
Compact Recognizers of Episode Sequences

Alberto Apostolico�

Purdue University � Universit�a di Padova

Mikhail J� Atallah y

Purdue University

Abstract

Given two strings T � a� � � �an and P � b� � � � bm over an alphabet �� the problem of testing
whether P occurs as a subsequence of T is trivially solved in linear time� It is also known
that a simple O�n log j�j� time preprocessing of T makes it easy to decide subsequently for any
P and in at most jP j log j�j character comparisons� whether P is a subsequence of T � These
problems become more complicated if one asks instead whether P occurs as a subsequence of
some substring Y of T of bounded length� This paper presents an automaton built on the
textstring T and capable of identifying all distinct minimal substrings Y of X having P as a
subsequence� By a substring Y being minimal with respect to P � it is meant that P is not
a subsequence of any proper substring of Y � For every minimal substring Y � the automaton
recognizes the occurrence of P having lexicographically smallest sequence of symbol positions
in Y � It is not di�cult to realize such an automaton in time and space O�n�� for a text of
n characters� One result of this paper consists of bringing those bounds down to linear or
O�n logn�� respectively� depending on whether the alphabet is bounded or of arbitrary size�
thereby matching the respective complexities of o��line exact string searching� Having built
the automaton� the search for all lexicographically earliest occurrences of P in X is carried out
in time O�n 	

Pm

i��
rocci � i � logn � log j�j�� where rocci is the number of distinct minimal

substrings of T having b� � � � bi as a subsequence� All log factors appearing in the above bounds
can be further reduced to log log by resort to known integer�handling data structures�

Index Terms � Algorithms� pattern matching� subsequence and episode searching� DAWG�

su�x automaton� compact subsequence automaton� skip�edge DAWG� forward failure function�

skip�link�

�Department of Computer Sciences� Purdue University� Computer Sciences Building� West Lafayette� IN ������
USA� and Dipartimento di Elettronica e Informatica� Universit�a di Padova� Via Gradenigo ��A� �	
�
 Padova� Italy�
axa�cs�purdue�edu� Work partially supported by NSF Grant CCR�����
��� by NATO Grant CRG ���
��� by
the National Research Council of Italy� and by British Engineering and Physical Sciences Research Council Grant
GR�L
���
�

yCOAST Laboratory and Department of Computer Sciences� Purdue University� Computer Sciences Building�
West Lafayette� IN ������ USA� mja�cs�purdue�edu� This author gratefully acknowledges support from the COAST
Project at Purdue and its sponsors�

�



� Introduction

We consider the problem of detecting occurrences of a pattern string as a subsequence of a substring

of bounded length of a larger text string� Variants of this problem arise in numerous applications�

ranging from information retrieval and data mining �see� e�g�� ��	
 to molecular sequence analysis

�see� e�g�� ��	
 and intrusion and misuse detection in a computer system �see� e�g�� ��	
�

Recall that given a pattern P 
 b� � � � bm and a text T 
 a� � � �an over some alphabet �� we

say that P occurs as a subsequence of T i� there exist indices � � i� � i� � � � � � im � n such that

ai� 
 b�� ai� 
 b�� � � �� aim 
 bm� in this case we also say that the substring Y 
 ai�ai��� � � � aim

of T is a realization of P beginning at position i� and ending at position im in T � We reserve the

term occurrence for the sequence i�i� � � � im� It is trivial to compute� in time linear in jT j� whether

P occurs as a subsequence of T � Alternatively� a simple O�nj�j
 time preprocessing of T makes

it easy to decide subsequently for any P � and in at most jP j character comparisons� whether P

is a subsequence of T � For this� all is needed is a pointer leading� for every position of T and

every alphabet symbol� to the closest position occupied by that symbol� Slightly more complicated

arrangements� such as developed in ��	� can accommodate within preprocessing time O�n log j�j


and space linear in T also the case of an arbitrary alphabet size� though introducing an extra log j�j

cost factor in the search for P �

These problems become more complicated if one asks instead whether T contains a realization

