
An Algorithm for Estimating all Matches

Between Two Strings

Mikhail J. Atallah�

COAST Laboratory and

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

U.S.A.

mja@cs.purdue.edu

Fr�ed�eric Chyzaky

INRIA

Domaine de Voluceau

Rocquencourt

B.P. 105

78153 Le Chesnay Cedex

France

Frederic.Chyzak@inria.fr

Philippe Dumas

INRIA

Domaine de Voluceau

Rocquencourt

B.P. 105

78153 Le Chesnay Cedex

France

Philippe.Dumas@inria.fr

Abstract

We give a randomized algorithm for estimating the score vector of matches between a text
string of length N and a pattern string of length M ; this is the vector obtained when the
pattern is slid along the text, and the number of matches is counted for each position. The
randomized algorithm takes deterministic timeO((N=M)Conv (M)) where Conv (M) is the time
for performing a convolution of two vectors of size M each. The algorithm �nds an unbiased
estimator of the scores, whose variance is particularly small for scores that are close to M , i.e.,
for approximate occurrences of the pattern in the text. No assumptions are made about the
probabilistic characteristics of the input, or about the number of di�erent symbols appearing in
T or P (i.e., the alphabet size need not be much smaller than M). The solution extends to the
weighted case and to higher dimensions.

Index Terms | algorithms, convolution, pattern matching.

�Portions of this work were supported by sponsors of the COAST Laboratory.
yThe second and third authors' work was supported in part by the Long Term Research Project Alcom-IT (#20244)

of the European Union.

1

1 Introduction

We address the following problem: let T be a text string and P be a pattern string de�ned by

T = t0t1 : : : tN�1 and P = p0p1 : : : pM�1:

We want to compute the score of matches between T and P , i.e., the vector C whose ith compo-
nent ci is the number of matches between the text and the pattern when the �rst letter of the pattern
is positioned in front of the ith letter of the string (see Figure 1). Formally, for i = 0; � � � ; N �M ,

ci =
M�1X
j=0

�ti+j ;pj

where �x;y denotes the Kronecker symbol: �x;y is 1 if and only if x = y and is 0 otherwise.
Computing the score vector solves one version of the problem of approximate pattern matching:

an exact match corresponds to a score c = M ; a match with e errors to a score c = M � e.
Rather than focusing on computing the exact scores, we develop an e�cient randomized algorithm
to approximate them. This algorithm can be tuned to attain an arbitrary level of accuracy and,
besides, the fewer the number e of mismatches, the better is the approximation that the algorithm
returns: even if the estimated score can be far from the exact value when the pattern and the text
have little match, an almost complete match will be recognized by the algorithm. The algorithm
locates these interesting positions with good accuracy, which is the di�cult part of the problem.

Approximate pattern matching has many applications, including intrusion detection in a com-
puter system [12], image analysis and data compression [4]. In the former, alphabet symbols
correspond to events in a system, and since some events are more important than others (from a
security point of view) it follows that the de�nition of the score needs to be weighted by the relative
importance of alphabet symbols. This led us to generalize our method and result so that they apply
to weighted versions of the problem, i.e., to the problem of computing weighted scores de�ned by

ci =
M�1X
j=0

f(ti+j)g(pj)�ti+j;pj ;

where f and g are complex-valued functions of the alphabet.
The naive algorithm to compute the exact score vector has a time complexity of O((N �M +

1)M). When the alphabet size is O(1) (hence much smaller than M), the algorithm of Fisher and
Paterson [9] uses convolution to solve the problem in O(N logM) time. However, if the assumption
of small alphabet size is dropped, then another approach is needed. This version of the problem
(i.e., for possibly large alphabets) was posed by Apostolico and Galil in their book [2], where it is
mentioned that a linear time algorithm can be obtained for computing those o�sets i at which only
a single mismatch prevents the pattern from occurring exactly. (The corresponding entries of C
then equal M � 1.) The best known deterministic algorithm for computing the vector C is due
independently to Abrahamson and Kosaraju [3, 11] and has a time complexity of O

