COAST Tech Report 97-22

PARALLEL ALGORITHMS FOR LONGEST INCREASING
CHAINS IN THE PLANE AND RELATED PROBLEMS

by Mikhail Atallah, Danny Z. Chen, and
Kevin S. Klenk

Center for Education and Research in
Information Assurance and Security,
Purdue University, West Lafayette, IN 47909

Parallel Processing Letters Vol. 9 No. 4 (1999) 511-520
© World Scientific Publishing Company

PARALLEL ALGORITHMS FOR LONGEST INCREASING
CHAINS IN THE PLANE AND RELATED PROBLEMS

MIKHAIL J. ATALLAH*, DANNY Z. CHEN' and KEVIN S. KLENK'

Received February 1999
Revised November 1999
Accepted by I. Stojmenovic

ABSTRACT

Given a set S of n points in the plane such that each point in S is associated with a nonnegative
weight, we consider the problem of computing the single-source longest increasing chains among
the points in S. This problem is a generalization of the planar maximal layers problem. In this
paper, we present a parallel algorithm that computes the single-source longest increasing chains in
the plane in O(logZ 1) time using O(n?/ log3 n) processors in the CREW PRAM computational
model. We also solve a related problem of computing the all-pairs longest paths in an n-node
weighted planar st-graph, in O(log®n) time using O(n?/logn) CREW PRAM processors. Both
of our parallel algorithms are improvement over the previously best known results.

1 Introduction

A point p in the plane is said to dominate another point q if and only if x(p) > x(q) and y(p) > y(q),
where x(p’) and y(p') respectively denote the x- and y-coordinates of a point p’. Let S be a set of n
points in the plane such that each point p in § is associated with a nonnegative weight w(p), and let
o= (p1,P2,...,Px) be a sequence of distinct points in S. The sequence ¢ is increasing if and only
if p; dominates p;_1 for all i, 1 <1 < k. We also call 0 an increasing chain. The length of ¢ is the
sum of the weights of the points in ¢. The chain ¢ between py and py is longest if no other pi-to-px
increasing chain passing through the points in S has a length greater than ¢. In this paper, we study
the problem of computing in parallel longest increasing chains in S and some related problems.
The notions of dominance between points and of increasing chains are useful in many probems in
computational geometry, graph theory, scheduling, and economics, including problems on indepen-
dent dominating sets in permutation graphs and problems on increasing subsequences of a sequence
of numbers (cf. [5] for more on these). The problem of computing a longest increasing subsequence
of a number sequence, for instance, has appeared in a number of areas, and there are O(nlogn)
time sequential algorithms for this problem (see [9-11] among others). In particular, increasing sub-

sequence problems occur in the context of circle graphs, circular-arc graphs, interval graphs, and

“Dept. of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA, E-mail: mja@cs.purdue.edu.
This author gratefully acknowledges the support of the COAST Project at Purdue University and its sponsors, in
particular Hewlett Packard, DARPA, and the National Security Agency.

TDept. of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556-5637, USA, E-mail:
{chen,kklenk}@cse.nd.edu. This research of this author was supported in part by the National Science Foundation
under Grant CCR-9623585.

511

512 M. J. Atallah, D. Z. Chen & K. S. Klenk

permutation graphs (see [3] for references). In this paper, we shall also exploit a connection between
increasing chains and paths in st-graphs.

For sake of simplicity, we shall henceforth refer to all increasing chains simply as chains. Also,
we will focus on computing the lengths of the longest chains/paths. Our algorithms can be easily
modified to generate the actual longest chains/paths as well, by using standard techniques.

Some interesting work has been done on solving various chain problems. Atallah and Kosaraju [5)
presented optimal sequential O(n logn) time algorithms for several problems related to planar chains.
Atallah and Chen [3] gave a sequential O(n?) time algorithm for the unweighted planar all-pairs
longest chains and a parallel algorithm for the weighted planar all-pairs version in O(log?n) time
using O(n?/logn) CREW PRAM processors.

The single-source longest chains problem is that of finding longest chains from a fixed source point
of S to all other points of S. The single-source problem is in fact a generalization of the maximal
layers problem, which computes the mazimal layers of the points in S as follows: Find all the points of
S that are not dominated by any other point of S, call these layer-1 points, and remove them from S;
produce points of subsequent layers by repeating this process on S, until S becomes empty. Optimal
sequential O(nlogn) time solutions for the planar maximal layers problem easily follow from the
known algorithms for the longest increasing subsequence [9-11]; an O(nlogn) time algorithm for the
3-D version of the problem was recently given by Atallah, Goodrich, and Ramaiyer [4]. Aggarwal
and Park [1] gave a parallel algorithm for the planar maximal layers problem that takes O(log?n)
time and O(n?/logn) CREW PRAM processors.

This paper extends Atallah and Chen’s parallel approach [3] to computing the planar single-
source longest chains. One of the ways in which this extension differs from [3] is that it involves a
new implicit spreading idea (to be described in Section 2) that helps us overcome the difficulty of
extending the solution for a smaller size problem to one for a larger size problem (this need did not
occur in [3]). Another idea involves a different kind of partitioning scheme, leading to a logarithmic
number of iterations that, while performed in sequence, individually involve parallelism in the way
they are performed. Our parallel single-source algorithm takes O{log?n) time using O(n?/ log®n)
processors. Our solution, when applied to the (simpler) planar maximal layers problem, improves the
processor bound of Aggarwal and Park [1] by a log® n factor while retaining the same time bound.

The computational model that we use is the CREW PRAM ([13]. Recall that the CREW PRAM
is a synchronous parallel model in which each processor can access any memory location in constant
time. It allows simultaneous accesses to the same memory location by multiple processors only if all
such accesses are for reading data only.

We also show a new application of the parallel all-pairs longest chains algorithm by Atallah and

Chen [3], to computing the all-pairs longest paths in weighted planar st-graphs. Briefly, a planar

Parallel Algorithms for Longest Increasing Chains ... 513

st-graph is a planar directed acyclic graph with exactly one source s and exactly one sink t that is
embedded in the plane such that s and t are both on the boundary of the outer face [16]. Planar
st-graphs have been used in many applications: computational geometry, graph drawing, motion
planning, partial orders, planar graph embedding, and VLSI layout (see [16] for references).

We are not aware of any previous parallel algorithm for computing the all-pairs longest paths
in weighted planar st-graphs. Of course, one could attempt to apply known parallel algorithms
for shortest paths in directed graphs to solve this st-graph problem [8,12,15]. In particular, Co-
hen [8] gave algorithms that compute shortest paths in planar directed graphs, in O(log*n) time
and O(n?/log>n) CREW PRAM processors.

Our algorithm takes advantage of the underlying geometry of a planar st-graph to enables us to
compute the all-pairs Jongest paths in an n-node weighted planar st-graph in O(log?n) time using
0(n?/logn) CREW PRAM processors. Specifically, our computation is performed by reducing the
all-pairs longest paths in a planar st-graph to that of the all-pairs longest chains in the plane.

2 Preliminaries

As in [3], our solution is based on fast matrix multiplications of particular types of matrices (specif-
ically, monotone matrices) in the (max, +) closed semi-ring, i.e., (M’ x M")(1,j) = max, {M'(i,k) +
M*(k,j)}. All of our matrix multiplications are of this form.

Atallah and Chen [3] considered the problem of computing an n x n matrix D of the lengths
of the longest chains between =ach pair of points in S. Thus, D(p, q) gives the length of a longest

p-to-q chain, for any p,q € S. The computation of D is based on the following observation.

Lemma 1 ([3]) Let Vi, Vi and V; be three vertical lines with x(V1) < x(Vim) < x(Vr). Let Sy (resp.,
Sy) be the set of points in S whose x-coordinates are > x(Vy) (resp., > x(Vm)) and < x(Vm) (resp.,
< x(V;)). Let the set Xy (resp., X;) contain the horizontal projections of the points of Sy (resp., S;)
onto Vi (resp., Vi), and X contain the horizontal projections of the points of Sy U Sy onto Vi (see
Figure 1). Let the weights of the points in Xy (resp., Xm, X¢) be all zero. Let O = S;USUX{UXUX:.
Then for every increasing chain C through the points in Q from a point p € Xy to a point q € X,
y(p) < y(q), there is a p-to-q increasing chain C' through Q such that C' is at least as long as C

and C' goes through some point w € Xp.

Let M[A, B] denote a matrix that contains the lengths of longest chains starting from a point in
the set A, ending at a point in the set B, and passing through a particular set of points. Lemma 1
implies that M[Xy, X;] = M[X(, Xi] X M[Xim, X;]. Atallah and Chen [3] also showed that the matrices
MIX1, Xily, MIXy, Xinl, and M X, X;] have special properties that enable fast matrix multiplications

(by using the monotone matrix searching algorithms in [1,2]). This is summarized in the next lemma.

514 M. J. Atallah, D. Z. Chen & K. S. Klenk

Figure 1: Illustrating Lemma 1.

Lemma 2 ([3]) Let Vi, Vi, Vi, X1, Xm, Xr, and Q be defined as in Lemma 1. Let the point set
Xy (resp., Xm, X;) be ordered by increasing y-coordinates along Vy (resp., Vi, V.). Assume that the
size |X1| of Xy is proportional to |X;|. Then, given the matrices M[X(, Xm] and M[Xm, X+, the matriz
MIXy, X, can be computed in O(log|Xi|) time and O(|Xy?/log|Xy|) CREW PRAM processors.

Lemma 2 was the basis for a two-phase algorithm for computing the all-pairs planar longest
chains in [3], which we shall extend. We sketch below some needed structures of our algorithm.

Let S ={p1,p2,...,Pn}. Without loss of generality (WLOG), we assume that x(p;) < x(p2) <

- < x(pn). Let Vp,Vi,...,Vy be vertical lines such that x(Vo) < x(p1),x(pn) < x(Va), and
x(pi) < x(Vi) < x(pis1) forallie {1,2,...,n—1}. Let T be a complete n-leaf binary tree. For the
i-th leaf v of T in the left-to-right order, associate with v the region I, of the plane that is between
Vi_1 and V. For each internal node v of T, associate with v the region I, consisting of the union of
the regions of its children. That is, if v has children u and w, then I, = I, UI,,. The tree T is called
the computation free on the point set S.

Let v be a node of T. Suppose that the left (resp., right) boundary of I, is V; (resp., V;), and let
Sv=SNI,. Let L, (resp., R,) be the set consisting of the horizontal projections of S, onto V; (resp.,
V;). If v is an internal node of T with left child u and right child w, then let Y, denote R, UL,,, ie.,
the horizontal projections of the points of S, onto the vertical line that separates the region I, from
the region I,,. The weights of all projection points are zero.

Atallah and Chen’s algorithm proceeds in the following two phases. In Phase 1, start at the
leaves and go up the tree T level by level, computing, at each level, the M[Ly, R,] matrices for nodes
v of T, which contain the lengths of all the L,-to-R, longest chains (these chains begin on L, and end
on Ry, possibly going through points in S, along the way). For an internal node v of T, M[L,,,R,] is
computed from the two matrices M[L,,Y,] and M[Y,, R,] based on Lemma 2. Note that when the
computation reaches v, only the matrix M[Ly, Ry] (resp., M[L,y, Ryw]) is available from its left child
u (resp., right child w). The matrices M[L,, Y,] and M[Y,, R,] need to be obtained from MIL,, Ry]

Parallel Algorithms for Longest Increasing Chains ... 515

and M[L,,, Ry], respectively. M[L,,Y,] is computed, in O(logn) time and O(|S,[*/logn) processors,”
from MLy, Ry] by the following spreading procedure (the computation of M[Y,, R,] is similar): (1)
Compute, for every point z € L, (resp., Y,), the lowest (resp., highest) point 1(z) (resp., h(z)) such
that 1(z) € Ly (resp., h(z) € Ry) and that y(l{z)) > y(z) (resp., y(h(z)) < y(z)), and (2) for every
pair of points p and g such that p € L, and q € Y,, do the following: If y(p) < y(lUp)) < y(q), then
let M[T;\,,Y\,](p, q) = M[Ly, Rul(Up), h(q)); otherwise, let M[L,, Y\}{p,q) = 0.

