or directive

that checks that the environment conforms to the de�nition of \system() safety."

Class 2-1-1-1: The compiler can add a check in the beginning of the program to perform

a string comparison on the PATH environment variable looking for the required path.

Classes 2-1-1-2, 2-1-1-3, 2-1-2-1 and 2-1-2-2: The compiler can add to the beginning

of the program an assertion that checks that the execution path contains at most (or

at least) x characters, and that checks that the program name does not contain shell

meta-characters or the length is at most x.

Class 2-2-1-1, 2-2-1-2, 2-2-1-3, and 2-2-1-4: When a pragma identi�es a particular in-

put statement of the program as making these assumptions, the compiler can generate

or replace the input sequence with code that removes meta-characters from the input

or truncates lines that are longer than a speci�ed value.

Note that this section suggests a domain-speci�c tool that could be theoretically used to

enforce the environmental constraints. At this point there is no experimental evidence that

these modi�cations can be implemented as described in this section, and that programmers

would remember or desire to add the directives, pragmas, or aspects.

We also argue that a special execution environment can be provided if the constraints

for the attributes and objects are formally speci�ed using the policy speci�cation language

described in [Krsul et al. 1998], and the policy violation tool described in that paper can

be implemented. Section 6.1.3 gives examples of how the constraints for the classes in the

classi�cation can be transformed into policies in this model.

6.1.3 Formalization of the Taxonomy of Vulnerabilities

The taxonomy developed in this section identi�es the environmental assumptions in-

formally. A formal de�nition of the classes in the classi�cation in this taxonomy can be

developed by using the model proposed in [Krsul et al. 1998] to specify each class as a policy

that must be enforced by the system.

We give two examples of such formalization and argue that similar speci�cations can

be made for the remaining classes. This formalization would allow the policy violation tool

114

proposed in [Krsul et al. 1998] to detect the violation of these assumptions and hence an

environment that can prevent the violation of these assumptions may be possible.

Example 6.7: De�ne a new class in the classi�cation in Section 6.1 that has the expansion

(Running Program | Program Counter (PC) | executes in memory segments explicitly

labeled as executable)

There are many variations of programs that contain this vulnerability. The following

�gure shows three examples of programs that have the bu�er over
ow vulnerability.

Line Form 1 Form 2 Form 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

main(int ac,

char *av[]) {

p(av[1]);

}

void p(char *a){

char b[30];

strcpy(b,a);

}

main() {

p();

}

void p(){

char b[30];

char *p;

p = getenv("TERM"));

sprintf(b,"%s",p);

}

main() {

p();

}

void p(){

struct hostent *h;

sockaddr_in s;

h = gethostbyname(*host);

bzero(&s, sizeof s);

s.sin_family =

h->h_addrtype;

s.sin_port = 25;

bcopy(h->h_addr_list[0],

&s.sin_addr,

h->h_length);

}

A program tries to copy data from one object into another, does not check that the

destination object is large enough to contain the source object, and uses a routine such as

sprintf to do the copying.

However, not all programs that share this characteristic are vulnerable. The programs

that follow all have bu�er over
ows but are not vulnerable because either the function

never returns|in which case the program never has the opportunity to jump to the code

inserted|or the program's bu�er is declared static|in which case the program overruns

the heap and not the stack.

115

Line Form 1 Form 2

1
2
3
4
5
6
7
8
9
10
11

main(int ac,

char *av[]) {

p(av[1]);

}

void p(char *a){

char b[30];

strcpy(b,a);

exit(1);

}

main() {

p();

}

void p(){

static char b[30];

char *p;

p = getenv("TERM"));

sprintf(b,"%s",p);

}

Figure 6.13 illustrates the ranges where the PC can execute in the cases of non-fragmented

code segments, fragmented code segments, and fragmented code segments with dynamic

loading of code2.

Vulnerabilities in the class created for this example are instances of programs where the

program counter jumps from an allowable executable region to a region in memory, normally

the stack, where it executes arbitrary code. Because there are instances of bu�er over
ows

that cannot be characterized as vulnerabilities, the real issue behind these vulnerabilities is

not the bu�er over
ow but rather what happens when a user can cause the stack pointer

to change so that it points back at the stack.

The assumption made by the class de�ned in this example is that the program's PC

should remain within the allowable range. A policy speci�cation for this case can now be

generated with the model and notation presented in [Krsul et al. 1998] as follows:

For simplicity, an atomic operation will be axiomatically de�ned as the execution of any

instruction that causes the program counter (PC) to return from a subroutine.

The policy function, shown in Equation 6.1, takes as arguments a system value function,

an object value function, and two sets of interest (before and after the execution of an

instruction). The function returns true if the policy has not been violated and false

otherwise.

The policy we specify requires that applications execute only the instructions within the

bounds de�ned. The set of interest consists of programs, program counters, and boundaries:

2This simpli�ed model does not take into account the system area of memory and this can be incorporated

by adding an additional set of segment markers to signal that the PC can execute in system memory.

116

Heap

Code

Stack

←

←

T0

B0

Allowable execution
range for the PC

Heap

Code

Stack

←

←

T0

B0

Allowable execution
range for the PC

←

←

T1

B1

Allowable execution
range for the PCCode

Heap

Code

Stack

←

←

T0

B0

Allowable execution
range for the PC

←

←

T1

B1

Allowable execution
range for the PCCode

←
←

T2

B2

Executablearea
dynamically allocated

A program contains three

segments that can be dis-

tinguished: heap, code,

and stack. We expect the

PC to remain in the area

between the B0 and T0

markers.

If the code segment is

fragmented, the program

counter is expected to re-

main in the areas between

the B0, T0, B1, and T1

markers.

Dynamic code can be loaded into the

stack explicitly (by calling a function

that dynamically links the code) cre-

ates another area where the PC is al-

lowed to execute: the area between the

B2 and T2 markers.

Figure 6.13: Programs normally execute code from well de�ned regions in memory, even if

the memory is fragmented or the program contains dynamic executable code.

Programs:

} Set of boundaries: b.

} Set of program counter locations: pc.

Boundary:

} Top of allowed segment: T .

} Bottom of allowed segment: B.

117

Policy : System Value function�Object Value function�
set of interest� set of interest! boolean

fun Policy (Value; v; Ii; Ii+1) ::=
if Value (Ii; v) � Value (Ii+1; v) then

Policy := true;
else

Policy := false;
�

nuf

(6.1)

Value : set of interest�Object value function! integer
fun Value (S; v) ::=

Value :=
P

x2S v (x; S � x) 8x 2 S;
nuf

(6.2)

Program Counter:

} Location: l.

The system value function for the policy is shown in Equation 6.2, and the object value

function that can be used to implement the desired policy is shown in Equation 6.3.

2

Example 6.8:

Consider the class 2-5-2-1 (Command Line Parameters | Content Type | is 7 bit

ASCII). We can specify this constraint with a policy, as required in [Krsul et al. 1998], as

follows:

The set of interest is all the programs in the system. We require that each program

where the programmers makes the assumption 2-5-2-1 be marked appropriately.

Object Attributes:

} A boolean
ag indicating if assumption 2-5-2-1 is made: o:a.

} A set of command line arguments given to the program: o:c.

The functions that specify this policy are shown in Equations 6.1, 6.2, and 6.4

2

118

v : object of interest� set of object of interest! integer
fun v (o;S) ::=

v := 0;
if o is a program then

8x 2 o:pc do
m := 0;
) Check to see if the PC is in a correct range(
8y 2 o:b do

m := 1 if x:l � y:B ^ x:l � y:T ;
od
) Violation if we did not �nd the PC in a valid range(
v := v � 1 if m = 0;

od
�

nuf

(6.3)

v : object of interest� set of object of interest! integer
fun v (o; S) ::=

v := 0;
if o:a then

) Only check the programs that make assumption 2-5-2-1. (
v := 0;
8y 2 o:c do

) Check every command line argument.(
x := 0;
x < y:length do

) Value of the system drops if a character is not 7 bit ASCII.(
v := v � 1 if is7BitAscii (.y (x; x)) = false
x := x+ 1;

od
od

�
nuf

is7BitAscii : character! boolean
fun is7BitAscii (c) ::=

is7BitAscii := false;
) We de�ne 7 bit ASCII to be 32 - 126. (
is7BitAscii := true if (t � 32 ^ t � 126)

nuf

(6.4)

119

6.2 Evolutionary Classi�cation

An evolutionary classi�cation of software vulnerabilities could group vulnerabilities in

time and (logical) space much like the current phylogenic classi�cation of living organisms

[Maddison and Maddison 1996]. For software vulnerabilities a time-line could be established

by considering the release date of programs. This would allow us to determine nearness in

time between vulnerable programs.

The computer analogy to space could be established by considering, for example, pro-

grammers and operating systems. The combination of time of release of a particular version

of a program, programmer, and operating system would allow the determination of propin-

quity of descent|necessary for the development of a phylogeny of software vulnerabilities.

For example, Figure 6.14 shows a possible subtree for an evolutionary classi�cations of

software vulnerabilities.

4.3 BSD
Tahoe (1988)

BSD Networking
Software Release

1.0 (1989)

4.3 BSD
Reno (1990)

4.4 BSD (1993)

4.4 BSD-Lite (1994)

BSD Networking
Software Release

2.0 (1991)

Figure 6.14: A possible subtree of an evolutionary classi�cation of software vulnerabilities.