Y of P of bounded length� since the earliest occurrence of P as a subsequence of T is not guaranteed

to be a solution� In this case� one would need to apply the above scheme to all su�xes of T or �nd

some other way to detect the minimal realizations Y of P in T � where a realization is minimal if no

substring of Y is a realization of P � Algorithms for the so�called episode matching problem� which

consists of �nding the earliest occurrences of P in all minimal realizations of P in T have been

given previously in ��	� An occurrence i�i� � � � im of P in a realization Y is an earliest occurrence

if the string i�i� � � � im is lexicographically smallest with respect to any other possible occurrence

of P in Y � The algorithms in ��	 perform within roughly O�nm
 time� without resorting to any

auxiliary structure or index based on the structure of the text�

In some applications of exact string searching� the text string is preprocessed in such a way

that any subsequent query regarding pattern occurrence takes time proportional to the size of the

pattern rather than that of the text� Notable among these constructions are those resulting in

structures such as subword trees and graphs �refer to� e�g�� ��	� ��	
� Notice that the answer to the

typical query is now only whether or not the pattern appears in the text� If one wanted to locate

�



all the occurrences as well� then the time would become O�jwj� occ
� where occ denotes the total

number of occurrences� These kinds of searches may be considered as on line with respect to the

pattern� in the sense that preprocessing of the pattern is not allowed� but are o��line in terms of

the ability to preprocess the text� In general� setting up e�cient structures of this kind for non

exact matches seems quite hard� sometimes a small selection of options is faced� that represent

various compromises among a few space and time parameters�

This paper addresses the construction of an automaton� based on the textstring T and suitable

for identifying� for any given P � the set of all distinct minimal realizations of P in T � Speci�cally�

the automaton recognizes� for each such realization Y � the earliest occurrence of P in Y � The

preceding discussion suggests that it is not di�cult to realize such an automaton in time and space

O�n�
 for a text of n characters� The main result of the paper consists of bringing those bounds

down to linear space� thus matching that of the o��line exact string searching with subword graphs�

Our construction can be used� in particular� in cases in which the symbols of P are a�ected by

individual �expiration deadlines�� expressed� e�g�� in terms of positions of T that might elapse at

most before next symbol �or� alternatively� the entire occurrence of pattern P 
 must be matched�

The paper is organized as follows� In next section� we review the basic structure of Directed

Acyclic Word Graphs and outline an extension of it that constitutes a �rst� quadratic space real�

ization of our automaton� A more compact implementation of the automaton is addressed in the

following section� Such an implementation requires linear space but only in the case of a �nite

alphabet� The case of general alphabets is addressed in the last section� and it results in a tradeo�

between seach time and space�

� DAWGs and Skip�edge DAWGs

Our main concern in this section is to show how the text T can be preprocessed in a such a way�

that a subsequent search for the earliest occurrences in T of all pre�xes of any given P is carried

out in time bounded by the size of the output rather than that of the input� Our solution rests on

an adaptation of the partial minimal automaton recognizing all subwords of a word� also known

as the DAWG �Directed Acyclic Word Graph� ��	 associated with that word� Let V be the set of

all subwords of the text T � and Pi �i 
 �� �� ����m
 be the ith pre�x of P � Our modi�ed graph can

be built in time and space quadratic or linear in the length of the input� depending on whether

the size of the input alphabet is arbitrary or bounded by a constant� respectively� and it can be

�



searched for the earliest occurrences in all rocci distinct realizations of Pi �i 
 �� �� ����m
 in time

O�n �
mX

i��

rocci � i � log n
�

Note that a realization of Pi is a substring that may occur many times in X but is counted only

once in our bound�

We begin our discussion by recalling the structure of the DAWG for string X 
 a� � � � an� First�

we consider the following partial deterministic �nite automaton recognizing all subwords of X �

Given two wordsX and Y � the end�set of Y in X is the set endposX�Y 
 
 fj � Y 
 ai���ajg for some

i and j� � � i � j � n� Two strings W and Y are equivalent on X if endposX�W 
 
 endposX�Y 
�

The equivalence relation instituted in this way is denoted by �X and partitions the set of all strings

over � into equivalence classes� It is convenient to assume henceforth that our text string X is

�xed� so that the equivalence class with respect to �X of any word W can be denoted simply by