�
N
p
M logM

�
in the arithmetic computational model in which the convolution of two M -length vectors can be
done in O(M logM) time. The algorithm of Baeza-Yates and Gonnet [6] solves the problem in
O(NM logM= logN) time, which is better than O(N logM) for small M , i.e., if M � logN . The
algorithm of Baeza-Yates and Perleberg [7] solves the problem in average time O(NM=�) where �
is the size of the alphabet (i.e., the number of distinct symbols that appear in M), which is good
for large �. The interest in the vector C is usually motivated by the need to �nd all positions in the
text at which the pattern almost occurs, i.e., the o�sets i such that ci is close toM . An algorithm of

2

Position i

Text . . . b c a a b c a a b b b a c . . .
Pattern a b a b b a

Matches " "

Figure 1: The pattern is slid along the text and for each position, we count the number of matches
between the pattern and the corresponding slice of the text; this gives the score C.

probabilistic time O(N logM) for this problem was given in [5]; however, this algorithm depends on
some restrictive assumptions on the probabilistic characteristics of the input, namely the Bernoulli
model. (An earlier version of [5] erroneously claimed that such an assumption is not needed by that
algorithm, whereas in fact it was needed.) A clever O(N(logM)3) deterministic time algorithm for
estimating all the scores of mismatches (rather than of matches) was given by Karlo� [10]; although
Karlo�'s estimator is biased, it guarantees not to overestimate the number of mismatches by more
than a constant multiplicative factor, and the author states that his scheme apparently cannot
be modi�ed to estimate the number of matches (rather than mismatches) to within a constant
multiplicative bound.

In this paper we give a randomized algorithm for computing an unbiased estimator of the
number of matches:

� Our algorithm runs in deterministic time O((N=M)Conv(M)), where Conv(M) is the time
it takes to perform the convolution of two vectors of length M all of whose entries are of
the form !j , where j is an integer and ! is any primitive �th root of unity (recall that �
is the number of distinct symbols that appear in P). Note that this ! is not related to the
roots of unity used in the Fourier transform implementation of convolution (the order of these
roots of unity depends on M rather than on �, which is typically smaller than M). In the
rest of the paper, we replace Conv(M) by M logM , which corresponds to the computational
model where an arithmetic operation (addition or multiplication) takes constant time. Our

experimental implementations use ! = e2�
p�1=�, in spite of the roundo� error that this

introduces in any realistic computer | the experimental results show that the roundo� error
causes no apparent loss of validity of the theoretical predictions (i.e., they con�rm the theory).

� The algorithm is randomized but its behaviour does not depend on any a priori probabilistic
assumption on the input, or the size of the alphabet. The expected value of the estimator
is equal to the exact value. More precisely, we compute our estimate of the score vector bC
in deterministic time O(kN logM), such that the expected value of its ith component bci
equals ci. Moreover, the standard deviation is bounded above by (M � ci)=

p
k. Note that we

have a trade-o� between time complexity and accuracy: by choosing larger values of k, more
accurate estimates are obtained. Also note that the standard deviation is particularly small
when ci is close to M , which is precisely the case of almost occurrence that usually interests
us.

We summarize our main results is the following theorem.

Theorem 1 An estimate for the score C between a text string of length N and a pattern string

of length M can be computed by a Monte-Carlo algorithm in time O(N logM). The randomized

result has mean C and each entry has a variance bounded by (M � ci)
2=k where k is the number of

iterations in the Monte-Carlo algorithm.

3

Although we feel that the algorithm should work best with the FFT step performed by dedicated
chips, we have a full implementation including a soft FFT. First experiments con�rm the theory,
and are described in the last section.

2 Preliminaries and terminology

We �rst observe that it su�ces to obtain an algorithm of time complexity O(kM logM) for the
case N = 2M . Indeed, if N > 2M , we can use the standard technique [8] of partitioning the text
into O(N=M) overlapping chunks of length 2M each, and then processing each chunk separately in
time O(kM logM). The overall complexity is then O(kN logM). Therefore we henceforth assume,
without loss of generality, that N = 2M .

Let A be a �nite alphabet of cardinality �. We use the following notation for the integer interval

[0; �[= f0; � � � ; � � 1g:
We henceforth use ! to denote any primitive �th root of unity and � to denote the set of all possible
mappings from A to [0; �[. Observe that, for a random variable X that is uniformly distributed

over [0; �[, we have E
�
!X

�
= 0. This fact stems from the nullity of the sum of all the �th roots of

unity. As a corollary, if the random variable � is uniformly distributed over �, then E
�
!�(a)

�
= 0

for any a 2 A.