Historical data extracted from [Stevens 1998]

Programmers use, in the development of complex code, a limited set of programming

constructs and the programming style, characteristics, and environmental assumptions

made by the programmer are likely to be similar in programs written by the same au-

thor at approximately the same time. [Krsul and Spa�ord 1997]. Based on this result, we

can postulate that it is possible that similar programs written by the same programmers

120

at approximately the same time may have similar vulnerabilities. Hence, this classi�cation

is likely to have predictive and descriptive value.

The creation of evolutionary classi�cations for software vulnerabilities is, at this point,

a theoretical possibility. A di�culty with this classi�cation is that computer programs do

not have to share the characteristics of their predecessors, however these were de�ned. The

resemblance is only a statistical probability.

6.3 A Classi�cation for Software Testing

Wenliang Du started the development of a classi�cation of computer vulnerabilities

based on environmental assumptions. This work has resulted in a software testing tech-

nique that perturb the environment and observes software system's behavior under this

perturbation. The testing technique should reveal whether software systems are making

such assumptions [Du and Mathur 1998]. This classi�cation is an example of how the pur-

pose of the classi�cation mandates its form. The �rst two levels of this classi�cation are

shown in Figure 6.15.

This classi�cation divides vulnerabilities into two groups: a group where the environ-

ment a�ects the value of an internal entity (i.e. a variable) that in turn a�ects the exe-

cution of the program, and another group where the environment a�ects the execution of

the program without a�ecting the value of an internal entity. Subsequent divisions in the

classi�cation tree are performed according to the characteristic of the environment, starting

with the source of the environment entity (i.e. network, user input, environment variable,

etc.)

Du's classi�cation satis�es the requirements for a classi�cation and is useful because each

vulnerability class represents a group of vulnerabilities caused by certain environmental

assumption, and leads to a speci�c set of perturbations that can be performed on the

environment to test the software for vulnerabilities.

6.4 Chapter Summary

In Section 3.1 we note that taxonomies establish organizing frameworks, are essential

for the development of a �eld, and that a function of these taxonomies is the separation or

121

Environment
Entity

P
ro

gr
am

 E
xe

cu
tio

n
P

at
h

Internal
Entity

Environment
Entity

P
ro

gr
am

 E
xe

cu
tio

n
P

at
h

N
et

w
or

k

U
se

r I
np

ut

File
Internal Entity

Affected by User
Input Environment

Entity

Internal Entity
Affected by File

Environment Entity

Internal Entity
Affected by Network
Environment Entity

All
Vulnerabilities

Figure 6.15: An example of a goal-oriented classi�cation for software testing using environ-

mental perturbations.

ordering of specimens so that generalizations can be made about them. We also note that

classi�cations have explanatory and predictive value.

In this chapter we presented a taxonomy of software vulnerabilites that has these prop-

erties, and that constributes to our understanding of the nature of software vulnerabilities.

In this chapter we also presented two conceptual goal-oriented classi�cations that may have

similar properties.

122

7 SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS

7.1 Conclusions

Virtually every �eld where failure can be catastrophic has recognized that accumulation

of information about failures is critical to the stepwise re�nement of technology, particularly

when the systems that fail are highly complex:

When an aircraft crashes, it is front page news. Teams of investigators rush

to the scene, and the subsequent enquiries are conducted by experts from organi-

sations with a wide range of interests|the carrier, the insurer, the manufacturer,

the airline pilots' union, and the local aviation authority. Their �ndings are ex-

amined by journalists and politicians, discussed in pilots' messes, and passed

on by
ying instructors. In short, the
ying community has a very strong and

institutionalised learning mechanism. This is the main reason why, despite the

inherent hazards of
ying in large aircraft, which are maintained and piloted by

fallible human beings, at hundreds of miles an hour through congested airspace,

in bad weather and at night, the risk of being killed on an air journey is only

about one in a million. [Anderson 1994]

Other sources, including [Schlager 1994] and [Perrow 1984] make it clear that prompt

and complete information dissemination is critical if we want to learn from past mistakes.

More often than not, it is not the designers of the systems that �nd and debug complex

systems but observers who �nd patterns that lead to the cause of failures.

Scientists and engineers who are responsible for the development of critical systems are

used to the idea of learning from past mistakes. [Levy and Salvadori 1992] describes in great

detail some of the more spectacular structural failures in history and provides evidence

that structural failures are likely to become less common because of the application of

the knowledge gathered in the examination of past failures to modern designs. Similar

123

arguments can be made in the design of any complex system that is di�cult to design

and implement [Petrosky 1985; Brooks 1995; Schlager 1994; Perrow 1984; Dorner 1996;

Anderson 1994].

As mentioned in Section 1.1, collected past knowledge, however, must be part of a

framework that can be used to generalize, abstract, and communicate �ndings within the

research community. Taxonomies and classi�cations structure or organize the body of

knowledge that constitutes a �eld [Glass and Vessey 1995].

This dissertation provides a scienti�c framework for the development of such taxonomies

and classi�cations, and an extensible environment that can be used to identify the nature

of software vulnerabilities. Based on this framework we collected a representative sample

of software vulnerabilities with detailed information that contributes to our understanding

of software vulnerabilities. The need for such increase in understanding of the nature of

vulnerabilities is argued in [Leveson 1994] as follows:

[In Software Engineering] Our greatest need now, in terms of future progress

rather than short-term coping with current software engineering projects, is

not for new languages or tools to implement our inventions but more in-depth

understanding of whether our inventions are e�ective and why or why not.

The collection of vulnerabilities is a detailed record of their sources, causes, and ef-

fects. This record contributes to the development of the �eld because other scientists can

learn from past mistakes, and provides an environment that can be used to develop a more

in-depth understanding of vulnerabilities. Other researchers, for example, are using this

environment and the data collected to develop new software testing techniques, new com-

prehensive de�nitions of network vulnerabilities, etc. [Daniels et al. 1998a; 1998b; Daniels

1998; Du and Mathur 1998].

The application of the framework for the development of classi�cations|presented in

Section 3.1|to the data collected for the vulnerability database resulted in the classi�cation

for software vulnerabilities presented in Section 6.1.

This classi�cation provided insights as to the nature of software vulnerabilities that

were not evident a priori. In particular, we have shown that 63% of the vulnerabilities from

the database space are not the result of traditional software faults, but rather the result

124

of incorrect assumptions made by programmers regarding the environment in which the

systems will run.

In Section 6.1.2, we argue that these mistaken assumptions can be enforced or guaran-

teed if we develop domain-speci�c tools, and these tools result from an increased under-

standing of the nature of vulnerabilities. The application of the framework we presented in

this dissertation provides the desired increase in our understanding of vulnerabilities.

7.2 Summary of Main Contributions

� Provide a unifying de�nition of software vulnerability.

� Show that existing classi�cations and taxonomies for software vulnerabilities, or re-

lated �elds, fail because they do not satisfy the desirable properties for classi�cations

and taxonomies.

� De�ne the properties of measurements or observations necessary for the development

of classi�cations, and provide a framework for the development of classi�cations and

taxonomies for software vulnerabilities and related �elds.

� Collected a representative sample of existing software vulnerabilities. For each sample

collected we measured a series of features that can be used for the generation of

classi�cations.

� Developed an extension to the classi�cation of vulnerabilities presented in [Aslam

et al. 1996]. Unlike its predecessor, this classi�cation focuses on the assumptions that

programmers make regarding the environment in which their application will execute,

and that frequently do not hold in the execution of the program.

� Identi�ed patterns and regularities in vulnerabilities with the application of co-word

analysis induction decision trees, and data visualization tools. These patterns were

identi�ed from the taxonomic characters described in Chapter 4.

� Developed an extensible database of software vulnerabilities, a keyword-analysis tool

built based on [Coulter et al. 1997], and a data sets generator for the classi�cation

tool LNKnet [Kukolich and Lippmann 1995].

125

� Suggested approaches for the improvement of software to eliminate most software

vulnerabilities that result from a mismatch between the programmer's expectation

and the environmental conditions in which programs execute.

7.3 Future Work

We believe that the data in the database is a representative sample of the vulnerabil-

ities known. However, there is a continuous stream of new vulnerabilities being reported

in mailing lists, and these must be incorporated into the database if the framework and

environment provided is to be useful on a continuous basis.

Many computer systems|for example Windows NT, CISCO routers, HP-UX Unix, and

IBM AIX Unix, etc.|are closed and source code was unavailable during the collection of

data for the database. The number of �elds that can be �lled for a record in the vulnerability

database is proportional to the information available for the system. Source code for such

systems would contribute substantially to the quality of the sample collected, and hence

could improve on the analysis and conclusions derived from it.

The classi�cation presented in 6.1 focuses on the assumptions that programmers make

regarding the environment in which their application will execute, and that frequently do not

hold in the execution of the program. This classi�cation can be extended to consider in more

detail those vulnerabilities that result from con�guration errors and those resulting from

design errors. The application of the framework presented in this dissertation to those areas

could increase our understanding of the nature of these vulnerabilities, the fundamental

reasons for their prevalence, and result in better design or deployment strategies that can

eliminate these problems.