�W 	� Thus� �W 	 is the set of all strings that have occurences in X terminating at the same set of

positions as W � Correspondingly� the �nite automaton A recognizing all substrings of X will have

one state for each of the equivalence classes of subwords of X under �X � Speci�cally�

�� The start state of A is ��	�

�� For any state �W 	 and any symbol a � �� there is a transition edge leading to state �Wa	�

�� The state corresponding to all strings that are not substrings of W � is the only nonaccepting

state� all other states are accepting states�

Deleting from A above the nonaccepting state and all of its incoming arcs yields the DAWG

associated with X � An example DAWG for X 
 abbbaabaa is reported in Figure ��

b

a

a

a

a
a

b
b

b
b

bbbba a a aa a

Figure �� An example DAWG

�



We refer to� e�g�� ��� �	� for the construction of a DAWG� Here we recall some basic properties

of this structure� This is clearly a directed acyclic graph with one sink and one source� where every

state lies on a path from the source to the sink� Moreover� the following two properties hold ��� �	�

Property � For any word X � the sequence of labels on each distinct path from the source to the

sink of the DAWG of X represents one distinct su�x of X �

Property � For any word X � the DAWG of X has a number of states Q such that jX j� � � Q �

�jX j � � and a number of edges E such that jX j � E � �jX j � ��

It is immediate to see how the DAWG of X may be adapted to recognize all earliest occurrences

of any given pattern P as a subsequence of X � Essentially� we need to endow every node � with a

number of �downward failure links� or skip�edges� Each such link will be associated with a speci�c

alphabet symbol� and the role of a link leaving � with label a will be to enable the transition to a

descendant of � on a nontrivial �i�e�� with at least two original edges
 path labeled by a string in

which symbol a occurs only as a su�x� Thus� a skip�edge labeled a is set from � to each one of

its closest descendants where an original incoming edge labeled a already exists� As an example�

Figure � displays a partially augmented version of the DAWG of Figure �� with skip�edges added

only to the source and its two adjacent nodes�

An immediate consequence of Property � is that P occurs as a subsequence of X beginning at

some speci�c position i of X if and only if the following two conditions hold� ��
 there is a path �

labeled P from the source to some node � of the augmented version of the DAWG of X � and ��


it is possible to replace each skip�edge in � with a chain of original edges in such a way that the

resulting path from the source to � is labeled by consecutive symbols of X beginning with position

i� Clearly� the role of skip�edges is to serve as shortcuts in the search� However� these edges also

introduce �nondeterminism� in our automaton� in particular� now more than one path from the

source may be labebed with a pre�x of P � Even so� the search for P is trivially performed� e�g�� as

a depth��rst visit of all longest paths in the graph that start at the source and are labeled by some

pre�x of P � �The depth of the search may be suitably bounded by taking into account the length

of P � and lengths of the shunted paths�
 Each edge is traversed precisely once� and each time we

backtrack from a node� this corresponds to a pre�x of P which cannot be continued along the path

being explored� whence the claimed time bound for searches� Such a bound is actually not tight�

an even tighter one being represented by the total number of distinct nodes traversed� In practice�

this may be expected to be proportional to some small power of the length of P � Consideration

�



of symbol durations may be also added to the construction phase� thereby further reducing the

number of skip�edges issued� The construction itself is easily carried out in quadratic time� e�g�� by

adaptation of a depth��rst visit of the DAWG� as follows� First� when the sink is �rst reached� it is

given nil skip�edges for all alphabet symbols� next� every time we backtrack to a node � from some

other node �� the label of arc ��� �
 and the skip�edges de�ned at � are used to identify and issue

�additional
 skip�edges from �� We leave the details as an exercise� The main problem� however�

is that storing this version of the augmented DAWG would take an unrealistic ��n�
 space even

when the alphabet size is a constant �cf� Fig� �
� The remainder of our discussion is devoted to

improving on this space requirement�

b

b

a

aa

bb

a

a

b

a

a

a

a

a

b

a

b

a a a ab b b b

b
b

Figure �� Adding skip�edges from the source and its two adjacent nodes

� Compact skip�edge DAWGs

Observe that by Property � each node of the DAWG of X can be mapped to a position i in X in

such a way that the path from that node to the sink is labeled precisely by the su�x aiai�����an

of X � As is easy to check� such a mapping assignment can be carried out during the construction

of the DAWG at no extra cost� Observe also that there is always a path labeled X in the DAWG

of X � This path will be called the backbone of the DAWG� and its nodes will be numbered by

consecutive integers from � �for the source
 to n �for the sink
�

In order to describe how skip links are issued on the DAWG� we resort to a slightly extended

version of a spanning tree of the DAWG �see Fig� �
� Our spanning tree must contain a directed