3 The algorithm

The key idea of our algorithm is to iteratively compute randomized estimated values for C; the
values obtained are those of a random variable whose mean is the score and whose variance is
small. We then repeat the calculation to estimate the score with good probability. In the sequel,
k denotes a positive integer, the number of repetitions of the algorithm. As will be shown in the
next section, the larger k, the smaller the variance of our answers.

The iteration step of the algorithm is based on the following idea: assume that we have two
strings of length M ; if we renumber the letters at random with numbers from [0; �[, we obtain two
integer sequences n0 : : :nM�1 and m0 : : :mM�1; in the mean over all renumberings, the Hermitian
inner product

M�1X
j=0

!nj!mj =
M�1X
j=0

!nj�mj

counts the number of matches between both strings. We therefore have the following algorithm to
compute the score:

Algorithm MATCH

INPUT: a text T = t0 : : : t2M�1 and a pattern P = p0 : : :pM�1 where the ti's and the pi's are
letters from A;
OUTPUT: an estimate for the score vector C.

1. For ` = 1; 2; � � � ; k:
(a) select randomly and uniformly a �(`) from �;

(b) from the text T , obtain a complex sequence T (`) of size 2M by replacing every symbol t

in T by !�
(`)(t);

4

(c) from the pattern P , obtain a complex sequence P (`) by

i. replacing every symbol p in P by !��
(`)(p);

ii. padding with M (trailing) zeroes;

(d) compute the vector C(`) as the convolution of T (`) with the reverse of P (`), i.e.,

c
(`)
i =

M�1X
j=0

!�
(`)(ti+j)!�

(`)(pj) =
M�1X
j=0

!�
(`)(ti+j)��(`)(pj);

2. compute the vector bC =
Pk

`=1 C
(`)=k and output it as our estimate of C.

The previous algorithm deserves several remarks.

� It is crucial that �(`) be a random mapping rather than a random permutation. In fact,
developing the analysis of the next section with a permutation rather than a mapping would
reveal that the corresponding estimate is biased, whereas we need an unbiased estimate of C.

� The computation of the convolution is performed by fast Fourier transform. The time com-
plexity of this classical algorithm is O(M logM), which makes us achieve a low complexity
for the overall algorithm. Besides, this algorithm is now implemented in dedicated chips.

� The fast Fourier transform evaluates polynomials related to its inputs at roots of unity. The
latter are not related to !; their order is not � but the size of the text 2M .

� Of course, when implementing the algorithm, one should use the same array for all the C(`)'s,
so as to achieve a space complexity of O(M) rather than O(kM). (The time complexity is
left unchanged by this optimization.)

4 Analysis

The analysis in the next section will show that E
� bC� = C, and that the standard deviation of bci

is bounded above by (M � ci)=
p
k. One is usually only interested in the positions i at which ci

is very close to M (i.e., where the pattern almost occurs in the text). A fact of interest is that it
is precisely for these i's that the standard deviation is the smallest. Therefore bci is a particularly
good estimator of ci when ci is close to M . Here by close to M we mean a high percentage of
agreement, i.e., ci = �M where � is a constant close to 1.

We proceed to estimate the mean and the variance of the bci's. All the random variables bci are
de�ned in a similar way; hence we generically consider the random variable

bs = 1

k

kX
`=1

M�1X
j=0

!�
(`)(tj)��(`)(pj);

where the tj 's and the pj 's are �xed and the �(`)'s are independent and uniformly distributed
random mappings from A to [0; �[. The number of matches between t0 : : : tM�1 and p0 : : : pM�1 is
given by

c =
M�1X
j=0

�tj ;pj ;

where once again �x;y denotes the Kronecker symbol.

5

The random variable bs is the mean of k independent identically distributed random variables s(`).
Hence it su�ces to consider the random variable

s =
M�1X
j=0

!�(tj)��(pj);

for the mean and variance of bs are then given by

E (bs) = E(s) and Var (bs) = Var(s)

k
:

We start by evaluating the mean of bs with the following lemma.

Lemma 1 The mean of bs is the number c of matches between t0 : : : tM�1 and p0 : : : pM�1.