The co-word analysis results presented in Section 5.3.1 suggest that software vulnera-

bilities frequently apply to more than one variant of Unix even when these do not share

the same code-base. Statistical techniques such as contingency tables (see [Kaufman and

Rousseeuw 1990]) may be useful in con�rming this result.

BIBLIOGRAPHY

126

BIBLIOGRAPHY

Abbott, R. P. et al. 1976. Security Analysis and Enhancements of Computer Operating
Systems. Tech. Rep. NBSIR 76-1041, Institute for Computer Science and Technology,
National Bureau of Standards.

Abbott, R. P., Chin, J. S., Donnelley, J. E., Konigsford, W. L., Tokubo, S.,
and Webb, D. A. 1976. Security Analysis and Enhancement of Computer Operating
Systems. Tech. Rep. NBSIR 76-1041, Institute for Computer Science and Technology,
National Bureau of Standards.

Agrawal, R. and Srikant, R. 1994. Fast Algorithms for Mining Association Rules. In
Proceedings of the 20th International Conference on Very Large Databases. Santiago,
Chile.

Air Force Information Warfare (AFIW) Center. 1996. CMET Vulnerability
Database. Unpublished Database.

Albitz, P. and Liu, C. 1992. DNS and BIND. Help for Unix System Administrators.
O'Reilly & Associates.

Amoroso, E. 1994. Fundamentals of Computer Security Technology. Prentice Hall.

Anderson, R. 1994. Why Cryptosystems Fail. Tech. rep., University Computer Labora-
tory, Cambridge. January.

Aslam, T. 1995. A Taxonomy of Security Faults in the Unix Operating System. M.S.
thesis, Purdue University.

Aslam, T.,Krsul, I., and Spafford, E. 1996. Use of A Taxonomy of Security Faults. In
19th National Information Systems Security Conference Proceedings. Baltimore, Mary-
land.

Audi, R., Ed. 1995. The Cambridge Dictionary of Philosophy. Cambridge University
Press.

AUSCERT Coordination Center. 1998. Unnamed Vulnerability Database. Unpub-
lished Database.

Bach, M. J. 1986. The Design of the UNIX Operating System. Software Series. Prentice-
Hall.

Bahr, L. S. and Johnston, B. 1995. Collier's Encyclopedia: With Bibliography and

Index. P.F. Collier, New York.

127

Bailey, G. 1987. Bibliography of Soil Taxonomy. Wallingford.

Basili, V. and Perricone, B. 1984. Software Errors and Complexity. Communications
of the ACM 27, 1 (January), 42{52.

Beizer, B. 1983. Software Testing Techniques. Electrical Engineering/Computer Science
and Engineering Series. Van Nostrand Reinhold.

Bell, D. E. and LaPadula, L. J. 1973. Secure Computer Systems: Mathematical
Foundations and Model. Tech. Rep. M74-244, The MITRE Corporation. May.

Bhushan, A., Braden, B., Crowther, W., Heafner, E. H. J., McKenzie, A.,
Melvin, J., Sundberg, B., Watson, D., and White, J. 1971. The File Transfer

Protocol. RCF-172.

Bibsey, R., Popek, G., and Carlstead, J. 1975. Inconsistency of a Single Data Value
over time. Tech. rep., Information Sciences Institute, University of Southern California.
December.

Bier, E. A., Fishkin, K., Pier, K., and Stone, M. C. 1995. Taxonomy of See-Through
Tools: The Video. In Proceedings of the Conference on Human Factors in Computing.
Part 2 (of 2). Vol. 2. ACM, Denver, Colorado, 411{412.

Bishop, M. 1986. Analyzing the Security of an Existing Computer System. In Proceedings
of the Fall Joint Computer Conference. 1115{1119.

Bishop, M. 1995. A Taxonomy of UNIX System and Network Vulnerabilities. Tech. Rep.
CSE-95-10, Department of Computer Science at the University of California at Davis.

Bishop, M. and Bailey, D. 1996. A Critical Analysis of Vulnerability Taxonomies. Tech.
Rep. CSE-96-11, Department of Computer Science at the University of California at
Davis. September.

Bishop, M. and Dilger, M. 1996. Checking for Race Conditions in File Accesses.
Computing Systems 9, 2, 131{152.

Borenstein, N. 1992. MIME (Multipurpose Internet Mail Extensions): Mechanisms for

Specifying and Describing the Format of Internet Message Bodies. RFC-1391.

Breiman, L. 1994. Bagging Predictors. Tech. Rep. TR 421, Department of Statistics,
University of California. September.

Breslow, L. A. and Aha, D. W. 1996. Simplifying Decision Trees: A Survey. Tech.
Rep. NCARAI Technical Report No. AIC-96-014, Navy Center for Applied Research
in Arti�cial Intelligence, Washington, D.C.

Bretz, R. 1971. A Taxonomy of Communication Media. Educational Technology Publi-
cations.

Brooks, F. P. 1995. The Mythical Man-Month. Addison-Wesley.

128

Carlstead, J., Bibsey II, R., and Popek, G. 1975. Pattern-Directed Protection Eval-
uation. Tech. rep., Information Sciences Institute, University of Southern California.
June.

CERT Coordination Center. 1997c. CERT Summary CS-97.03. ftp://ftp.cert.

org/pub/cert_summaries/CS-97.03.

CERT Coordination Center. 1997b. CERT Summary CS-97.05. ftp://ftp.cert.

org/pub/cert_summaries/CS-97.05.

CERT Coordination Center. 1997a. CERT Summary CS-97.06. ftp://ftp.cert.

org/pub/cert_summaries/CS-97.06.

CERT Coordination Center. 1998b. CERT Summary CS-98.02. ftp://ftp.cert.

org/pub/cert_summaries/CS-98.02.

CERT Coordination Center. 1998a. CERT Summary CS-98.03. ftp://ftp.cert.

org/pub/cert_summaries/CS-98.03.

CERT Coordination Center. 1998c. Security improvement. http://www.cert.org/
nav/securityimprovement.html.

CERT Coordination Center. 1998d. Unnamed Vulnerability Database. Unpublished
Database.

Cohen, E. 1990. Programming in the 1990s. Springer-Verlag.

Cohen, F. 1997a. Information System Attacks: A Preliminary Classi�cation Scheme.
Computers & Security 16, 1, 29{46.

Cohen, F. 1997b. Information System Defenses: A Preliminary Classi�cation Scheme.
Computers & Security 16, 2, 94{114.

Cohen, F. B. 1995. Protection and Security on the Information Superhighway. John
Wiley & Sons, Inc.

Comer, D. 1984. Operating System Design: The XINU Approach. Prentice Hall.

Conte, S., Dunsmore, H., and Shen, V. 1986. Software Engineering Metrics and
Models. The Benjamin/Cummings Publishing Company.

Coulter, N., Monarch, I., and Konda, S. 1997. Software Engineering as Seen
Through Its Research Literature: A Study in Co-Word Analysis. To appear in the
Journal of the American Society for Information Science (JASIS).

Crosbie, M., Dole, B., Ellis, T., Krsul, I., and Spafford, E. 1996. IDIOT - Users
Guide. Tech. Rep. TR-96-050, Purdue University. September.

Daniels, T. 1998. Qualifying Examination Preparation. Interview.

Daniels, T., Krsul, I., Spafford, E., and Tripunitara, M. 1998b. An analysis of
some vulnerabilities related to TCP/IP. In preparation.

129

Daniels, T., Krsul, I., Spafford, E., and Tripunitara, M. 1998a. Computer vul-
nerability analysis. Submitted to the 21st National System's Security Conference.

Dasgupta, P., LeBlanc, R. J., Ahmad, M., and Ramachandran, U. The Clouds
Distributed Operating System. Georgia Tech Technical Report.

Dean, D., Felten, E. W., and Wallach, D. S. 1996. Java Security: From HotJava
to Netscape and Beyond. In Proceedings of the IEEE Computer Society Symposium on

Research in Security and Privacy 1996. Princeton University, 190{200.

Dean, D. and Wallach, D. S. 1995. Security Flaws in the HotJava Web Browser. Tech.
Rep. 501-95, Department of Computer Science, Princeton University. November.

DeMillo, R. A. and Mathur, A. P. 1995. A Grammar Based Fault Classi�cation
Scheme and its Application to the Classi�cation of the Errors of TeX. Tech. Rep. SERC-
TR-165-P, Software Engineering Research Center, Purdue University. September.

DeMillo, R. A., McCracken, W. M., Martin, R. J., and Passafiume, J. F. 1987.
Software Testing and Evaluation. The Benjamin/Cummings Publishing Company Inc.

Denning, D. E. 1983. Cryptography and Data Security. Addison-Wesley Publishing
Company.

Denning, D. E. 1987. An Intrusion-Detection Model. IEEE Transactions on Software

Engineering SE-13, 2 (February), 222{232.

Dijker, B. L. 1996. A Guide to Developing Computing Policy Documents. The USENIX
Association for SAGE, the System Administrators Guild.

Dilger, M. 1995. Unnamed Vulnerability Database. Unpublished Database.

DoDCSEC 1985. DoD 5200.28-STD, Department of Defense Trusted Computer Systems
Evaluation Criteria.

DoDISPR 1982. DoD 5200.1R, The Department of Defense Information Security Program
Regulation.