�



path that corresponds precisely to the backbone of the DAWG� but it is arbitrary otherwise� As for

the extension� this consists simply of duplicating the nodes of the DAWG that are adjacent to the

leaves of the spanning tree� so as to bring into the �nal structure also the edges connecting those

nodes �any of these edges would be classi�ed as either a �cross edge� or a �descendant edge� in the

visit of the DAWG resulting in our tree
� Let T be the resulting structure� Clearly� T has the same

number of edges and at most twice the number of nodes of the DAWG� whence its size is linear in

the length of X � We use the more convenient structure of T to describe how to set skip�edges and

other auxiliary links� In actuality� edges are set on the DAWG�

Since the introduction of a skip�edge for every node and symbol would be too costly� we will

endow with such edges only a fraction of the nodes� Speci�cally� our policy will result in a linear

number of skip�edges being issued overall� From any node not endowed with a skip�edge on some

desired symbol� the corresponding transition will be performed by �rst gaining access to a suitable

node where such a skip�edge is available� and then by following that edge� In order to gain access

from any node to its appropriate �surrogate� skip�edge� we need to resort to two additional families

of auxiliary edges� respectively called deferring edges and back edges� The space overhead brought

about by these auxiliary edges will be only O�n � j�j
� hence linear when � is �nite� The new edges

will be labeled� just like skip�edges� but unlike skip�edges their traversal on a given input symbol

does consume that symbol� Their full structure and management will be explained in due course�

8

7

b

a 4

5

7

9876543210

a

b ba a a aa ab b

b
b

a
a

a

b

b

a
b

b

Figure �� An extended spanning tree T with sample skip�edges

We now describe the augmentation of the DAWG�

First� specially tagged� backbone skip�edges are directed from each backbone node and each

alphabet symbol to the closest �sink�wards
 backbone node reached by an edge labeled by that

�



symbol� or to �n � �
 if no such edge is found� With reference now to a generic node � of T � we

distinguish the following cases�

� Case �� Node � has outdegree �� Assume that the edge leaving � is labeled a� and consider

the path � from � to a branching node or leaf of T � whichever comes �rst� For every �rst

occurrence on � of an edge ��� �
 labeled �a �
 a� direct a skip�edge labeled �a from � to ��

For every symbol of the alphabet not encountered on � set a deferring edge from � to the

branching node or leaf found at the end of ��

� Case �� Node � is a branching node� The auxiliary edges to be possibly issued from � are

determined as follows �see also Fig� �
� Let � be a descendant other than a child of � in T �

with an incoming edge labeled a� and let � be the longest ascending path from � such that

no other edge of � is labeled a� If � is the highest �i�e�� closest to the root
 branching node

on �� then direct a skip�edge labeled a from � to ��

Consider now the subtree of T rooted at �� Any path of T in this tree that does not lead

eventually to to an arc labeled a �like the arc leading to node �
 must end on a leaf� To every

such leaf� direct a deferring edge labeled a from ��

� Case �� Node � is a leaf� Let i be the position of X assigned to node � under the mapping

discussed earlier� For every symbol of the alphabet� the skip�edge from � labeled by that

symbol is copied from the homologous backbone skip�edge at node i of the backbone�

Figures � and � exemplify skip links for the backbone� the root and one of its children in the

tree T of our example�

At this point and as a result of our construction policy� there may be branching nodes that do

not get assigned any skip�edge� This may cause a search to stall in the middle of a downward path�

for lack of appropriate direction� In order to prevent this problem� back edges are added to every

such branching node� as follows �see Fig� �
� For every branching node � of T and every alphabet

symbol a such that an a�labeled skip�edge from � is not de�ned� an edge labeled a is directed from