Proof. The mean of bs is given by

E (bs) = E(s) =
M�1X
j=0

E
�
!�(tj)��(pj)

�
:

Now, observe that the mean inside the sum is zero unless tj = pj , because !�(tj)��(pj) is equally
likely to be any of the �th roots of unity and the sum of all the �th roots of unity is zero. More
precisely, we have the equality

E
�
!�(tj)��(pj)

�
= �tj;pj ;

from which the result follows. 2

Next, we consider the variance of bs. We only state the result for now, and postpone its proof
until the next section (where a more general version is proved).

Lemma 2 The variance of bs is bounded as follows:

Var (bs) � (M � c)2

k
:

Theorem 1 now follows from Lemmas 1 and 2.

5 Generalizations

The previous technique extends to two directions: we can consider weighted versions of the problem
by using a more general function than the characteristic function of matches; we can consider arrays
in place of words, or more generally higher dimensional arrays.

5.1 Weighted case

The method and results we developed apply to weighted versions of the problem, i.e., to the problem
of computing weighted scores de�ned by

ci =
M�1X
j=0

f(ti+j)g(pj)�ti+j;pj ;

where f and g are complex-valued functions of the alphabet.

6

In the algorithm, the encoding of the alphabet using roots of unity has to be changed ac-
cordingly: when creating T (`) we now replace every symbol t in T by f(t)!�

(`)(t), while when

creating P (`) we replace every symbol p in P by g(p)!��
(`)(p).

As a matter of fact, we proceed to perform our analysis in the more general case of weighted
scores of the form

ci =
M�1X
j=0

h(ti+j ; pj)�ti+j;pj ;

where h is a complex-valued function on pairs of letters in A2; we do this essentially for the purpose
of analysis, and it entails no loss of generality since our algorithm deals with is the special case of
h(ti+j ; pj) = f(ti+j)g(pj). The randomized vector bC we obtain still has the property to be C, while
the variance of bci is now O((M � ci)=

p
k).

Once again, we generically consider the random variable

bs = 1

k

kX
`=1

M�1X
j=0

h(tj ; pj)!
�(`)(tj)��(`)(pj);

where the tj 's and the pj 's are �xed and the �(`)'s are independent and uniformly distributed
random mappings from A to [0; �[. The weighted score between t0 : : : tM�1 and p0 : : :pM�1 is given
by

c =
M�1X
j=0

h(tj ; pj)�tj;pj ;

where once again �x;y denotes the Kronecker symbol.
The random variable bs is the mean of k independent identically distributed random variables s(`).

Hence it su�ces to consider the random variable

s =
M�1X
j=0

h(tj ; pj)!
�(tj)��(pj);

for the mean and variance of bs are then given by

E (bs) = E(s) and Var (bs) = Var(s)

k
:

The analysis di�ers from the unweighted case in that the role of �x;y in the unweighted case is
now played by h(x; y)�x;y. We start with the mean.

Lemma 3 The mean of bs is the weighted score

c =
M�1X
j=0

h(tj ; pj)�tj;pj

between t0 : : : tM�1 and p0 : : : pM�1.

Proof. The mean of bs is given by

E (bs) = E(s) =
M�1X
j=0

E
�
h(tj ; pj)!

�(tj)��(pj)
�
=

M�1X
j=0

h(tj ; pj)E
�
!�(tj)��(pj)

�
= c;

since E
�
!�(tj)��(pj)

�
= �tj ;pj . 2

We now turn to the variance, proving Lemma 2 as a particular case.

7

Lemma 4 The variance of bs is bounded as

Var (bs) � jjhjj1(M � c)2

k
;

where jjhjj1 denotes the maximum value of jh(x; y)j over A2.

Proof. Since Var(s) = E
�jsj2�� jE(s)j2, we �rst study the mean of jsj2 = ss. It is

E (ss) =
X

0�i;j<M
h(ti; pi)h(tj ; pj)E

�
!�(ti)��(pi)��(tj)+�(pj)

�
:

When !�(ti)��(pi)��(tj)+�(pj) = 1 independently from �, the inner mean E
�
!�(ti)��(pi)��(tj)+�(pj)

�
is 1; otherwise, it is 0. By a simpler inclusion-exclusion argument, it follows that

E (ss) =
X

0�i;j<M
h(ti; pi)h(tj ; pj)

�
�ti;pi�tj;pj + �ti;tj�pi;pj � �ti;tj�pi;pj�ti;pi�tj;pj

�
:

With the �rst product of Kronecker symbols, one recognizes the expansion of jE(s)j2, so that