Dodson, J. 1996. Speci�cation and Classi�cation of Generic Security Flaws for the
Tester's Assistant Library. M.S. thesis, University of California at Davis.

Dorner, D. 1996. The logic of failure: why things go wrong and what we can do to make

them right. Metropolitan Books.

Du, W. and Mathur, A. P. 1998. Vulnerability testing of software using fault injection.
Tech. rep., Purdue University.

Duda, R. and Hart, P. 1973. Pattern classi�cation and scene analysis. Wiley, New
York.

Durant, W. 1961. The Story of Philosophy: The Lives and Opinions of the Great

Philosophers of the Western World. Simon and Schuster.

EBRIT 1997. Britannica Online version 97.1.1. http://www.britannica.com.

130

Edwards, D. 1995. Recent Advances in Descriptive Multivariate Analysis. Royal Sta-
tistical Society Lecture Note Series. Clarendon Press, Oxford, Chapter 7|Graphical
Modelling, 135{156.

Eisenstadt, M. 1997. My Hariest Bug War Stories. Communications of the ACM 40, 4
(April).

Endres, A. 1975. An Analysis of Errors and Their Causes in System Programs. IEEE

Transactions on Software Engineering SE-1, 2 (June), 140{149.

Engler, D. 1998. Incorporating application semantics and control into compilation.
Published Electronically at http://www.pdos.lcs.mit.edu/~engler/magik.ps.

Farmer, D. and Spafford, E. H. September 1991. The COPS Security Checker System.
Tech. Rep. CSD-TR-993, Software Engineering Research Center, Purdue University.

Fink, G., Ko, C., Archer, M., and Levitt, K. 1994. Toward a Property-based Testing
Environment with Application to Security Critical Software. In Proceedings of the 4th

Irvine Software Symposium. 39{48.

Firosoft Consulting. 1998. Online Database Firosoft. Published electronically at
http://www.firosoft.com/security/philez/.

Freund, Y. and Schapire, R. E. 1996. Experiments with a New Boosting Algorithm.

Garfinkel, S. and Spafford, G. 1996. Practical UNIX and Internet Security , Second
Edition ed. O'Reilly & Associates, Inc.

Gavin, P. 1998. Designing Secure Software. SunWorld . Published electronically at
http://www.sun.com/sunworldonline/.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. 1991. Fundamentals of Software Engi-

neering , First ed. Prentice Hall.

Glass, R. L. and Vessey, I. 1995. Contemporary Application-Domain Taxonomies.
IEEE Software 12, 4 (July), 63{76.

Grolier Incorporated. 1993. Encyclopedia Americana, Deluxe Library Edition ed.
Grolier Inc.

Haystack Labs, Inc. 1996. Unnamed Vulnerability Database. Unpublished Database.

Hedberg, S. R. 1995. The Data Gold Rush. BYTE .

Hertz, J., Krogh, A., and Palmer, R. G. 1991. Introduction to the Theory of Neural

Computation. Addison-Wesley Publishing Company.

Holsheimer, M. and Siebes, A. 1994. Data Mining: The Search for Knowledge in
Databases. Tech. Rep. CS-R9406, Centrum voor Wiskunde en Informatica.

Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory, Languages, and

Computation, First ed. Addison-Wesley.

131

Howard, J. D. 1997. An Analysis of Security Incidents On The Internet: 1989 - 1995.
Ph.D. thesis, Carnegie Mellon University.

IEEE. 1990. ANSI/IEEE Standard Glossary of Software Engineering Terminology. IEEE
Press.

INFILSEC Systems Security. 1998. Online Database INFILSEC Vulnerability Engine.
Published electronically at http://www.infilsec.com/vulnerabilities/.

Internet Security Services. 1998. Online Database X-Force. Published electronically
at http://www.iss.net/xforce/.

Jain, A. K. and Dubes, R. C. 1988. Algorithms for Clustering Data. Prentice Hall.

Kao, I.-L. and Chow, R. 1995. Enforcement of Complex Security Policies with BEAC.
In Proceedinngs of the 18th National Information Systems Security Conference. Vol. I.
National Institute of Standards and Technology/National Computer Security Center,
1{10.

Kaufman, L. and Rousseeuw, P. J. 1990. Finding Groups in Data. Wiley Series in
Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York.

KDDSIF 1998. S*i*ftware: Tools for Data Mining and Knowledge Discovery. http://

info.gte.com/~kdd/siftware.html.

Kernighan, B. W. and Ritchie, D. M. 1988. The C Programming Language, Second
Edition ed. Prentice Hall Software Series. Prentice Hall.

Kiczales, G., John Lamping, A. M., Maeda, C., Lopes, C., marc Loingtier, J.,
and Irwin, J. 1997. Aspect-Oriented Programming. Tech. Rep. PARC Technical
Report SPL97-008 P9710042, Xerox PARC. February.

Knuth, D. E. 1989. The Errors of TEX. Software|Practice and Experience 19, 7 (July),
607{685.

Kohavi, R., Sommerfield, D., and Dougherty, J. 1997. Data Mining using MLC++,
a Machine Learning Library in C++. International Journal of Arti�cial Intelligence

Tools 6, 4, 537{566.

Kolawa, A. and Hicken, A. 1997. Insure++ A Tool To Support Total Quality Software.
http://www.parasoft.com/insure/papers/tech.htm.

Krsul, I. 1998. Vulnerability Database User Manual. Tech. Rep. COAST Technical
Report No. 98-08, Purdue University. May.

Krsul, I., Daniels, T., Du, W., andWilson, A. 1998. COAST Vulnerabilty Database.

Krsul, I., Daniels, T., and Wilson, A. 1998. COAST Vulnerability Database. Avail-
able by request from the COAST Laboratory.

Krsul, I. and Spafford, E. 1997. Authorship analysis: identifying the author of a
program. Computers & Security 16, 3, 233{257.

132

Krsul, I., Spafford, E., and Tuglular, T. 1998. A New Approach to the Speci�cation
of General Computer Security Policies. Tech. Rep. COAST Technical Report 97-13,
COAST Laboratory, Department of Computer Sciences, Purdue University. January.

Kukolich, L. and Lippmann, R. 1995. LNKnet User's Guide. MIT Lincoln Laboratory,
Carleton Street, Cambridge, Massachusetts.

Kumar, S., , and Spafford, E. 1995. A Taxonomy of Common Computer Security
Vulnerabilities Based on their Method of Detection. Tech. rep., Purdue University.

Kumar, S. 1995. Classi�cation and Detection of Computer Intrusions. Ph.D. thesis,
Purdue University.

Kumar, S. and Spafford, E. 1994. A Pattern Matching Model for Misuse Intrusion
Detection. In 17th National Computer Security Conference.

Landwher, C., Bull, A., McDermott, J., and Choi, W. 1993. A Taxonomy of
Computer Program Security Flaws. Tech. Rep. NRL/FR/5542{93-9591, Naval Re-
search Laboratory. November.

Leveson, N. 1994. High-pressure Steam Engines and Computer Software. Com-
puter 27, 10 (October), 65{73.

Leveson, N. 1995. Safeware: System Safety and Computers. Addison-Wesley Publishing
Co.

Levy, M. and Salvadori, M. 1992. Why Buildings Fall Down. W. W. Norton &
Company.

Linde, R. R. 1975. Operating system penetration. In National Computer Conference.

Longley, D. and Shain, M. 1990. The Data and Computer Security Dictionary of

Standards, Concepts, and Terms. Macmillan Stockton Press.

Longstaff, T. 1997. Update: CERT/CC Vulnerability Knowledgebase. Technical pre-
sentation at a DARPA workshop in Savannah, Georgia.

Maddison, D. and Maddison, W. 1996. The Tree of Life: A distributed Internet
project containing information about phylogeny and biodiversity. Internet address:
http://phylogeny.arizona.edu/tree/phylogeny.html.

Marick, B. 1990. A survey of software fault surveys. Tech. Rep. UIUCDCS-R-90-1651,
University of Illinois at Urbana-Champaign. December.

Marick, B. 1995. The Craft of Software Testing. Prentice Hall.

McGraw, G. and Felten, E. W. 1997. Java Security: Hostile Applets, Holes and

Antidotes. John Wiley & Sons, Inc.

Miller, B., Fredrikson, L., and So, B. 1990. An Embirical Study of the Reliability
of UNIX Utilities. Communications of the ACM 33, 12 (December), 32{44.

133

Miller, B. P., Koski, D., Lee, C. P., Maganty, V., Murthy, R., Natarajan,
A., and Steidl, J. 1995. Fuzz Revisited: A Re-examination of the Reliability of
UNIX Utilities and Services. Tech. rep., Computer Science Department, University of
Wisconsin. November.

Mockapetris, P. 1987. Domain Names { Concepts and Facilities. RFC-1031.

Myers, G. 1979. The Art of Software Testing. Wiley.

Netscape Communications Corporation. 1996. Unnamed Vulnerability Database.
Unpublished Database.

Neumann, M. 1995. Unnamed Vulnerability Database. Unpublished Database.

Olivier, M. and Vonsolms, S. H. 1994. A Taxonomy for Secure Object-Oriented
Databases. ACM Transactions on Database Systems 19, 1 (March), 3{46.

Oman, P. and Cook, C. 1990. A Taxonomy for Programming Style. In Eighteenth

Annual ACM Computer Science Conference Proceedings. ACM, 244{247.