� to the closest ancestor � of � from which a skip�edge labeled a is de�ned� We refer to � as the

a�backup of �� and we denote it by backa��
� Clearly� our intent is that the e�ect of traversing

a skip�edge as described in the previous section can now be achieved by traversing at most three

auxiliary edges� namely� one deferring edge� one back edge and one skip�edge� This complication is

compensated by the following advantage�

�



a

a

a

a

a

b

b

b

b

a

b

b

b

a

b

α

γ

η

β

δ

Figure �� A one�symbol transition from a node � of T to its descendant � requires at most three
edge�traversals� �rst� through a deferring link to the nearest branch node �� next from � to �

through a back�edge� �nally� through the skip�edge from � to �� Note that the presence of another
a�labeled skip�edge from � to 	 introduces ambiguity as to which direction to take once the search
has reached �

Lemma � The total number of auxiliary edges in T � whence also in the augmented DAWG of X�

is O�jX j � j�j
�

Proof� There is at most one deferring or back edge per alphabet symbol for each node where such

an edge is de�ned� Also� the claim is certainly true for backbone nodes� leaves and tree nodes of

outdegree �� As for the skip links directed from branching nodes� observe that for any symbol a

and any node �� at most one skip�edge labeled a may reach �� The same is true for deferring edges

issued on every leaf of T � Indeed� if a deferring edge labeled a is set from a branching node � to

such a leaf� then by construction no branching node on the path from � to that leaf can be issued

an a�labeled skip�edge� Also by construction� either � is the root or else there must be an edge

labeled a on the path from the closest branching ancestor of � to � itself� Hence� no skip�edge

labeled a could possibly be set from a branching ancestor of � to a node in the subtree of T rooted

�



at �� In conclusion� for each symbol of � the total number of these edges is bounded by the length

of X � by Property �� �

Lemma � P has a realization Y in X beginning with ai and ending at aj if and only if there is

a sequence 
 of arcs in T with the following properties� �i
 the concatenation of consecutive labels

on the original and skip�edges of 
 spells out P � �ii
 any original or skip�edge of 
 is followed

by at most one deferring and at most one back edge� in this order� �iii
 there is a path labeled

Y 
 aiai�����aj from the source to the node � 
 �Y 	 which is reached by the last arc of 
�

Proof� Assume that P has a realization Y in X as stated� By the de�nition of T � there must be

an original arc corresponding to b� 
 P� 
 Y� 
 ai� The node reached by this arc satis�es trivially

points �i� iii
� Assuming now that we have matched a pre�x Pi 
 b�b����bi of P up to some node

� in our structure while maintaining �i� iii
� The assertion is easily checked if next symbol bi��

of P is consumed through either an original arc or a skip�edge� the latter being possibly preceded

by a deferring edge� Then� the only case of concern occurs when� possibly after having traversed a

deferring edge labeled� say� a� one is led from some node � to a branching node � from which no

a�labeled skip� or original edge is de�ned� In such an event� the link to � 
 backa��
 is traversed

instead� as shown in Fig� ��

Let � be a descendant of � such that either � is reached through a nontrivial path � of T in

which symbol a appears precisely as a su�x� or else � is a leaf of T and there is no a�labeled original

edge from � to �� We claim that there is a skip�edge labeled a from � to �� In fact� by our selection

of �� there is no other edge labeled a on the path from � to the parent node of �� Assuming one

such edge existed on the path from � to �� then � itself or a branching ancestor of � other than �

would have a�labeled skip�edges de�ned� thereby contradicting that backa��
 
 ��

In summary� having matched some pre�x of P up to some node � in our structure� we always

know how to reach in at most two additional transitions a node �� possibly di�erent from �� from

which to perform a consistently labeled skip�edge transition to a descendant � of �� in response to

the next symbol of P � The node reached through this edge satis�es points �i� iii
 relative to the

new matched pre�x�

The converse of the proof is straightforward and thus is omitted� �

Based on Lemma �� a search for the realizations of a pattern in the augmented DAWG of X

may be carried out along the lines of a bounded�depth visit of a directed graph� The elementary

downward step in a search consists of following an original edge or a skip�edge� depending on which