Var(s) = E
�
jsj2

�
� jE(s)j2 =

X
0�i;j<M

h(ti; pi)h(tj ; pj)�ti;tj�pi;pj

�
1� �ti;pi�tj ;pj

�
:

Let us introduce the real symmetric matrix � = [
i;j] of size � � � with (i; j)th entry given by

i;j = �ti;tj�pi;pj

�
1� �ti;pi�tj ;pj

�
;

and the vector H with ith entry h(ti; pi). We obtain Var(s) = H
T
�H , where T denotes the

transpose of matrices. Call �(�) the spectral radius of �, i.e., the largest modulus of its eigenvalues.
Since � is positive semide�nite, its eigenvalues are non-negative and �(�) is the largest eigenvalue.
We have

Var(s) = H
T
�H � �(�)H

T
H:

To improve on the latter upper bound and make it more explicit, we need to take the number c of
matches into account.

The number
i;j is 0 unless ti = tj 6= pi = pj . It entails that in case of a match ti = pi, both
the ith line and the ith column of � are 0. After renumbering the lines and columns in � and H ,
we part the latter as follows:

� =

"
0 0

0 �0

#
and H =

"
0

H 0

#
;

where �0 =
h

0i;j

i
is a matrix of size (M � c)� (M � c) and H 0 is a vector of size (M � c). It follows

that
H

T
�H = H 0T�0H 0 � �(�0)H 0TH 0:

On the other hand, the spectral radius �(�0) of �0 is bounded above by the Schur normN (�0) which
satis�es:

N (�0)2 =
X

1�i;j�M�c
j
0i;j j2 � (M � c)2:

8

Furthermore, denoting jjhjj1 = max(x;y)2A2 jh(x; y)j, we obtain

H 0TH 0 � jjhjj21(M � c):

Finally,

Var (bs) = Var(s)

k
=
H

T
�H

k
=
H 0T�0H 0

k
� jjhjj21(M � c)2

k
:

2

Both lemmas above prove the following theorem.

Theorem 2 For the weighted version of the problem, an estimate bC can be computed by a Monte-

Carlo algorithm in time O(kN logM) with mean and variance given by

E
� bC� = C and Var(bci) � jjhjj21(M � ci)

2

k
:

Note that the variance is once again particularly small when ci is close to M .

5.2 Higher dimensional arrays

We sketch the extension to two-dimensional arrays in the non-weighted case; similar ideas would
extend it to three and higher dimensions, and to mixed weighted higher-dimensional versions as
well.

For the sake of simplicity, we assume in the sequel thatM and N are the squares of two integers,
M = m2 and N = n2. The text T is now a matrix of size n� n, the pattern P is a smaller matrix
of size m�m, and the result we seek is an (n+ 1�m)� (n+ 1�m) matrix C where

ci;j =
m�1X
k=0

m�1X
l=0

�Ti+k;j+l;Pk;l
;

for 0 � i; j � n �m. The time to compute our estimate bC of C is now O(kN logM), and we still

have E
� bC� = C and Var(cci;j) � (M � ci;j)2=k. We next brie
y sketch how this is done.

We justify our focus to achieving a time complexity of O(kM logM) for the case n = 2m by
the following standard reduction [8] to this case from the general case n > 2m:

{ Cover T with N=M overlapping squares Ti;j of size 2m � 2m each, where Ti;j consists of
the square submatrix of T of size 2m� 2m that begins (i.e., has its top-left corner) at posi-
tion (mi;mj) in T . Hence Ti;j and Ti+1 mod n;j+1 mod n overlap over a region of T of size m�m,
Ti;j and Ti;j+1 mod n overlap over a region of size 2m �m, Ti;j and Ti+1 mod n;j overlap over
a region of size m� 2m.

{ The algorithm for the case n = 2m is then used on each of the N=M pairs (Ti;j; P) of text
and pattern. It is easy to see that these N=M answers together contain a description of the
desired matrix C. The overall time complexity to compute them is O((N=M)kM logM) =
O(kN logM), as required.

Therefore, we henceforth assume that n = 2m.
The extension of the one-dimensional solution to two dimensions works by transforming the

two-dimensional problem into a one-dimensional one [8], and in the process introduces \don't care"
symbols: that is, if A is the alphabet for the two-dimensional problem, then the corresponding

9

alphabet for the one-dimensional problem is A[f#g where # is a \don't care" symbol in the sense
that, if x or y (or both) equal # then �x;y = 0 as a convention.

More speci�cally, from the text matrix T of size 2m � 2m, we create the corresponding text
vector V by concatenating the rows of T . Thus V has length 4m2. From the pattern matrix P of
size m�m, we create a pattern vector W of length 2m2 by augmenting each of the rows of P by
appending to the end of each of them m symbols # and then concatenating the augmented rows.
Let K be the score vector with V as text and W as pattern, i.e.,

Ki =
2m2�1X
j=0

�Vi+j;Wj

for 0 � i � 2m2 and with the understanding that �x;y is zero if either x or y equals the special
symbol #.

The connection between K and the score matrix C for text T and pattern P is as follows: ci;j
equals K2m(i�1)+j. Therefore, computing the matrix C reduces to computing the vector K. The
computation is not much more complicated by the presence of the new, special # symbol: we simply
follow the rules of the algorithm of Section 3 except that, at the place where the algorithm requires
to create !�(t) (resp. !��(p)), we only do so if t (resp. p) is not the # symbol, and we create a 0
instead if t (resp. p) is the # symbol. Hence we use the weighted model introduced in Section 5,
with the weight functions

f(a) = g(a) = 1

for any letter a 2 A except from
f(#) = g(#) = 0:

The results of Section 5 simply lead to the following theorem.

Theorem 3 For the two-dimensional version of the problem, an estimate bC can be computed by a

Monte-Carlo algorithm in time O(kN logM) with mean and variance given by

E
� bC� = C and Var (cci;j) � (M � ci;j)

2

k
:

6 Implementation and experimentation

We have implemented and tested our algorithm. Our purpose was to experimentally investigate the
quality of the approximation, and whether it con�rms the theory. We have performed several ex-
periments on several types of data: randomly generated text, sequenced genes, domains in proteins,
literature in several natural languages and MIDI encoding of classical music. What is observed is
in excellent agreement with the phenomena predicted by the theory. The algorithm behaves well
in practice as soon as the pattern is su�ciently large (typically, larger than 32 or 64 bytes), even
for a small value of the parameter k that controls repetitions in the algorithm (typically, k = 3
su�ces). Our studies concern the unweighted model.

A �rst experiment was performed with a text of 8192 bytes chosen at random according to the
uniform distribution over the alphabet of size 256. The �rst 4096 bytes were picked and a pattern
was obtained by modifying at random, so as to keep 4042 matches. For this case, the parameters
are N = 2M = 8192, � = 256, k = 3. All the estimated scores were returned together with
the corresponding exact scores. Apart from the almost complete match with score 4042, all other
positions have a score less than or equal to 59. The result is that the best match is found while the
program behaves well on all other shifts.

10

As another example, we considered the search for approximate occurrences of a clarinet theme
of Beethoven's Fifth Symphony1. For this experiment, the datas are MIDI code, and the length of
the theme is M = 128, so that we set N = 2M = 256, � = 128, k = 3. Furthermore, a threshold
of � = 0:5 is used in order to �lter approximate matches (i.e., the program outputs only those
matches with c � �M).

Here are selected parts of the output in a readable form and sorted by decreasing scores:

estd = 1.000000; exact= 128/128 = 1.000000; ratio=1.000000

[**]

estd = 0.753018; exact= 88/128 = 0.687500; ratio=1.095299

[-****-***-****-***-****-****-****-***-****-***-****-***-****-****--***--**--***--**--***--**--***--***--***--***--***--***-****-]

estd = 0.550580; exact= 70/128 = 0.546875; ratio=1.006775

[------------------*----*-*--*-****-***-****-***-****-***-****-*--*-****-***--***-***--***-***--***-*-**--***-****--***-*--**---*]

estd = 0.507331; exact= 69/128 = 0.539062; ratio=0.941137

[*-****-***-****-***-*--*-*--*-****-***-****-***-****-***-*--*-*--*--***-***--***-***--***-***--***-*--*----*-*------------------]

estd = 0.568381; exact= 65/128 = 0.507812; ratio=1.119273

[-****-***-****-***-****-****-****-***-****-***-****-***-****-**----***--**---**--**---**--**----*--*---------*------------------]

estd = 0.526136; exact= 61/128 = 0.476562; ratio=1.104024

[*******************-*--*-*-----------*******************-*--*-*-----------*--***-***--***-****---***----------------------------]

Each block corresponds to a certain position. In each block, the �eld estd gives the estimated
score bci=M , the �eld exact gives the exact score ci=M and the �eld ratio gives the ratio bci=ci. The
characters * and - represent a match and a mismatch, respectively. Beside the exact occurrence
of the theme (�rst block), we catch several occurrences where the pattern and the text almost
match during long sequences (next four blocks), as well as an occurrence where intermediate-sized
sequences of exact match are interlaced with sequences of full mismatch (last block). Note the
accuracy of the algorithm on this execution: the ratio bci=ci varies little around 1. The algorithm is
thus quite good at locating interesting events.

Although the purpose of our experiments was to investigate the quality of the approximation
rather than the speed of the algorithm, we can make a few comments about speed. For the
parameters of the above-mentioned �rst experiment, the program processed roughly 280 bytes per
second and was much slower (by a factor of 4) than that of Baeza-Yates and Gonnet [6]. As
mentioned earlier, we used a soft implementation of FFT (which su�ers from large constant factors
in its time complexity), and our algorithm should work better with the FFT step performed by
dedicated chips. Of course for large enough problem sizes the asymptotic time complexity overcomes
the e�ect of large constant factors, but with our current software implementation \large enough"
means roughly N � 33; 000 (assuming M = N=2, � = 256, and k = 3). Such large problem
sizes actually make it impossible to e�ectively use dedicated FFT chips to achieve better speeds,
because the currently available and planned FFT chips will not \�t" such huge problem sizes. Now,
suppose that one has hardware designed for a p-sized FFT problem, and one wants to use it to
solve an n-sized FFT problem, where n > p. Clever techniques for optimally using the p-sized
FFT hardware to solve an n-sized FFT were designed by Aggarwal and Vitter [1]. However, these
methods introduce serious practical complications of their own, such as necessitating multiple uses
of the dedicated FFT chip, and the elaborate combining of the answers returned by these multiple
uses of the FFT chip. This would involve impractical constant factors.
Acknowledgement. It is a pleasure to acknowledge the helpful comments and performance data
kindly supplied by the referees.

1The authors warmly thank Roberto Sierra (bert@netcom.com) who sequenced the whole symphony in MIDI code,
together with other musical pieces, and made them freely available on the WEB.

11

References

[1] A. Aggarwal and J.S. Vitter, \The Input/Output Complexity of Sorting and Related Problems,"
Communications of the ACM, Vol. 31, 1988, pp. 1116{1127.

[2] A. Apostolico and Z. Galil (Eds), Combinatorial Algorithms on Words, Springer, 1985.

[3] K. Abrahamson, \Generalized String Matching," SIAM Journal of Computing, 16, 1987, pp. 1039{
1051.

[4] M.J. Atallah, Y. G�enin, and W. Szpankowski, \A Pattern Matching Approach to Image Compres-
sion," Proceedings of the Third IEEE International Conference on Image Processing, Lausanne,
Switzerland, 1996, pp. 349{356.

[5] M.J. Atallah, P. Jacquet, and W. Szpankowski, \A Probabilistic Approach to Pattern Matching
with Mismatches," Random Structures and Algorithms, 4, 1993, pp. 191{213.

[6] R.A. Baeza-Yates and G.H. Gonnet, \A New Approach to Text Searching," Communications of
the ACM, 35, 1992, pp. 74{82.

[7] R.A. Baeza-Yates and C.H. Perleberg, \Fast and Practical Approximate Pattern Matching," In-
formation Processing Letters, 59, 1996, pp. 21{27.

[8] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, 1994.

[9] M.J. Fischer and M.S. Paterson, \String Matching and Other Products," Complexity of Computa-
tion, SIAM-AMS Proceedings, 7, 1974, pp. 113{125.

[10] H. Karlo�, \Fast Algorithms for Approximately Counting Mismatches," Information Processing
Letters, 48, 1993, pp. 53{60.

[11] S.R. Kosaraju, \E�cient String Matching," manuscript, Johns Hopkins University, 1987.

[12] S. Kumar and E.H. Spa�ord, \A Pattern-Matching Model for Intrusion Detection," Proceedings of
the National Computer Security Conference, 1994, pp. 11{21.

[13] D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-
Wesley, 2nd ed., 1981, pp. 290{294.

12