The matrices M[L,, Y,], M[Y, R,], and M[L,, R,] are stored at v (even after the computation has
reached higher level nodes of T); these matrices are useful in Phase 2. Phase 1 is accomplished in
O(log? n) time, O(n?/log?n) processors, and O(n?) space.

Phase 2 is a top-down computation, starting at the root of T and going downward to the leaves,
one level at a time. This phase uses the information produced in Phase 1 to obtain the lengths of
the all-pairs longest chains. In particular, for every pair of nodes u,w at the same level of T such
that u is to the left of w, it computes the matrix M[Ry, 1,].

Note that, although the above spreading procedure ezplicitly obtains the matrix M[L, Y,] from
the matrix M[L,, R,] in [3], we in this paper choose to represent M[Ly,Y,] implicitly. That is, the
matrix M[L,, Y] can be fully described by ML, R,] and the two sorted lists L, and Y,. To obtain
this representation of MIL,,Y,], we only need to perform Step 1 of the spreading procedure (but
not Step 2). This takes O(log(|L,|+ [Y4!)) time and O((|Ly| +[Yy])/ log(ILy| + |Y4|)) processors. After
that, useful information about the matrix M[L,,Y,] is readily available. For example, every entry
MIL,, Y+l(p, g) can be computed in O(1) time and one processor from M[L,,, Ry, as in Step 2 of the
above spreading procedure. We call this the implicit spreading procedure. The implicit spreading

procedure is important to our single-source algorithm in the next section.

3 Single-source longest chain algorithm

This section presents the O(log? 1) time, O(n?/ log3 1) processor algorithm for computiﬁg the single-
source longest chains in the plane. WLOG, we assume that the source point p* dominates all other
points in S. We also assume that we have already sorted the points in S by their x-coordinates and
by their y-coordinates, in O(logn) time and O(n) processors [13].

The all-pairs longest chain algorithm in [3] relies heavily on the multiplication of two m x m matri-
ces via monotone matrix searching. For our single-source computation, we often rely on multiplying

an m X m matrix with an m x 1 matrix. The following lemma is for this purpose:

Lemma 3 Let V| and V, be two vertical lines such that x(V1) < x(Vy). Let S’ be the set of points
of S that are between Vi and V, with m = |S’|. Let X, (resp., X;) be the set of horizontal projection

points of S' onto Vi (resp., V) that are ordered by increasing y-coordinates and whose weights are

516 M. J. Atallah, D. Z. Chen & K. S. Klenk

Sk—1, Sk—2 So e

Vi Viotr V2 Vi Vo

Iterations

Figure 2: Illustrating the single-source longest chain algorithm.

all zero. Then, given the m x m matriz M[Xy, X;] and the m x 1 matriz M[X;,p*] (for lengths of
the longest chains through the points of S), the m x 1 matriz M[Xq, p*] can be computed in O(logm)
time and O(m) EREW PRAM processors.

Proof: This is an easy adaptation of Lemma 2 to the single-source situation. In this case, multi-
plying an m x m length matrix by an m x 1 matrix is the main operation, which can be done by the
O(log m) time, O(m) processor algorithm for searching an m x m monotone matrix in [6]. O

Our algorithm below for computing the single-source longest chains in the plane works in an

iterative fashion, taking advantage of the monotonicity shown in Lemmas 1 and 3.

1. Partition the set S —{p*} of n—1 points into k subsets of (roughly) size n/logn each, by using
k = logn vertical lines Vo, V1, ..., Vi, in the right-to-left order (see Figure 2). WLOG, we
assume that no point of S is on any line V; and that the source point p* is the only point of S

to the right of the line V.

2. Let Si be the subset of the points in S that lie between the vertical lines V; and Vi41. Project
horizontally the points of S; onto V; and Vi (we call these projection points the boundary

points for S;). Let the weights of all the projection points be zero.

3. Compute the lengths of the longest chains from the projection points on V; to the projection

points on Vi, (through the points of S;).

4. For i=0,1, ..., k—1, iteratively compute the lengths of the longest chains from the source

point p* to the boundary points on each vertical line V;.
5. Compute the lengths of the longest chains from p* to the points in every subset S;.

We now discuss the details of the steps of the above algorithm. Steps 1 and 2 can be done easily
in O(logn) time using O(n) processors. Hence we only need to focus on Steps 3, 4, and 5.
The computation of the longest chain lengths in Step 3 from the projection points on Vi to the

projection points on Vj1 can be performed in parallel for every i = 0,1, ..., k—1, by using Phase 1

Parallel Algorithms for Longest Increasing Chains ... 517

of the algorithm in [3]. We run Phase 1 of [3] on each point set S;, generating and maintaining
Si|-leaf computation tree T on S;, together with all the length matrices produced during this process.
Let R(S;) (resp., L(S;)) be the set of projection points of S; onto V; (resp., Viy1). Then after Step 3,
the length matrix M[L(Si), R(Si)] is available at the root node of the tree T;. Each tree T; and the
length matrices stored at its nodes are useful in the subsequent steps of the algorithm. Phase 1 of
the algorithm in [3] takes O(log? m) time, O(m?2/ log? m) processors, and O(m?) space on a set of
m points. Thus, the computation on each point set S; (whose size is O(n/logn)) in Step 3 takes
O(log?n) time, O(n2/ log4 n) processors, and O(n?/log?n) space. Summing over all the k =logn
sets Sy, this step takes O(logn) time, O(n?/log> n) processors, and O(n?/logn) space.

Step 4 computes the longest chain lengths from the boundary points of each point set S; to
the source point p*. This computation is done iteratively, as follows. Let P; be the set of the
horizontal projection points of all the points in S onto the vertical line V; (thus [P;] = n). Then
for every i = 0,1,...,k — 1, compute, by using the implicit spreading procedure in Section 2, the
(implicitly represented) length matrix M[Pi1q, Pyl of size n x n from the (n/logn) x (n/logn)
matrix M[L(S;),R(S:)] (from Step 3, MIL(S;),R(S;)] is already available). This takes O(logn) time
and O(n/logn) processors for each i, and O(logn) time and O(n) processors for all the k = logn
instances. (Note that, if we had used an ezplicit representation for every n x n matrix M[P;,1, Py,
then it would have taken O(logn) time and O(n?/logn) processors to obtain each such matrix, and
O(logn) time and O(n?) processors to obtain all the logn such matrices, clearly too expensive an

approach!) Next, the following iterative procedure is performed:

First, let the length matrix M[Py, p*] be such that every entry M[Po, p*1(p,p*) = w(p*),
where w(p*) is the weight of p*. This is because there is no point of S — {p*} to the
right of the line Vj (see Figure 2). For any i € {0,1,...,k— 2}, once the matrix M[P;, p*]
is available, compute M[P;1,p*] by multiplying the n x n matrix M[P;;1, P;] with the

n x 1 matrix M[P;, p*], in O(logn) time and O(n) processors based on Lemma 3.

Finally, extract the matrix M[R(S;), p*] from MIP;, p*], for every i € {0, 1,...,k~1}. Since there are
k—1=0(logn) iterations to perform, Step 4 takes altogether O(log2 1) time and O(n) processors.

For Step 5, recall that for every i € {0,1,...,k — 1}, we have maintained (in Step 3) the compu-
tation tree T; on the point set S; together with a collection of length matrices stored at the nodes of
Ti. These length matrices were computed on S; by using Phase 1 of the algorithm in [3]. Step 5 uses
these matrices to compute the longest chain lengths from p* to all the points in every S;.

In Step 5, a top-down computation is performed on each tree F;. For an internal node v of Tj,
let v be associated with the region I, of the plane that is between the vertical lines Hi(v) and H.(v).

For example, the root of T; is associated with the region bounded by the vertical lines Vi and Vi4y.

518 M. J. Atallah, D. Z. Chen € K. S. Klenk

Let L, (resp., Ry) be the set consisting of the horizontal projections of S N I, onto Hy(v) (re'sp.;
H:(v)). Let Hm(v) be the vertical line separating the regions I,, and I,,, where u and w are the left
and right children of v, and let Y, be the set consisting of the horizontal projections of S N I, onto
Hm(v). Suppose that the top-down computation now reaches the node v and assume that the length
matrix M[Ry,p*] is already available (note that, initially, the matrix M[R(S;),p*] is available from
Step 4). At v, the matrix M[Y,, p*] is first computed; this is done by multiplying the matrix M[Y,, R,]
(available from Step 3) with the matrix M[Ry,p*], in O(log[Ry|) time and O(|R,|) processors based
on Lemma 3. The matrix M[Ry, p*] is then extracted from MIY,,p*] and the matrix M[R,,,p*] is
extracted from M[R,, p*].” After that, the computation is carried out recursively at each child of v.
T; has O(logn) levels and each level of T; uses O(logn) time and altogether O(|S;|) processors to
compute. Hence, over all k = logn point sets S;, Step 5 takes O(logZ) time and O(n) processors.
Summing over all steps, our parallel single-source algorithm presented takes O(log2 n) time,
0O(n?/log®>n) CREW PRAM processors, and O(n2/ logn) space. As mentioned before, this algo-
rithm also solves the maximal layers problem in the same complexity bounds (with the weights of
all the points of S being a unit). In comparison, Aggarwal and Park’'s CREW PRAM algorithm for
the maximal layers problein [1] takes O(log®n) time, O(n?/logn) processors, and O(n?) space.
Remark: We should point out that there is a trade-off between the time and processor/space
bounds in our single-source algorithm, based on parameter k. By using a larger value of k, one can
reduce the processor/space bounds at the expense of a larger time bound. For example, if we choose
k = log? n (instead of logn), then the time bound increases to O{log® n) while the processor (resp.,
space) bound decreases to O(n2/log>n) (resp., O(n?/log?n)). The time x processors product of

the algorithm with k = log? n is hence a factor of logn smaller than the one with k = logn.

4 All-pairs longest paths in planar st-graphs

This section presents an O(logZn) time, O(n2/logn) CREW PRAM processor algorithm for com-
puting the all-pairs longest paths in a weighted planar st-graph G.

A planar st-graph is a planar directed acyclic graph with exactly one source s and exactly one
sink t, that is embedded in the plane such that s and t are both on the boundary of the outer face.
A weighted planar st-graph is a planar st-graph such that each of its edges e is associated with a
nonnegative weight w(e). As in [16], we assume that the input graph representation for the weighted
planar st-graph G is already embedded (i.e., for each vertex v of G, the cyclical ordering of the
neighboring vertices of v in the embedding is given).

As mentioned earlier, we would like to use the all-pairs longest chains result of [3] to compute

the all-pairs longest paths in a weighted planar st-graph. To do this, we need to reduce the graph

Parallel Algorithms for Longest Increasing Chains ... 519

problem to the geometric problem. Two problems need to be solved for this reduction: (1) We need
to map the st-graph G onto a point set S in the plane in such a way that all directed paths in G
are preserved by the dominance relation among the points in S. (2) We need to convert the weight
information of the edges ih G to the weights of the points in S.

Our approach depends on the following lemma:

Lemma 4 ([7,14,16]) Let G be an embedded planar st-graph with n vertices. There exist two
total orders on the vertices of G, denoted by <| and <., such that for any two vertices u and v of G,
there is a directed path from u to v in G if and only if W <; v and U <, v. Furthermore, the orders

<) and <; can be computed in O(logn) time using O(n/logn) EREW PRAM processors.

A parallel algorithm for Lemma 4 can be found in [16]. The total orders shown in Lemma 4 allow
us to solve our first problem, which is to reduce a planar st-graph to a point set in the plane. Given
a planar st-graph with n vertices, we simply obtain the two orderings <; and <; by Lemma, 4. These
orderings map the vertices of the graph onto points in the plane, with one ordering specifying the
x-coordinates of the points and the other ordering specifying the y-coordinates of the points.

We also need to solve the second problem, by putting the weights of the edges in a graph onto the
vertices in another “equivalent” graph. This is done as follows: (a) Let the weights of all (original)
vertices of the st-graph G be zero; () for each (original) edge e = (u,v) € G, insert an “artificial
vertex” z such that z splits e into two edges (u,z) and (z,v), and let w(z) = w(e); (c) let the
weights of all edges in the (new) graph be zero. This process clearly creates a new planar st-graph
G’ with O(n) weighted vertices (and hence O(n) zero-weight edges), such that all longest paths in
G’ between the original vertices of G are equivalent to their longest paths in G. It is easy to convert
G into G’ in O(logn) time and O(n/logn) processors.

Therefore, our reduction from the weighted planar st-graph G to a point set S in the plane
consists of the following two steps: (i) Create G’ from G, and (iz) map G’ onto a set S of O(n)
weighted points (i.e., the weight of each point in S is the same as that of its corresponding vertex in
G’). This reduction clearly takes O(logn) time and O(n/logn) processors.

Once we obtain the set S of O(n) weighted points in the plane, we compute the all-pairs longest
chains passing through the points in S, by using the all-pairs algorithm in [3]. By Lemma 4, the
directed paths between the vertices in G’ correspond precisely to the dominance relation between
the points in S. Hence the lengths of the all-pairs longest paths in G’ (and hence in G) can be easily
obtained from the lengths of the all-pairs longest chains passing through the points in S.

Our time and work bounds are dominated by Atallah and Chen’s all-pairs longest chains algo-

rithm [3]. Thus, our algorithm takes O(log?n) time and O(n?/logn) CREW PRAM processors.

520 M. J. Atallah, D. Z. Chen & K. S. Klenk

References

(1]

A. Aggarwal and J. Park. Notes on searching in multidimensional monotone arrays. In Pro-
ceedings of the 29th Annual Symposium on Foundations of Computer Science, pages 497-512.
IEEE, 24-26 Oct. 1988.

A. Apostolico, M. J. Atallah, L. L. Larmore, and S. McFaddin. Efficient parallel algorithms for
string editing and related problems. SIAM J. Comput., 19(5):968-988, Oct. 1990.

M. J. Atallah and D. Z. Chen. Computing the all-pairs longest chains in the plane. International
Journal of Computational Geometry & Applications, 5(3):257-271, 1995.

M. J. Atallah, M. T. Goodrich, and K. Ramaiyer. Biased finger trees and three-dimensional
layers of maxima. In Proceedings of the Tenth Annual Symposium on Computational Geometry,
pages 150-159. ACM, 6-8 June 1994.

M. J. Atallah and S. R. Kosaraju. An efficient algorithm for maxdominance, with applications.
Algorithmica, 4:221-236, 1989.

M. J. Atallah and S. R. Kosaraju. An efficient parallel algorithm for the row minima of a totally
monotone matrix. Journal of Algorithms, 13(3):394-413, Sept. 1992.

G. Birkhoff. Lattice theory. American Mathematical Society Colloguium Publications, 25, 1979.

E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decomposition. Journal
of Algorithms, 21(2):331-357, Sept. 1996.

R. B. K. Dewar, S. M. Merritt, and M. Sharir. Some modified algorithms for Dijkstra’s longest
upsequence problem. Acta Inf., 18(1):1-15, 1982.

E. W. Dijkstra. Some beautiful arguments using mathematical induction. Acta Inf., 13(1):1-8,
1980.

M. L. Fredman. On computing the length of longest increasing subsequences. Discrete Mathe-
matics, pages 29-35, 1975.

Y. Han, V. Y. Pan, and J. H. Reif. Efficient parallel algorithms for computing all pair shortest
paths in directed graphs. Algorithmica, 17(4):399-415, Apr. 1997.

J. JAJ4. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Massachusetts, 1992.

T. Kameda. On the vector representation of the reachability in planar directed graphs. Inf.
Process. Lett., 3(3):75-77, Jan. 1975.

P. N. Klein and S. Subramanian. A linear-processor polylog-time algorithm for shortest paths
in planar graphs. In Proceedings of the 34th Annual Symposium on Foundations of Computer
Science, pages 259-270. IEEE, 3-5 Nov. 1993.

R. Tamassia and J. S. Vitter. Parallel transitive closure and point location in planar structures.
SIAM J. Comput., 20(4):708-725, Aug. 1991.