��



one is found� The details are then obvious whenever such an edge actually exists� The problem

that we need to examine in detail is that for any symbol a there may be more than one skip�edge

labeled a leaving �� and some such edges may lead to descendants of � that are not simultaneously

descendants of �� One instance of this is represented by node 	 in Fig� ��

We can assume that all skip�edges leaving a node � under the same symbol label a are arranged

in a list dedicated to a� sorted� say� according to the left�to�right order of the descendants of ��

Thus� in particular� any descendants of the node � of our example that are reachable by an a�labeled

skip�edge from � would be found as consecutive entries in the skip�edge list of � associated with

symbol a� This list or part of it will be traversed left to right in our search� as follows naturally from

the structure of a depth��rst visit of a graph� In order to understand at which point the sublist

relative to descendants of � begins and ends� we can use some standard auxiliary information such

as pre� and postorder ordinal number of the nodes of T � Then� in the list of skip�edges from ��

the beginning of the possible sublist relative to descendants of � is found as the smallest preorder

index larger than the preorder index of �� Such an index may be located at this point in one of

two possible ways� i�e�� by performing a binary search on the list of skip�edges at �� or by stepwise

advancement of a pointer through successive positions of the list� The �rst approach will result in

a ��logn
 factor multiplying the cost of each step and thus the overall cost� The second� adds to

the global cost a term linear in the length n of X � since each unit advance on the list at � can be

charged uniquely to a distinct edge of T � Running the two above list implementations concurrently

leads to the following summary for our discussion�

Theorem � The compact skip�edge DAWG associated with X supports the search for all earliest

occurrences of a pattern P 
 b�b����bm in X in time

O�Min�n �
mX

i��

rocci � i�
mX

i��

rocci � i � log n

�

where rocci is the number of distinct realizations in X of the pre�x Pi of P �

As already noted� a realization is a substring that may occur many times in X but is counted

only once in our bound� It is not di�cult to modify the DAWG augmentation highlighted in the

previous section so as to build the compact variant described here� Again� the core paradigm is a

bottom�up computation on T � except that this time skip�edge lists may be assigned to branching

nodes only on a temporary basis� whenever� climbing back towards the root from some node ��

an ancestor branching node � before any intervening edges labeled a� then the a�labeled skip�edge

list of � is surrendered to �� The process takes linear time and space for �xed alphabets� Symbol

��



durations may be taken into account both during construction as well as in the searches� possibly

resulting in additional savings� The details are tedious but straightforward and are left to the

reader�

� Generalizing to unbounded alphabets

When the alphabet size j�j is not a constant independent of the length n of T � we face the choice

of implementing also the �original
 adjacency list of a node of the DAWG as either a linear list

or a balanced tree� The �rst option leaves space una�ected but introduces slowdown by a linear

multiplicative factor in worst�case searches� The second introduces some linear number of extra

nodes but now the overhead of a search is only a multiplicative factor O�log j�j
� Below� we assume

this second choice is made� Rather straightforward adaptations to the structure discussed in the

previous section would lead to a statement similar to Theorem �� except for an O�log j�j
 factor

in the time bound� Here� however� we are more interested in the fact that when the alphabet size

is no longer a constant Lemma � collapses� as the number of auxiliary edges needed in the DAWG

may become quadratic� In this Section� we show that a transducer supporting search time

O�Min�n �
mX

i��

rocci � i�
mX

i��

rocci � i � logn
 � log j�j
�

can in fact be built within O�n log j�j
 time and linear space�

The idea is of course to forfeit many skip�edges and other auxiliary edges and pay for this

sparsi�cation with a log j�j overhead on some elementary transitions� We explain �rst how this

can work on the original array in which X is stored� We resort to a global table CLOSE� de�ned

as follows ��	� CLOSE is regarded as subdivided into blocks of size j�j� With p 
 jmodj�j �j 