Oman, P. and Cook, C. 1991. A Programming Style Taxonomy. Journal of Systems

Software 15, 4, 287{301.

Oram, A. and Talbott, S. 1993. Managing Projects with make. O'Reilly & Associates,
Inc.

Ostrand, T. and Weyuker, E. 1984. Collecting and Categorizing Software Error Data
in an Industrial Environment. The Journal of Systems and Software 4, 289{300.

OXFORD 1998. The Oxford English Dictionary. http://oed.purdue.edu/.

Perrow, C. 1984. Normal Accidents: Living With High-Risk Technologies. Basic Books.

Perry, T. and Wallich, P. 1984. Can Computer Crime be Stopped. IEEE Spec-

trum 21, 5.

Petrosky, H. 1985. To engineer is human: the role of failure in successful design. St.
Martin's Press.

Polk, W. T. 1992. Automated Tools for Testing Computer System Vulnerability. Un-
known if a published version of the paper exists.

Popper, K. R. 1969. Conjections and Refutations. Routledge and Kegan Paul.

Postel, J. 1980. User Datagram Protocol. RFC-793.

Postel, J. 1981a. Internet Protocol { DARPA Internet Program Protocol Speci�cation.
RFC-791.

Postel, J. 1981b. Transmission Control Protocol { DARPA Internet Program Protocol

Speci�cation. RFC-793.

Power, R. 1996. Current And Future Danger: A CSI Primer of Computer Crime &
Information Warfare. CSI Bulletin.

134

Quinlan, J. R. 1986. Induction of Decision Trees. Machine Learning , 81{106.

Quinlan, J. R. and Cemeron-Jones, R. M. 1995. Oversearching and Layered Search
in Empirical Learning. In Proceedings Fourteenth International Joint Conference on

Arti�cial Intelligence. Morgan Kaufmann, Montreal, 1019{1024.

Quinlan, R. J. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers, Inc., Los Altos, California.

Roskos, J. E., Welke, S. R., Boone, J. M., and Mayfield, T. 1990. A Taxonomy
of Integrity Models, Implementations and Mechanisms. In Proceedings of the 13th

National Computer Security Conference. Vol. II. National Institute of Standards and
Technology/National Computer Security Center, 541{551.

Schlager, N. 1994. When Technology Fails: Signi�cant Technological Disasters, Acci-

dents, and Failures of the Twentieth Century. Gale Research Inc.

Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H., Sundaram, A., and
Zamboni, D. 1997. Analysis of a Denial of Service Attack on TCP. In Proceedings

IEEE Symposium on Security and Privacy.

SECJAVA 97. Secure Computing with Java: Now and the Future. Java Whitepa-
per Published Electronically at http://www.javasoft.com/marketing/collateral/
security.html.

Sethi, R. 1989. Programming Languages Concepts and Constructs. Addison{Wesley
Publishing Company.

Simpson, G. G. 1945. The Principles of Classi�cation and a Classi�cation of Mammals.
New York.

Simpson, G. G. 1961. Principles of Animal Taxonomy. Columbia University Press.

Smith, D. 1994. Enhancing Security of Unix Systems. http://www.usq.edu.au/ww94/

papers/unix-security.html.

Spafford, E. H. 1989. The Internet Worm Program: An Analysis. Computer Commu-
nication Review 19, 1 (January).

Spencer, D. 1983. The Illustrated Computer Dictionary , First ed. Merrill Publishing Co.

Stern, H. 1991. Managing NFS and NIS. O'Reilly & Associates, Inc.

Sterne, D. F., Branstad, M. A., Hubbard, B. S., Mayer, B. A., and Wolcott,

D. M. 1991. An Analysis of Application Speci�c Security Policies. In Proceedings of

the 14th National Computer Security Conference. Vol. I. 25{36.

Stevens, R. W. 1998. UNIX Network Programming , Second Edition ed. Prentice Hall.

Stout, B. 1998. Online Database Known NT Exploits. Published electronically at http:
//www.emf.net/~ddonahue/NThacks/ntexploits.htm.

135

Sun Microsystems Inc. 1988. RPC: Remote Procedure Call Protocol Speci�cation. RFC-
1050.

Sun Microsystems Inc. 1989. NFS: Network File System Protocol Speci�cation. RFC-
1094.

Sun Microsystems Inc. 1997. Unnamed Vulnerability Database. Unpublished Database.

Swayne, D. F., Cook, D., and Buja, A. 1998. XGobi: Interactive Dynamic Data Vi-
sualization in the X Window System. Journal of Computational and Graphical Statis-

tics 7, 1 (March).

Tanenbaum, A. S. 1987. Operating Systems Design and Implementation. Prentice Hall.

Thompson, W. R. 1852. Philosophical Foundations of Systematics. Canadian Entomol-

ogist 84, 1{16.

VDBBOD 1998. Online Database The Brotherhood of Darkness Exploit Archive. Pub-
lished electronically at http://www.ilf.net/brotherhood/filez/xploits.html.

VDBBUG 1998. Online Database Security Bugware. Published electronically at http://
161.53.42.3/~crv/security/bugs/Others/other.html.

VDBDOP 1998. Online Database Dop's terribly geeky page of naughty hacks. Published
electronically at http://www.geek-nation.com/~dop/.

VDBELI 1998. Online Database Elitehackers.org. Published electronically at http://

www.elitehackers.org/Exploits/index.html.

VDBEXP 1998. Online Database Exploit World. Published electronically at http://www.
dhp.com/~fyodor/sploits_all.html.

VDBFIR 1998. Online Database Rootshell. Published electronically at http://www.

rootshell.com/.

VDBFKI 1998. Online Database Future Kill Security Database. Published electronically
at http://main.succeed.net/~kill9/security/database/index.html.

VDBKAO 1998. Online Database Kao's UNIX Security Library. Published electronically
at http://www.tacd.com/exploit/expmain.htm.

VDBLEG 1998. Online Database The Legacy Hacking Archive II. Published electronically
at http://www.jabukie.com/ArchiveII.html.

VDBNN1 1998. Unnamed Online Database. Published electronically at http://www.

cultdeadcow.com/~gauss/exploits/.

VDBNN2 1998. Unnamed Online Database. Published electronically at http://get.

your.exploits.org/.

VDBNN3 1998. Unnamed Online Database. Published electronically at http://www.

enslaver.com/exploit/.

136

VDBNN4 1998. Unnamed Online Database. Published electronically at http://www.

outpost9.com/exploits/hp.html.

VDBNN5 1998. Unnamed Online Database. Published electronically at http://www.cs.
iastate.edu/~ghelmer/unixsecurity/unix_vuln.html.

VDBNN6 1998. Unnamed Online Database. Published electronically at http://www.

virtual-pc.com/spartan/plaguez/hc1.htm.

VDBNZE 1998. Online Database NegativeZero Exploit PAge. Published electronically at
http://www.negativezero.com/exploits/.

Wall, L. and Schwartz, R. 1990. Programming Perl , First ed. O'Reilly & Associates,
Inc.

Walsh, N. 1994. Making TEX Work. O'Reilly & Associates.

WEBOL 1998. Merriam-Webster OnLine: WWWebster Dictionary. http://www.m-w.

com/dictionary.htm.

Weiss, S. and Kulikowski, C. 1991. Computer systems that learn: classi�cation and

prediction methods from statistics, neural nets, machine learning, and expert systems.
M. Kaufmann Publishers.

Weissman, C. 1995. Information Security: An Integrated Collection of Essays. IEEE
Computer Society Press, Los Alamitos, California, Chapter Essay 11: Penetration
Testing, 269{296.

Whittaker, J. 1989. Creativity and Conformity in Science: Titles, Keywords, and Co-
Word Analysis. Social Science in Science 19, 473{496.

Young, M. and Taylor, R. N. September 1991. Rethinking the Taxonomy of Fault
Detection Techniques. Tech. rep., Software Engineering Research Center, Purdue Uni-
versity.

APPENDICES

137

A SCHEMAS FOR PRIOR VULNERABILITY DATABASES

A.1 Vulnerabilty Databse at ISS

The vulnerability database at ISS [Internet Security Services 1998] is freely available

in the Internet and contains information organized according to the following
at-database

schema:

Tag Name: Text

Date Entered: Month/Year

Name: Text

Date Reported: Month/Year

Brief Description: Text

Risk Level: Integer in the range (0{10)

A�ected Item: Text

Platforms: One of Unknown, AIX, BSD,

HPUX, IRIX, Linux, Solaris, SunOS,

Windows, Other

Detailed Description: Text

Discovered By Text

Corrective Actions: Text

Fix Time: One of Unknown, 0.0{0.5 hours,

0.5{1.0 hours, 1.0{1.5 hours, 1.5{2.0

hours, 2.0{2.5 hours, 2.5{3.0 hours,

More than 3.0 hours

References: Text

Consequences: One of None, Gain Privi-

leges, Denial of Service, Execute As.,

Chmod, Chown, Write Files, Read

Files, Account Info., Other, Access Re-

sources, Bypass

Comments: Text

Exploit: Text

Contact: Text

A.2 Vulnerabilty Databse at INFILSEC

The vulnerability at INFILSEC [INFILSEC Systems Security 1998] is freely available

in the Internet and contains information organized according to the following
at-database

schema:

138

Vulnerability Name: Text

Systems A�ected: Text

Component: Text

Impact: Text

Author: Text

Description: Text

Exploit by: Text

Exploit Author: Text

Fix by: Text

Fix Author: Text

Rererences: Text

A.3 Vulnerabilty Databse of Michael Dilger

The database maintained by Michael Dilger contains information organized according

to the schema:

Revision: This should be incremented if the data is changed. You need not increment

this number unless the old revision has been distributed or used elsewhere in some

manner.

Vulnerability Name: This should be a simple 2-8 word title. It should include reference

to the component vulnerable.

Brief Description: A brief (1 sentence to several paragraphs) high-level description of

the attack.

System Impact: What internal systems are a�ected and to what extent (if relevant)

Vulnerable Systems: Vulnerable versions or revisions (hardware, OS, software, etc). State

also for each system one of: veri�ed, unveri�ed, trusted source

Vulnerable States: State in which the a�ected software is vulnerable (con�guration op-

tions, etc).

Components: what �les/systems/protocols are employed by the attack

Keywords: Key words to index this record with

139

Introduced: When was the vulnerability introduced. One of: Design
aw, Implementation

aw, Trojaned during implementation, Trojaned after implementation, Con�guration

aw.

Announced: When and where this attack was announced.

Vulnerability Class: One or more of:

� Improper choice of protection domain: For example, allowing an ordinary user

to modify a log

� Improper isolation of implementation detail. For example, an ordinary user being

able to bypass the operating system controls and write to a speci�c absolute

address in memory

� Improper change: Allowing the use of inconsistent data (one process reading a

�le that another process is altering)

� Improper naming: For example, two programs have the same name

� Improper deallocation or deletion: For example, allowing the reuse of disk space

containing con�dential information without clearing that information �rst

� Improper validation: For example, the wrong number or type of parameters,

parameters in the wrong order, or being too large or too small, memory references

to inaccessible locations,

� Improper indivisibility: For example, non-atomic operations that should be

atomic

� Improper sequencing: For example, allowing race conditions among processes

vying for resources

� Improper choice of operand or algorithm: For example, unfair scheduling algo-

rithms that starve processes

Protection Domains Involved: One of:

� single, unprivileged protection domain: This means the program does not cross

protection domain boundaries, so only the user executing it can be hurt.

� system protection domain: This is a user-level program that is normally run by

a system user such as daemon; it is a separate category because it indicates the

140

damage may a�ect the system and thus (indirectly) more than one user, but that

no protection domain boundaries are crossed

� privileged protection domain: This means the
aw requires the program to be

run by the superuser; no ordinary user running the program can trigger it.

� multiple protection domains: This means that the
aw requires access to multiple

protection domains; for example, a setuid program. If the combination of 2

programs running at non-privileged but distinct levels causes a problem, that

also �ts this class.

Access required: This indicates what access an attacker must have to carry out the at-

tack. One of: remote network, local network, user account, physical.

Intrusion Level: This indicates the e�ect of the intrustion, what the attacker can do with

the vulnerability. One of: low-privileged information, denial of service, misplaced

trust, [localized] privileged information (read), [localized] data alteration (write),

localized access (read/write), user access (user), group access (group), root access

(read/write, not localized).

Background: This describes the normal intended operation of the system that fails under

the given attack.

Attack description: A full description of the attack, low-level details included.

Vulnerability Analysis: An analysis of the vulnerability itself

Vulnerability Detection: How to detect if you are vulnerable

Vulnerability Correction Admin: How to patch, upgrade, or otherwise �x the problem,

from a system administrator's point of view.

Vulnerability Correction Source: How to �x the problem from a system designer's

point of view.

Attack Detection: How to detect if you have been attacked, as well as real-time detection

Attack Clean Up: How to clean up after the attack

Related Attacks: Other attacks in this database that are closely related

141

References: Papers, articles, etc.

Advisories: Names of advisories for further information

Contacts: Vendors and people to contact for further information

Attack Script: Reference to a script which demonstrates the attack

A.4 Eric Miller's Database

Eric Miller's database organizes vulnerabilities according to the following
at-database

schema:

Tag Name: Text

Program Exploited: Text

Impact: Text

Requirements: Text

Description: Text

Di�culties to Execution: Text

A.5 The CMET Database at the AFIW

The CMET database of vulnerabilities constructed by the AFIW is organized according

to the following relational schema:

142

Table: ADVISORY

Description: Table to hold information necessary to link to an advi-

sory, such as local �lename, net path/�lename, etc.

Field List Data Type Size

Advisory ID Text 50

Date Date/Time 8

Name Text 60

Time Text 4

Remote Site Text 50

Remote Filename Text 50

Remote Ext Text 60

Local Source Text 50

Relationships: Attached Advisory Table-one to many; on

Advisory ID

Table: Attached Advisory Table

Description: Table which links an advisory to a vulnerability by

common vulnerability id

Field List Data Type Size

Counter Number(Long) 4

Vulnerability ID Number(Integer) 2

Advisory ID Text 50

Relationships: ADVISORY- many to one; on Advisory ID,

VULNERABILITY- many to one; on Vulnerability ID

143

Table: Attached OS Table

Description: Table which links an operating system to a vulnerability

by common vulnerability id

Field List Data Type Size

Counter Number (Long) 4

Vulnerability ID Number (Integer) 2

OS ID Number (Double) 8

Relationships: OPERATING SYSTEM- many to one; on OS ID,

VULNERABILITY- many to one; on Vulnerability ID

Table: Attached Platform Table

Description: Table which links a platform to a vulnerability by com-

mon vulnerability id

Field List Data Type Size

Counter Number (Long) 4

Vulnerability ID Number (Integer) 2

Platform ID Number (Double) 8

Relationships: PLATFORM- many to one; on Platform ID,

VULNERABILITY- many to one; on Vulnerability ID

144

Table: COUNTERMEASURE

Description: Table containing information about a countermeasure

with a link to a vulnerabilitFy

Field List Data Type Size

CounterMeasure ID Number (Double) 8

Vulnerability ID Number (Integer) 2

Name Text 50

Description Memo |

Detection Method Text 255

Relationships: VULNERABILITY- many to one; on

Vulnerability ID

Table: OPERATING SYSTEM

Description: Table containing operating system information

Field List Data Type Size

OS ID Number (Double) 8

Name Text 50

Version Text 50

Relationships: Attached OS Table- one to many; on OS ID

Table: PLATFORM

Description: Table containing di�erent types and models of hardware

Field List Data Type Size

Platform ID Number (Double) 8

Type Text 50

Model Text 50

Relationships: Attached Platform Table- one to many; on

Platform ID

145

Table: HACKER TOOL

Description: Table containing information about a hacker tool, linked

to vulnerability and a script text �le

Field List Data Type Size

Tool ID Number(Integer) 2

Name Text 18

Vulnerability ID Number(Integer) 2

Aliases Text 255

Location Text 50

Result Text 50

Usage Text 50

Shell Text 50

Programs Needed Text 50

Environment Variables Text 50

Exploitation type Text 50

Pseudo Code Text 50

Errors in Tool Text 50

Functionality Text 50

Consistency Yes/No(Boolean) 1

Ease of Use Text 50

Part of Setup Yes/No(Boolean) 1

Detection Method Text 255

Additional Information Memo |

Keywords Text 50

Published Yes/No(Boolean) 1

Script Text 50

Relationships: VULNERABILITY- many to one; on

Vulnerability ID

146

Table: VULNERABILITY

Description: Table containing information about vulnerabilities, pri-

mary table in application.

Field List Data Type Size

Vulnerability ID Number (Integer) 2

CounterMeasure ID Number (Integer) 2

Name Text 100

Date Date/Time 8

Description Text 255

Detection Method Text 255

System Impact Text 255

OS ID Number (Integer) 2

Platform ID Number (Double) 8

Tool ID Number (Double) 8

Advisory ID Text 50

ReportCounter Number (Integer) 2

Relationships: HACKER TOOL- one to many; on Vulnerability ID,

COUNTERMEASURE- one to many; on Vulnerability ID,

Attached Advisory Table- one to many; on Vulnerability ID,

Attached Platform Table- one to many; on Vulnerability ID,

Attached OS Table- one to many; on Vulnerability ID

A.6 Mike Neuman's Database

The database maintained by Mike Neuman has the following
at

at-database schema:

Attack Type [Host/Network] (Does this

attack require an 'account' on host?)

Level of Vuln [Root/D.O.S] (Root, denial

of service, user eg. daemon,uucp)

Operating System(s) (List of OS's eg.

SunOS4.1.3 U1, IRIX5.3)

Program/Function Exploited (eg.

tprof, netscape, setreuid(), system())

147

Race Condition [Y/N] (Race conditions

are a di�erent "breed")

Exploit Available [Y/N] (Is an exploit

script available?)

Exploit Script Restrictions (Was it

given with any restrictions? FYEO,

etc)

Error Source Available [Y/N] (Is the

broken source code available?)

Source Status [Copyright] (Is it

copyrighted by AT&T, Sun, etc?)

Patch Available [Y/N] (Is a patch

available to �x the problem?)

O�cially Fixed By (What was the

o�cial patch number?)

Source of Info [8lgm,etc] (Where this bug

was found 8lgm, self, bugtraq...)

Description of Problem Text (A

description of exactly what is

exploited.)

Impact Description Text (A short

description of what can be done with

the 'hole'.)

Exploit Script Text (A

script/instructions that demonstrates

this vulnerability)

Erroneous Source (A listing of the

source code, heavily commented to

show the error)

Patch to Source Text (A patch(1) style

patch to �x the problem, commented

to show why the patch �xes the error)

|||||||||||||||||||||-

148

B VULNERABILITY CLASSIFICATIONS - DETAILED LIST

B.1 Aslam Classi�cation

Aslam [Aslam 1995] developed a taxonomy of security faults in the Unix operating

system . His work includes a classi�cation scheme that allows a grouping of vulnerabilities.

The classi�cation was later re�ned by Ivan Krsul at the COAST laboratory [Aslam et al.

1996]. The labeling of the classes in this classi�cation is as shown in �gures B.1 and B.2.

Figure B.1: Aslam Classi�cation decision tree (part 1 of 2) for the classification feature.

149

Figure B.2: Aslam Classi�cation decision tree (part 2 of 2) for the classification feature.

150

B.2 Knuth Classi�cation

Donald Knuth, author of the TEX typesetting system kept a detailed log of all the faults

�xed in the TEX system for a period of over ten years [Knuth 1989] and developed a detailed

classi�cation of types of faults found in his system:

� Algorithm awry.

� Blunder or botch.

� Cleanup for consistency or clarity. Note: Does not represent a fault.

� Data structure debacle.

� E�ciency enhancement. Note: Does not represent a fault.

� Forgotten function.

� Generalization or growth of ability. Note: Does not represent a fault.

� Interactive improvement. Note: Does not represent a fault.

� Language liability.

� Mismatch between modules.

� Promotion of portability. Note: Does not represent a fault.

� Quest for quality. Note: Does not represent a fault.

� Reinforcement of robustness.

� Surprising scenario.

� Trivial typo.

B.3 Grammar-based Classi�cation

DeMillo and Mathur developed a grammar-based fault classi�cation scheme that takes

into account that syntax is the carrier of semantics [DeMillo and Mathur 1995]. Any error

of a program manifests itself as a syntactic aberration in the code. The classi�cation is

based on the operations that need to be performed to correct the fault.

� Spurious Entity. A fault whose correction requires the removal of its characteristic

substring.

� Missing Entity. A fault whose correction requires the insertion of a syntactic entity

into the incorrect program.

151

� Misplaced Entity. A fault whose correction requires a change in its position within

the code.

� Incorrect Entity. When a fault cannot be classi�ed as a missing entity, a spurious

entity, or misplaced entity then it is classi�ed as a incorrect entity.

B.4 Endres Classi�cation

This classi�er was developed by Endres in [Endres 1975] as an analysis of errors in

system programs.

� Group A

� Machine con�guration and architecture

� Dynamic behavior and communication

� Functions o�ered

� Output listing and format

� Diagnostics

� Performance

� Group B

� Initialization

� Addressability

� Reference to names

� Counting and calculating

� Masks and comparisons

� Estimation of range limits

� Group C

� Placing of an instruction within a module

� Spelling errors in messages and commentaries

� Missing commentaries or
owcharts

� Incompatible status of macros or modules

� Not classi�able

152

B.5 Ostrand and Weyuker's Classi�cation

Ostrand and Weyuker's proposed an attribute categorization scheme for the classi�ca-

tion of faults [Ostrand and Weyuker 1984].

� Major category

� Data de�nition

� Data handling

� Decision

� Decision and processing

� Documentation

� System

� Not an error

� Type

� Address

� Control

� Data

� Loop

� Presence

� Omitted

� Super
uous

� Incorrect

� Use

� Initialize

� Set

� Update

B.6 Basili and Perricone Classi�cation

This classi�er was de�ned by Basili and Perricone in [Basili and Perricone 1984].

� Initialization

� Control structure

153

� Interface

� Data

� Computation

B.7 Origin and causes

This classi�er was originally de�ned in [Longsta� 1997] and attempts to identify the

origins of the vulnerability.

� Lack of training

� Procedures not followed

� Problem re-introduced

� Bug �x not propagated

� Inconsistent speci�cations

� Debug code not removed

� From [Eisenstadt 1997]: Faulty assumption/model or misdirected blame.

B.8 Access required

This classi�er was originally de�ned in [Longsta� 1997] and de�nes the access that is

required to exploit the vulnerability.

� Remote using a common service

� Trusted system

� User account

� Physical access

� Privileged access

B.9 Category

This classi�er attempts to identify the system component that a vulnerability belong

to.

� General system software

� General system utilities

154

� Logging software

� Software that deals with electronic mail

� Software that deals with networking

� Cryptographic software

B.10 Ease of Exploit

This classi�er was originally de�ned in [Longsta� 1997] and attempts to identify the

di�culty of exploiting the vulnerability.

� Simple command

� Toolkit available

� Expertise required

� Must convince a user to take an action

� Must convince an administrator to take an action

B.11 Impact

This classi�er attempts to identify the impact of the vulnerability. This classi�er is

used to de�ne both direct and indirect impacts. Direct impacts are those that are felt

immediately after the vulnerability is exploited and indirect impact are those that ultimately

result from the exploitation of the vulnerability.

� Access to data

� Access to administrative or system data

� Access to user level data

� Loss of data

� System data is lost or corrupted by the exploitation of a vulnerability

� User data is lost or corrupted by the exploitation of a vulnerability

� Execution of commands

� Execution of administrative or system commands

� Generalized root access

� Internal users can obtain generalized root access

155

� External users can obtain generalized root access

� Execution of speci�c system commands

� Internal users can execute speci�c system commands

� External users can execute speci�c system commands

� Execution of user level commands

� Software that is running on behalf of the user can execute a user level com-

mand in violation of access controls set by administrators

� Internal users can execute user level commands in violation of access controls

set by administrators

� External users can execute user level commands in violation of access con-

trols set by administrators

� Execution of code

� Execution of machine language code with system privileges

� Internal users can execute machine language code with privileges

� External users can execute machine language code with privileges

� Execution of machine language code with user privileges

� Internal users can execute machine language code

� External users can execute machine language code

� Execution of scripts with system privileges

� Internal users can execute scripts with privileges

� External users can execute scripts with privileges

� Execution of scripts with user privileges

� Internal users can execute scripts

� External users can execute scripts

� Denial of service

� System resources are exhausted

� System resources are eliminated

156

B.12 Threat

This classi�cation of the threat that vulnerabilities create was extracted from [Power

1996]. It is attributed to Donn Parker of SRI International as a classi�cation of hostile

actions that your adversary could take against you.

� Threats to availability and usefulness

� Destroy, damage or contaminate

� Deny, prolong or delay use of access

� Threats to integrity and authenticity

� Enter, use or produce false data

� Modify, replace or reorder

� Misrepresent

� Repudiate

� Misuse or fail to use as required

� Threats to con�dentiality and possessions

� Access

� Disclose

� Observe or monitor

� Copy

� Steal

� Exposure to threats

� Endanger by exposure to any of the other threats

B.13 Complexity of Exploit

This classi�cation identi�es the complexity of the exploitation of a vulnerability, regard-

less of whether a script or toolkit exists for the exploitation of the vulnerability.

� Exploitation is a simple sequence of commands or instructions

� Exploitation requires a complex set or large number of commands or instructions.

� The exploitation requires timing and synchronization. Typically requires a script that

tries several times and may require slowing the system.

157

B.14 Cohen's Attacks

This classi�cation is a subset of a large (100) list of attacks possible on a system pub-

lished in [Cohen 1997a; 1995].

� Errors and omissions. Erroneous entries of missed entries by designers, implementers,

maintainers, etc. Forgetting to eliminate default passwords, incorrectly setting pro-

tections, etc.

� Trojan horse: A component (HW/SW) that has unadvertised e�ects

� Invalid value on call: Pass invalid values to system calls to break OS

� Undocumented or unknown function exploitations: Same as vernacular meaning

� Implied trust attack: Programs inappropriately trust other programs

� Imperfect daemon exploits: Attacking a daemon that is not perfect

� Data diddling: Illicitly modify data to trick OS into producing wrong results

� Data aggregation: Combine seemingly innocuous data to get valuable information

� Process bypassing: Bypassing some control process that has inadequate controls

� Input over
ow: Attack a program that does not check length of input

� Error-induced misoperation: Errors caused be attack induce incorrect operations

� Audit suppression: Audit trails are prevented from operating properly

� Induced stress failure: Bang on system until they start making mistakes

� Hardware-system failure-
aw: Known hardware or system
aws are exploited

� Network service and protocol: Characteristics of network services are exploited

� Distributed coordinated attacks: Attackers use intermediate systems to attack

� Interprocess communication attacks: Interprocess communication channels are at-

tacked.

� Race conditions: Interdependent sequences of events are interrupted by other events

that destroy critical dependencies

� Inappropriate defaults: Default values leave system open to attack

158

B.15 Cohen's Attack Categories

This classi�cation was developed in [Cohen 1995] and identi�es the category of attacks

possible given a system that contains a vulnerability.

� Illicit modi�cation of information

� Information gets to places it should not go to

� Failure to provide a service

B.16 Perry and Wallich Attack Classi�cation

This is a matrix-based classi�cation scheme in two dimensions: Potential perpetrators

and potential e�ects. Selected values in the matrix are valid entries [Perry and Wallich

1984].

Opera- Progra- Data Internal Outside Intru

tors mmers Entry ders

Physical Bombing

Destruction Short

Circuits

Information Erasing Malicious Malicious Via

Destruction Disks Software Software Modem

Data Malicious False

Diddling Software Data

Entry

Theft of Theft Unauthorized Via

Services as User Action Modem

Browsing Theft Unauthorized Via

of Media Action Modem

Theft of Unauthorized Via

Information Action Modem

159

B.17 Howard's Process-Based Taxonomy of Network Attacks

[Howard 1997] proposes a classi�cation of computer and network attacks that identi�es

the process that \links" attackers to their ultimate objectives. The \link" between attackers

and objectives is established through an operational sequence as follows: Attackers)

tools) access) results) Objectives.

The classi�cation can be represented as a classi�cation tree that has multiple levels, and

for which at each level a choice must be made between a series of values. Table B.1 shows

the possible values for each level in the tree.

Table B.1: Values allowed for each level of the Howard's Process Based Taxonomy of

Network Vulnerabilities

Level Choice of Values

Attackers Hackers, spies terrorists, corporate raiders, professional crim-

inals, or vandals

Tools User command, script or program, autonomous agent,

toolkit, distribution tool, or data tap.

Access (1 of 4) Implementation vulnerability, design vulnerability, and con-

�guration vulnerability.

Access (2 of 4) Unauthorized access, or unauthorized use.

Access (3 of 4) Processes.

Access (4 of 4) Files, or data in transit.

Results Corruption of information, disclosure of information, theft of

service, denial of service.

Objectives Challenge or status, political gain, �nancial gain, or damage.

B.18 Dodson's Classi�cation Scheme

This classi�cation was developed in [Dodson 1996] for the classi�cation of computer

vulnerabilities such that the classes identify generic
aws in software. These can be detected

160

by using the Tester's Assistant, a tool used to automate software testing [Fink et al. 1994].

This classi�cation is an extension of that proposed in [Aslam 1995].

In this classi�cation each class consists of a 20-tuple of ones and zeros. Each element in

the 20-tuple indicates if a question, from the list that follows, was answered with a yes or

no answer.

1. Did the error occur when a process attempted to read or write beyond a valid address

boundary?

2. Did the error occur when a system resource was exhausted?

3. Did the error result from an over
ow of a static-sized data structure?

4. Did the error occur when a subject invoked an operation on an object outside its

access domain?

5. Did the error occur as a result of reading or writing to/from a �le or device outside

a subject's access domain?

6. Did the error result when an object accepted input from an unauthorized subject?

7. Did the error result because the system failed to properly or completely authenticate

a subject?

8. Did the error occur because a program failed to parse syntactically correct input?

9. Did the error result when a module accepted extraneous input �elds?

10. Did the error result when a module did not handle missing input �elds?

11. Did the error result because of a �eld-value correlation error?

12. Did the error result because the system failed to handle an exceptional condition

generated by a functional module, device, or user input?

13. Is the error exploited during a timing window between two operations?

14. Did the error result from inadequate or improper serialization of operations?

15. Did the error result from an interaction in a speci�c environment between functionally

correct modules?

16. Did the error result only when a program is executed on a speci�c machine, under a

particular con�guration?

17. Did the error occur because the operational environment is di�erent from what the

software was designed for?

161

18. Did the error result because a system utility was installed with incorrect setup pa-

rameters?

19. Did the error occur by exploiting a system utility that was installed in the wrong

place?

20. Did the error occur because access permissions were incorrectly set on a utility such

that it violated the security policy?

The classi�cation is only applied to eight vulnerabilities and elements 2, 7, 9, 10, 16,

18, 19, and 20 are not set for any of these vulnerabilities.

162

C IMPROVEMENTS ON PRIOR CLASSIFICATIONS

As stated in Section 3.1.2, there are four properties that must be satis�ed by the tax-

onomic characters (or features) that are used in classi�cations: Objectivity (the features

must be identi�ed from the object known and not from the subject knowing), Determinism

(there must be a clear procedure that can be followed to extract the feature), Repeatability

(several people extracting the same feature for the object must agree on the value observed),

and Speci�city (the value for the feature must be unique and unambiguous). As shown in

Section 3.2, some of the prior classi�cations presented were ambiguous, were not repeatable,

or not speci�c.

A solution to these problems is to correct these classi�cations so they will satisfy as

many|if not all|of the desirable properties. For example, classi�cations that are ambigu-

ous can be �xed by providing instructions that will resolve the ambiguities. Classi�cations

that are not deterministic can be �xed by providing a procedure that must be followed for

the determination of the class.

In this section we present modi�ed versions of the classi�cations listed in Section 3.2

providing decision trees that will both remove ambiguities and provide a deterministic

procedure that can be used to determine the value of a class.

The selection of values using these trees does not solve the problem of objectivity because

the nodes in the decision trees may have more than one fundamentum divisionis.

We argue that it is desirable to have these �xed classi�cations rather than the old. Any

analysis with the old classi�cations is likely to be biased and contested because di�erent

researchers can come to di�erent conclusions based on the values they choose for their

classes, and there is no procedure that can resolve such con
icts.

In the development of these decision trees we chose questions that are as objective

as possible and where appropriate we have chosen to annotate the decision procedure to

clarify doubts and increase the quality of these features. These annotations are indicated

by a number inside a circle in the lower right corner of the corresponding decision.

163

C.1 Indirect Impact

This classi�cation identi�es the indirect or ultimate impact of the vulnerability. Indirect

impacts are those that ultimately result from the exploitation of the vulnerability. See

Figure C.1.

C.2 Direct Impact

This classi�cation identi�es the direct impact of the vulnerability. Direct impacts are

those that are felt immediately after the vulnerability is exploited. See Figure C.2

C.3 Access Required

This classi�cation was originally de�ned in [Longsta� 1997] and identi�es the access

that is required to exploit the vulnerability. See Figure C.3

C.4 Complexity of Exploit

This classi�cation identi�es the complexity of the exploitation of a vulnerability, re-

gardless of whether a script or toolkit exists for the exploitation of the vulnerability. See

Figure C.4

1. The notion of a simple sequence of commands will, of course, vary from person to per-

son. For this classi�cation a simple sequence of commands is considered to be a linear

sequence of commands (i.e. no loops, gotos, etc.) of no more than a dozen commands.

Also, these commands must be commands supported by the operating system, com-

mon applications and utilities. Commands that involve scripts and applications that

the exploiter must compile, install, etc., do not qualify.

2. Shell scripts, command interpreter source �les and macros all qualify. Programs that

are implemented in a general purpose programming language (including languages

such as Perl) do not qualify.

3. Typically requires a script or application that tries several times and may require

slowing down the system.

4. Applications that the exploiter must compile, install, etc.

164

C.5 Category

This classi�cation identi�es the system component that a vulnerability belongs to. See

Figure C.5

1. For this classi�cation the operating system is the kernel and all the utilities that are

common to all distributions of that operating system, and that are minimally required

for its operation.

C.6 OS Type

This classi�cation identi�es the class of operating systems that are a�ected by the

vulnerability. See Figure C.6

165

Figure C.1: Selection decision tree for the indirect impact classi�cation.

166

Figure C.2: Selection decision tree for the direct impact classi�cation.

167

Does the exploitation of
the vulnerability require
that the user have a user
account in the system?

Does the exploitation of
the vulnerability require
that the user use a remote
system using a common
service?

Remote Access

Does the exploitation
require an account in a
trusted system but not
one in the system
being exploited?

Trusted Sys-
tem

Physical Access

Yes

Yes

Yes

Yes

No

No

No

No

No

START

Yes

Does the exploitation of
the vulnerability require
that the user have physi-
cal access to the system?

User Account

Does the exploitation of
the vulnerability require
that the user have a privi-
leged account in the
system?

Pr ivileged Access

Other

Figure C.3: Selection decision tree for the access required classi�cation.

168

Figure C.4: Selection decision tree for the complexity of exploit classi�cation.

169

Figure C.5: Selection decision tree for the category classi�cation.

170

Is the vulnerability operat-
ing system independent? OS Independent

Yes

No

START

Other

Is the vulnerability
present only on some
(or all) Unix variants?

Is the vulnerability
present only on some

(or all) Microsoft Win-
dows NT variants?

Is the vulnerability
present only on some
(or all) DOS variants?

Is the vulnerability
present only on some
(or all) VMS variants?

Is the vulnerability
present only on some (or

all) MacOS variants?

Unix

Windows

DOS

VMS

Mac OS

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Is the vulnerability
present on more than
one operating system?

Multiple OS
Yes

No

Figure C.6: Selection decision tree for the os type classi�cation.

VITA

171

VITA

Ivan Krsul was born on the 5th of October 1966 in La Paz, Bolivia. He received his

masters degree in computer science from Purdue University in May 1994. He received

his Bachelor of Science in computer engineering from The Catholic University of America,

Washington D.C., in May 1989, and his high school degree from Colegio Saint Andrews in

La Paz, Bolivia, in December 1984.