�� �� ���� n
� CLOSE�j	 contains the smallest position larger than j where there is an occurrence of

sp� the pth symbol of the alphabet� It is trivial to compute CLOSE fromX � in linear time� Let now

closest�i� p
 be the closest instance of sp to the right of position i �if there is no such occurrence

set closest�i� p
 
 n � �
� Then� closest�i� p
 can be computed from CLOSE and the sorted list of

occurrences of sp in X in O�log j�j
 time� We refer to ��	 for details� The main idea is that two

accesses of the form CLOSE�bi�j�jc � j�j� p 	 and CLOSE�bi�j�jc � j�j � j�j� p 	 must either

identify the desired occurrence or else will de�ne an interval of at most j�j entries in the occurrence

list of sp� within which the desired occurrence can be found by binary search� hence in O�log j�j


time� Note that the symbols of X can be partitioned into individual symbol�occurrence lists in

O�n log j�j
 overall time� and that those lists occupy linear space collectively�

��



The above construction enables us immediately to get rid of all skip�edges issued on the backbone

and inside each chain of unary nodes present in T � A key element in making this latter fact possible

is the circumstance� already remarked� that we can map every path to the sink of the DAWG� hence

also every such maximal chain� to a substring of a su�x �hence� to an interval of positions
 of X �

In fact� once such an interval is identi�ed� an application of closest will tell how far down along the

chain one should go� Along these lines� we only need to show how a downward transition on T is

performed following the identi�cation made by closest of the node that we want to reach� again�

we may either scan the chain sequentially or search through it logarithmically� using additional

ad�hoc auxiliary links �at most � logn per node� of which logn point upward and at most as many

point downwards
� Except for the possible O�log j�j
 time charged by closest� the rest of the work

is going to be absorbed in the global time bound of Theorem ��

We still face a potential of ��j�j
 deferring edges per chain node and leaf� and as many backup

edges per branching node� The chain nodes are easy to accommodate� all deferring edges from a

node point to a same branching node and can thus coalesce into a single �downward failure link��

As for the backup edges� recall that by de�nition� on a path � between � and � 
 backa��
 there can

be no edge labeled a� but such an edge must exist on the path from the closest branching ancestor

of � and �� Let trivially each node of T be given as a label the starting position of the earliest

su�x of X whose path passes through that node� Then� we can use the table closest on array X

to �nd the distance of this arc from �� climb to it on T using at most log n auxiliary upward links�

and �nally reach � through the downward failure link� Considering now the deferrring edges that

lead to leaves� they can be entirely suppressed at the cost of visiting the subtrees of T involved at

search time� this introduces linear overall work� since it su�ces to visit each subtree once�

We conclude by pointing out that all log factors apperaring in our claims can be reduced to

log log at the expense of some additional bookkeeping� by deploying data structures especially

suited for storing integers in a known range ��	� It is also likely that the log n factors could be made

to disappear entirely by resort to amortized �nger searches such as� e�g�� in ��	�

��



References


�� A� Apostolico and Z� Galil �Eds��� Pattern Matching Algorithms� Oxford University Press� New
York ��

���


�� A� Apostolico and C� Guerra� The Longest CommonSubsequence Problem Revisited� Algorithmica�
�� ������� ��
����


�� A� Blumer� J� Blumer� A� Ehrenfeucht� D� Haussler� M�T� Chen and J� Seiferas� The Smallest
Automaton Recognizing the Subwords of a Text� Theoretical Computer Science � ��� ����� ��
����


�� M� Crochemore and W� Rytter� Text Algorithms� Oxford University Press� New York ��

���


�� G� Das� R� Fleischer� L� G�asieniek� D� Gunopulos� J� K�arkk�ainen� Episode Matching� CPM����

Proceedings of the �th Annual Symposium on Combinatorial Pattern Matching� �A� Apostolico and
J� Hein� Eds��� Springer Verlag LNCS ����� ����� ��

���


�� D�B� Johnson� A Priority Queue in which Initialization and Queue Operations Take O�log logn�
Time� Math� Sys� Th�� ��� �
����
 ��
����


�� S� Kumar and E�H� Spa�ord� A Pattern�Matching Model for Instrusion Detection� Proceedings of

the National Computer Security Conference� �

�� pp� ������


�� H� Mannila� H� Toivonen and A�I� Vercamo� Discovering Frequent Episodes in Sequences� KDD����
Proceedings of the �st International Conference on Knowledge Discovery and Data Mining� AAAI
Press� ������� ��

���



� M� Waterman� Introduction to Computational Biology� Chapman and Hall ��

���

��


