
Algorithms for Variable Length Subnet Address Assignment

Mikhail J. Atallah�(Fellow)
COAST Laboratory and

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907
U.S.A.

mja@cs.purdue.edu

Douglas E. Comer
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

U.S.A.
dec@cs.purdue.edu

Abstract

In a computer network that consists of M subnetworks, the L-bit address of a machine
consists of two parts: A pre�x si that contains the address of the subnetwork to which the
machine belongs, and a su�x (of length L � jsij) containing the address of that particular
machine within its subnetwork. In �xed-length subnetwork addressing, jsij is independent of i,
whereas in variable-length subnetwork addressing, jsij varies from one subnetwork to another.
To avoid ambiguity when decoding addresses, there is a requirement that no si be a pre�x of
another sj . The practical problem is how to �nd a suitable set of si's in order to maximize the
total number of addressable machines, when the ith subnetwork contains ni machines. Not all
of the ni machines of a subnetwork i need be addressable in a solution: If ni > 2L�jsij then
only 2L�jsij machines of that subnetwork are addressable (none is addressable if the solution
assigns no address si to that subnetwork). The abstract problem implied by this formulation
is: Given an integer L, and given M (not necessarily distinct) positive integers n1; � � � ; nM ,
�nd M binary strings s1; � � � ; sM (some of which may be empty) such that (i) no nonempty
string si is pre�x of another string sj , (ii) no si is more than L bits long, and (iii) the quantityP

jskj6=0
minfnk; 2L�jskjg is maximized. We generalize the algorithm to the case where each ni

also has a priority pi associated with it and there is an additional constraint involving priorities:
Some subnetworks are then more important than others and are treated preferentially when
assigning addresses. The algorithms can be used to solve the case when L itself is a variable;
that is, when the input no longer speci�es L but rather gives a target integer for the number
of addressable machines, and the goal is to �nd the smallest L whose corresponding optimal
solution results in at least addressable machines.

Index Terms | Addressing, algorithms, computer networks, pre�x codes.

�Portions of this work were supported by sponsors of the COAST Laboratory.

1

1 Introduction

This introduction discusses the connection between computer networking and the abstract problems

for which algorithms are subsequently given. It also introduces some terminology.

In a computer network that consists of M subnetworks, the L-bit address of a machine consists

of two parts: A pre�x that contains the address of the subnetwork to which the machine belongs,

and a su�x containing the address of that particular machine within its subnetwork. In the case

where the various subnetworks contain roughly the same number of machines, a �xed partition of

the L bits into a t-bit pre�x, t = dlogMe, and an (L � t)-bit su�x, works well in practice: Each

subnetwork can then contain up to 2L�t addressable machines; if it contains more, then only 2L�t

of them will have an address and the remaining ones will be unsatis�ed, in the sense that they will

have no address. If, in a �xed length partition scheme, some machines are unsatis�ed, then the only

way to satisfy them is to increase the value of L. However, a �xed length scheme can be wasteful

if the M subnetworks consist of (or will eventually consist of) di�erent numbers of machines, say,

ni machines for the ith subnetwork. In such a case, the �xed scheme can leave many machines

unsatis�ed (for that particular value of L) even though the variable length partition scheme that

we describe next could satisfy all of them without having to increase L.

In a variable partition scheme, the length of the pre�x containing the subnetwork's address

varies from one subnetwork to another. In other words, if we let si be the pre�x that is the address

of the ith subnetwork, then we now can have jsij 6= jsj j. However, to avoid ambiguity (or having to

store and transmit jsij), there is a requirement that no si be a pre�x of another sj . Variable length

subnetwork addressing is easily shown to satisfy a larger total number of addressable machines than

the �xed length scheme: There are examples where �xed length subnetwork addressing cannot

satisfy all of the N = n1 + � � � + nM machines, whereas variable length subnetwork addressing

can. Furthermore, we are also interested in the cases where even variable length addressing cannot

satisfy all of the N machines: In such cases we want to use the L bits available as e�ectively as

possible, i.e., in order to satisfy as many machines as possible. Of course an optimal solution might

then leave unsatis�ed all the machines of, say, the ith subnetwork; this translates into si being the

empty string, i.e., jsij = 0. An optimal solution therefore consists of determining binary strings

s1; � � � ; sM that maximize the sum

X

jskj6=0

minfnk; 2
L�jskjg:

A solution completely satis�es the ith subnetwork if it satis�es all of the machines of that

2

subnetwork, i.e., if jsij > 0 and ni � 2L�jsij. If jsij = 0 then no machine of the ith subnetwork is

satis�ed, and we then say that the ith network is completely unsatis�ed. If the solution satis�es

some but not all the machines of the ith subnetwork, then that subnetwork is partially satis�ed;

this happens when ni > 2L�jsij, in which case only 2L�jsij of the machines of that subnetwork

are satis�ed. An optimal solution can leave some of the subnetworks completely satis�ed, others

completely unsatis�ed, and others partially satis�ed.

The prioritized version of the problem models the situation where some subnetworks are more

important than others. We use the following priority policy.

Priority Policy: \The number of satis�ed machines of a subnetwork is the same as if all lower-

priority subnetworks did not exist."

The next section proves some useful properties for a subset of the optimal solutions. We assume

the unprioritized case, and leave the prioritized case until the end of the paper.

Before proceeding with the technical details of our approach, we should stress that in the above

we have provided only enough background and motivation to make this paper self-contained. The

reader interested in more background than we provided can �nd, in references [11, 8, 9, 10, 6, 4, 12],

the speci�cations for standard subnet addressing, and other related topics. For a more general

discussion of hierarchical addressing, its bene�ts in large networks, and various lookup solution

methods (e.g., digital trees), see [7, 5]. Finally, what follows assumes the reader is familiar with

basic techniques and terminology from the text algorithms and data structures literature | we

refer the reader to, for example, the references [1, 2, 3].

2 Preliminaries

The following de�nitions and observations will be useful later on. We assume, without loss of

generality, that n1 � � � � � nM . Since the case when n1 � 2L admits a trivial solution (2L machines

are satis�ed, all from subnetwork 1), from now on we assume that n1 < 2L. Throughout, all

logarithms are to the base 2.

Lemma 1 Let S be any solution (not necessarily optimal). Then there exists a solution S0 that

satis�es the same number of machines as S, uses the same set of subnetwork addresses as S, and

in which the completely unsatis�ed subnetworks (if there are any) are those that have the k lowest

ni values for some integer k. In other words, jsij = 0, M � k + 1 � i � M .

Proof: Among all such solutions that satisfy the same number of machines as S, consider one that

has the smallest number of o�ending pairs i; j, de�ned as pairs i; j for which ni > nj , i is completely

3

unsatis�ed, and j is not completely unsatis�ed. We claim that the number of such pairs is zero:

Otherwise interchanging the roles of subnetworks i and j in that solution does not decrease the

total number of satis�ed machines, a contradiction since the resulting solution has at least one

fewer o�ending pair. 2

On the other hand, there does not necessarily exist an S0 of equal value to S and in which all

of the (say, k) completely satis�ed subnetworks are those that have the k highest ni values. If,

in the optimal solution we seek, we go through the selected subnetworks by decreasing ni values,

then we initially encounter a mixture of completely satis�ed and partially satis�ed subnetworks,

but once we get to a completely unsatis�ed one then (by the above lemma) all the remaining ones

are completely unsatis�ed.

Lemma 2 Let S be any solution (not necessarily optimal). There exists a solution S0 that satis�es

as many machines as S, uses the same set of subnetwork addresses as S, and is such that jsij >

jsj j > 0 implies that ni � nj .

Proof: Among all such solutions that satisfy the same number of machines as S, consider one which

has the smallest number of o�ending pairs i; j, de�ned as pairs i; j such that jsij > jsj j > 0 and

ni > nj . We claim that the number of such pairs is zero: Otherwise interchanging the roles of

subnetworks i and j in that solution does not decrease the total number of satis�ed machines, a

contradiction since the resulting solution has at least one fewer o�ending pair. 2

Let T be a full binary tree of height L, i.e., T has 2L leaves and 2L � 1 internal nodes. For any

solution S, one can map each nonempty si to a node of T in the obvious way: The node vi of T

corresponding to subnetwork i is obtained by starting at the root of T and going down as dictated

by the bits of the string si (where a 0 means \go to the left child" and a 1 means \go to the right

child"). Note that the depth of vi in T (its distance from the root) is jsij, and that no vi is ancestor

of another vj in T (because of the requirement that no nonempty si is a pre�x of another sj). For

any node w in T , we use parent(w) to denote the parent of w in T , and we use l(w) to denote the

number of leaves of T that are in the subtree of w; hence l(vi) = 2L�jsij. Observe that solution

S completely satis�es subnetwork i i� l(vi) � ni, in which case we can extend our terminology by

saying that \node vi is completely satis�ed by S" rather than the more accurate \the subnetwork

i corresponding to node vi is completely satis�ed by S."

Lemma 3 Let S = (v1; : : : ; vk) be any solution that satis�es Lemmas 1 and 2. Then there is a

solution S0 = (v01; : : : ; v
0
k) that, for each subnetwork i (1 � i � k), has v0i at the same depth as vi,

4

and is such that i < j implies that v0i has smaller preorder number in T than v0j (which is equivalent

to saying that s0i is lexicographically smaller than s0j).

Proof: S0 can be obtained from S by a sequence of \interchanges" of various subtrees of T , as

follows. Set i = 1, let T 0 be initially a copy of T , and repeat the following until i = k:

1. Perform an \interchange" in T 0 of the subtree rooted at node vi with the subtree rooted at

the leftmost node of T 0 having same depth as vi; v
0
i is simply the new position occupied by

vi after this \interchange".

2. Delete from T 0 the subtree rooted at v0i, and set i = i+ 1.

Performing in T the interchanges done on T 0 gives a new T where the v0i's have the desired property.

2

The \interchange" operations used to prove the above lemma will not be actually performed by

our algorithm { their only use is for the proof of the lemma.

Lemma 4 Let S be any solution (not necessarily optimal) that satis�es the properties of Lemmas 1{

3. There exists a solution S0 that satis�es as many machines as S, that also satis�es the properties of

Lemmas 1{3, and is such that any vi that is not the root of T has l(parent(vi)) > ni. Furthermore,

the nonempty si's of such an S0 are a subset of the nonempty si's of S.

Proof: Among all solutions that satisfy the same number of machines as S, let S0 = (v1; : : : ; vk) be

one that maximizes the integer i (1 � i � k) for which all of v1; : : : ; vi satisfy the lemma's property,

i.e., they have l(parent(vj)) > nj for all 1 � j � i. We claim that i = k, i.e., that such an S0

already satis�es the lemma. Suppose to the contrary that i < k, i.e., that l(parent(vi+1)) � ni+1.

Node vi+1 cannot be completely satis�ed since that would imply that l(vi+1) � ni+1, and hence

l(parent(vi+1)) = 2l(vi+1) > ni+1. Hence vi+1 is only partially satis�ed, i.e., l(vi+1) < ni+1. Let

z be the parent of vi+1 and y be the sibling of vi+1 in T ; y must be to the right of vi+1 since

otherwise vi is at y and vi too has l(parent(vi)) < ni, which contradicts the de�nition of i. Also

note that the fact that l(z) � ni+1 implies that ni+1� l(vi+1) � l(y), i.e., the number of unsatis�ed

machines in subnetwork i+ 1 is � l(y). Now imagine promoting vi+1 by \moving it to its parent",

one level up the tree T , thus (i) replacing the old si+1 by a new (shorter) one obtained by dropping

the rightmost bit of the old si+1, and (ii) deleting from S0 all of the sj that now have the new

si+1 as a pre�x. Note that, for each sj so removed, its corresponding vj was in the subtree of y,

hence the removal of these sj 's results in at most l(y) machines becoming unsatis�ed, but that is

5

compensated for by l(y) machines of subnetwork i+1 that have become newly satis�ed as a result

of vi+1's promotion, implying that the new solution S00 has value that is no less than that of S 0.

However, a vj so deleted from the subtree of y can cause S00 to no longer satisfy the property of

Lemma 1 because of a surviving vt to the right of z having an nt < nj . We next describe how to

modify S00 so it does satisfy Lemma 1. In the rest of the proof S0 refers to the solution we started

with, before vi+1 was moved up by one level, and S00 refers to the solution after vi+1 was moved.

Let (vi+2; : : : ; vi+2+l) (0 � l � k � i � 2) denote the set of the deleted vj 's (who were in y's

subtree in the original S0 but are not in S00). If i+2+ l < k, then (vi+3+l; : : : ; vk) are in S 00 and are

to the right of z, hence we need to \repair" S00 to restore the property of Lemma 1 (if on the other

hand i+ 2+ l = k then no such repair is needed). This is done as follows. Simultaneously for each

of the elements of the sequence (vi+2; � � � ; vk), do the following: In the tree T , place the element

considered (say, vj) at the place previously (in the original S0) occupied by vj+l+1 (if j + l+ 1 > k

then that vj cannot be placed and the new solution leaves vj completely unsatis�ed). The S00 so

modi�ed satis�es the same number of machines as the original one, still satis�es Lemmas 1{3, but

has \moved" vi+1 one level up the tree T . This can be repeated until vi+1 is high enough that

l(parent(vi+1) > ni+1, but that is a contradiction to the de�nition of integer i. Hence it must be

the case that S0 has i = k. 2

Lemma 5 There exists an optimal solution S that satis�es the properties of Lemma 4 and in which

every subnetwork i has an si of length equal to either L� dlog nie or L� dlog nie + 1.

Proof: Let S be an optimal solution satisfying Lemma 4. First, we claim that there is such an

S in which every si satis�es jsij � L � dlog nie. Suppose to the contrary that, in S, some si has

length less than L � dlog nie. Then moving vi from its current position, say node y in T , to a

descendant of y whose depth equals L � dlognie, would leave subnetwork i completely satis�ed

without a�ecting the other subnetworks. Repeating this for all i gives a solution in which every

si has length � L� dlog nie. Of course moving a vi down to (say) y's left subtree leaves a \hole"

in y's right subtree in the sense that the right subtree of y is unulitilized in the new solution.

The resulting S might have many such unutilized subtrees of T : It is easy to \move them to the

right" so that they all lie to the right of the utilized subtrees of T (the details are easy and are

omitted). Hence we can assume that S is such that jsij � L� dlognie. (Note that the above does

not introduce any violation of the properties of Lemma 4.)

To complete the proof we must show that jsij � L� dlognie+ 1. Lemma 4 implies that

ni < l(parent(vi)) = 2l(vi) = 2 � 2L�jsij:

6

Taking logarithms on both sides gives:

dlognie � 1 + L� jsij;

which completes the proof. 2

The observations we made so far are enough to easily solve in O(M logM) time the following

(easier) version of the problem: Either completely satisfy all M subnetworks, or report that it is

not possible to do so. It clearly su�ces to �nd a vi in T for each subnetwork i (since the vi's

uniquely determine the si's). This is done in O(M logM) time by the following greedy algorithm,

which operates on only that portion of T that is above the vi's:

1. Sort the ni's in decreasing order, say n1 � � � � � nM . Time: O(M logM) (the logM factor

goes away if the ni's can be sorted in linear time, e.g., if they are integers smaller thanMO(1)).

2. For each ni, compute the depth di of vi in T : di = L� dlognie. Time: O(M).

3. Repeat the following for i = 1; � � � ;M : Place vi on the leftmost node of T that is at depth

di and has none of v1; � � � ; vi�1 as ancestor (if no such node exists then stop and output \No

Solution Exists"). Time: O(M) by implementing this step as a construction and (simultane-

ously) preorder traversal of the relevant portion of T | call it T 0; i.e., we start at the root

and stop at the �rst preorder node of depth d1, label it v1 and consider it a leaf of T 0, then

resume until the preorder traversal reaches another node of depth d2, which is labeled v2 and

considered to be another leaf of T 0, etc. Note that in the end the leaves of T 0 are the vi's in

left to right order.

Theorem 1 Algorithm greedy solves the problem of �nding an assignment of addresses that com-

pletely satis�es all subnetworks when such an assignment exists. Its time complexity is O(M) if the

ni's are given in sorted order, O(M logM) if it has to sort the ni's.

Proof: The time complexity was argued in the exposition of the algorithm. Correctness of the

algorithm follows immediately from Lemmas 1{5. 2

Theorem 2 An assignment that completely satis�es all subnetworks exists if and only if

L � dlog(
MX

i=1

2dlognie)e:

Proof: Observe that algorithm greedy succeeds in satisfying all subnetworks if and only if the

inequality is satis�ed. 2

7

Corollary 1 Whether there is an assignment that completely satis�es all subnetworks can be de-

termined in O(M) time, even if the ni's are not given in sorted order.

Proof: The right-hand side of the inequality in the previous theorem can be computed in O(M)

time. 2

Would the greedy algorithm solve the problem of satisfying the largest number of machines

when it cannot satisfy all of them? That is, when it cannot assign a vi to a node (in Step 3),

instead of saying \No Solution Exists", can it accurately claim that the solution produced so far is

optimal? The answer is no, as can be seen from the simple example of L = 3, M = 2, and n1 = 5,

n2 = 3 (for this example the greedy algorithm satis�es 5 machines whereas it is possible to satisfy

7 machines). However, the following holds.

Observation 1 The solution returned by the greedy algorithm satis�es a number of machines that

is no less than half the number satis�ed by an optimal solution.

Proof: Let m be the number of subnetworks completely satis�ed by greedy. Observe that ni >

l(vi)=2, since if we had ni � l(vi)=2 then greedy would have put vi at a greater depth than its

current position. Therefore an optimal solution could, compared to greedy, satisfy no more than

an additional
Pm

i=1 l(vi)=2 machines, which is less than
Pm

i=1 ni = the number satis�ed by greedy.

2

However, we need not resort to approximating an optimal solution, since the next section will

give an algorithm for �nding an optimal solution.

3 Algorithm for the Unprioritized Case

We assume throughout this section that the greedy algorithm described earlier has failed to satisfy

all the machines. The goal then is to satisfy as many machines as possible.

We call level ` the 2` nodes of T whose depth (distance from the root) is `. We number the

nodes of level ` as follows: (`; 1); (`; 2); � � �, (`; 2`), where (`; k) is the kth leftmost node of level `.

Lemma 5 says that vi is either at a depth of di or of di+1, where di = L�dlognie. This limits

the number of choices for where to place vi to 2di choices at depth di, and 2di+1 choices at depth

di + 1. For every i; j pair where 1 � i � M and 1 � j � 2di , we de�ne C(i; j) to be the maximum

number of machines of subnetworks 1; : : : ; i that can be satis�ed by using only the portion of T

having preorder numbers � the preorder number of (di; j), and subject to the constraint that vi

is placed at node (di; j). C0(i; j) is de�ned analogously but with (di + 1; j) playing the role that

8

(di; j) played in the de�nition of C(i; j). The C(i; j)'s and C0(i; j)'s will play an important role

in the algorithm: Clearly, if we had these quantities for all i; j pairs then we could easily obtain

the number of machines satis�ed by an optimal solution, simply by choosing the maximum among

them:

max
1�i�M

f max
1�j�2di

C(i; j); max
1�j�2di+1

C0(i; j)g:

Another notion used by the algorithm is that of the `-predecessor of a node v of T , where ` is

an integer no greater than v's depth: It is the node of T at level ` that is immediately to the left of

the ancestor of v at level ` (if no such node exists then v has no `-predecessor). In other words, if

w is the ancestor of v at level ` (possibly w = v), then the `-predecessor of v is the rightmost node

to the left of w at level `. The algorithms will implicitly make use of the fact that the `-predecessor

of a given node v can be obtained in constant time: If v is represented as a pair (a; b) where a is

v's depth and b is the left-to-right rank of b at that depth (i.e., v is the bth leftmost node at depth

a), then the `-predecessor of (a; b) is (`; c) where c = db2`�ae � 1.

The following algorithm preliminary will later be modi�ed into a better algorithm. The input

to the algorithm is L and the ni's. The output is a placement of the vi's in T ; recall that this is

equivalent to computing the si's because the si's can easily obtained from the vi's (in fact each si can

be obtained from vi in constant time, as will be pointed out later). We assume that a preprocessing

step has already computed the di's. We use pred(`; v) or pred(`; a; b) interchangeably, to denote

the `-predecessor of a node v = (a; b), with the convention that pred(`; a; b) is (�1;�1) when it is

unde�ned, i.e., when ` > a or (a; b) has no `-predecessor.

1. For i = 1 to M in turn, do the following:

(a) For b = 1 to 2di compute

C(i; b) = maxfC(i� 1; pred(di�1; di; b)); C
0(i� 1; pred(di�1+1; di; b))g+minfni; 2

L�dig

with the convention that C(i� 1;�1;�1) and C0(i� 1;�1;�1) are 0.

Let f(i; b) be the node of T that \gives C(i; b) its value" in the above maximization,

that is, f(i; b) is

= pred(di�1; di; b) if C(i� 1; pred(di�1; di; b)) > C0(i� 1; pred(di�1+ 1; di; b)),

= pred(di�1 + 1; di; b) if C(i� 1; pred(di�1; di; b))� C0(i� 1; pred(di�1+ 1; di; b)).

(b) For b = 1 to 2di+1 compute

C0(i; b) = maxfC(i�1; pred(di�1; di+1; b)); C
0(i�1; pred(di�1+1; di+1; b))g+minfni; 2

L�di�1g

9

with the convention that C(i� 1;�1;�1) and C0(i� 1;�1;�1) are 0.

Let f 0(i; b) be the node of T that \gives C0(i; b) its value" in the above maximization,

that is, f 0(i; b) is

= pred(di�1; di+1; b) if C(i� 1; pred(di�1; di+1; b)) > C0(i� 1; pred(di�1+1; di+1; b),

= pred(di�1+1; di+1; b) if C(i�1; pred(di�1; di+1; b)) � C0(i�1; pred(di�1+1; di+1; b).

2. Find the largest, over all i and b, of the C(i; b)'s and C0(i; b)'s computed in the previous

step: Suppose it is C(k; b) (respectively, C0(k; b)). Then C(k; b) (respectively, C0(k; b)) is the

maximum possible number of machines that are satis�ed by an optimal solution v1; : : : ; vk.

To generate a set of assignments that correspond to that optimal solution (rather than just its

value), we use the f and f 0 functions obtained in the previous step: Starting at node (dk; b)

(respectively, (dk + 1; b)), we \trace back" from there, and output the nodes of the optimal

solution as we go along (in the order vk; vk�1; : : : ; v1). The details of this \tracing back" are

as follows:

(a) Set i = k. If the largest of the C(i; b)'s and C0(i; b)'s computed in the previous step was

C(k; b) (respectively, C0(k; b)) then set (�; �) equal to (dk; b) (respectively, (dk + 1; b)).

Then repeat the following until i = 1.

(b) Output \vi = (�; �) " then set (�; �) equal to either f(i; �) (in case � = di) or to f
0(i; �)

(in case � = di + 1).

Note. To output the string si corresponding to a vi node, rather than the (di; j) or

(di + 1; j) pair describing that vi, we modify the above Step 2(b) as follows: If vi =

(a; b) then si is the binary string consisting of the rightmost a digits in the binary

representation of the integer 2a+ b� 1 (note that 2a + b� 1 is the breadth-�rst number

of the node (a; b), and that an empty string corresponds to the root since 20+1�1 = 1).

This implies that si can be computed from the pair (a; b) in constant time.

Correctness of the above algorithm preliminary follows from Lemmas 1 { 5.

The time complexity of preliminary is unsatisfactory because it can depend on the size of T as

well as M , making the worst case take O(M2L) time. However, the following simple modi�cation

results in an O(M2) time algorithm. In Steps 1(a) and (respectively) 1(b), replace \For b = 1" by

\For b = maxf1; 2di �Mg" and (respectively) \For b = maxf1; 2di+1 �Mg" (the upper iteration

bounds for b remain unchanged, at 2di for 1(a) and 2di+1 for 1(b)). Before arguing the correctness

10

of this modi�ed algorithm, we observe that its time complexity is O(M2), since we now iterate

over only M2 distinct i; b pairs. (Implementation note: The relevant C(i; b)'s need not be explicitly

initialized, they can implicitly be assumed to be zero initially; this works because of the particular

order in which Step 1 computes them.) Correctness follows from the claim (to be proved next) that

there is an optimal solution that, of the 2a nodes of any level a, does not use any of the leftmost

2a �M nodes of that level. Let S be an optimal solution that has the smallest possible number

(call it t) of violations of the claim, i.e., the smallest number of nodes (a; b) where b < 2a�M and

some vi is at (a; b). We prove that t = 0 by contradiction: Suppose that t > 0, and let a be the

smallest depth at which the claim is violated. Let (a; b) be a node of level a that violates the claim,

i.e., b < 2a�M and some vi is placed at (a; b) by optimal solution S. Since there are more than M

nodes to the right of vi at level a, the value of S would surely not decrease if we were to modify S

by re-positioning all of vi; vi+1; : : : ; vM in the subtrees of the rightmost M � i+ 1 nodes of level a

(without changing their depth). Such a modi�cation, however, would decrease t, contradicting the

de�nition of S. Hence t must be zero, and the claim holds.

The following summarizes the result of this section.

Theorem 3 The unprioritized case can be solved in O(M2) time.

4 Algorithm for the Prioritized Case

Let the priorities be pk1 > pk2 > � � � > pkM where pki is the priority of subnetwork ki. In the rest of

this section we assume that L is not large enough to completely satisfy all of the M subnetworks

(because in the other case, where L is large enough, the priorities do not play a role and Theorem

1 applies).

Use greedy (or, alternatively, Corollary 1) in a binary search for the largest i (call it î) such

that the subnetworks k1; � � � ; ki can be completely satis�ed; each \comparison" in the binary search

corresponds to a call to greedy (or, alternatively, to Corollary 1) { of course it ignores the priorities

of the subnetworks k1; � � � ; ki. This takes total time O(M logM) even though we may use greedy

a logarithmic number of times, because we sort by decreasing nj 's only once, which makes each

subsequent execution of greedy cost O(M) time rather than O(M logM). Let S be the solution,

returned by greedy, in which all of subnetworks k1; � � � ; kî are completely satis�ed. By the de�nition

of î, it is impossible to completely satisfy all of subnetworks k1; � � � ; kî+1. Our task is to modify S

so as to satisfy as many of the machines of subnetworks k
î+1; : : :kM as possible without violating

the priority policy (hence keeping subnetworks k1; � � � ; kî completely satis�ed).

11

This is done as follows:

1. Set j = î+ 1, and set the depth of each ki, 1 � i � j � 1, to be dlognkie.

2. Use greedy log log nkj times to binary search for the smallest depth (call it d) at which vkj

can be placed without resulting in the infeasibility (as tested by greedy) of (i) placing all

of subnetworks k1; : : : ; kj�1 at their previously �xed depths and (ii) placing kj at depth d

(there are lognkj possible values for d, which implies the log lognkj iterations of the binary

search). If no such d exists (i.e., if any placement of kj prevents the required placement of

k1; : : : ; kj�1) then proceed to Step 3. If the binary search �nds such a d then �x the depth of

vj to be d (it stays d in all future iterations), set j = j + 1, and repeat Step 2.

3. The solution is described by the current depths of k1; : : : ; kj�1. These �xed depths are then

used by a preorder traversal of (part of) T to position vk1 ; : : : ; vkj�1 in T .

That the above algorithm respects the priority policy follows from the way we �x the depth of

subnetwork kj : Subnetworks of lower priority do not interfere with it (because they are considered

later in the iteration). The time complexity is easily seen to be O(M2 logL), since nkj < 2L.

The following summarizes the result of this section.

Theorem 4 The prioritized case can be solved in O(M2 logL) time.

5 Further Remarks

What if L itself is a variable ? That is, consider the situation where instead of specifying L the

input speci�es a target integer for the number of addressable machines; the goal is then to �nd

the smallest L that is capable of satisfying at least machines. The algorithms we gave earlier (and

that assume a �xed L) can be used as subroutines in a \forward" binary search for the optimal

(i.e., smallest) value of L (call it L̂) that satis�es at least machines: We can use them log L̂ times

in a \forward" binary search for L̂. So it looks like there is an extra multiplicative log L̂ time factor

if L is itself a variable that we seek to minimize, as opposed to the version of the problem that

�xes L ahead of time. However, Theorem 2 implies that there is no such log L̂ factor time penalty

in the important case where = n1 + � � �+ nM , i.e., where we seek the smallest L that satis�es all

the machines: This version of the problem can be solved just as fast as the one where L is �xed

and we seek to check whether it can completely satisfy all M subnetworks.

Acknowledgement. The authors are grateful to three anonymous referees for their helpful com-

ments on an earlier version of this paper.

12

References

[1] A. Apostolico and Z. Galil (Eds), Combinatorial Algorithms on Words, Springer, 1985.

[2] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, McGraw-Hill, 1990.

[3] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, 1994.

[4] Internet Assigned Numbers Authority (IANA), \Class A Subnet Experiment", RFC 1797,
04/25/1995.

[5] D. Knox and S. Panchanathan, \Parallel searching techniques for routing table lookup," Proceedings
of the 12th Annual Joint Conference of the IEEE Computer and Communications Societies - IEEE

INFOCOM '93, San Francisco, CA, v 3, 1993, pp. 1400-1405.

[6] B. Manning, \Class A Subnet Experiment Results and Recommendations", RFC 1879, 01/15/1996.

[7] A.J. McAuley and P.J. Francis, \Fast routing table lookup using CAMs," Proceedings of the 12th

Annual Joint Conference of the IEEE Computer and Communications Societies - IEEE INFOCOM

'93, San Francisco, CA, v 3, 1993, pp. 1382-1891.

[8] J. Mogul and J. Postel, \Internet standard subnetting procedure", RFC 0950, 08/01/1985.

[9] J. Mogul, \Broadcasting Internet datagrams in the presence of subnets", RFC 0922, 10/01/1984.

[10] J. Mogul, \Internet subnets", RFC 0917, 10/01/1984.

[11] T. Pummill and B. Manning, \Variable Length Subnet Table For IPv4", RFC 1878, 12/26/1995.

[12] P. Tsuchiya, \On the Assignment of Subnet Numbers", RFC 1219, 04/16/1991.

6 Author Biographies

6.1 Mikhail J. Atallah

Mikhail J. Atallah received a BE degree in electrical engineering from the American University, Beirut,
Lebanon, in 1975, and MS and Ph.D. degrees in electrical engineering and computer science from Johns
Hopkins University, Baltimore, Maryland, in 1980 and 1982, respectively. In 1982, Dr. Atallah joined the
Purdue University faculty in West Lafayette, Indiana; he is currently a professor in the computer science
department. In 1985, he received an NSF Presidential Young Investigator Award from the U.S. National
Science Foundation. His research interests include the design and analysis of algorithms, in particular for
the application areas of computer security and computational geometry.

Dr. Atallah is a Fellow of the IEEE, and serves or has served on the editorial boards of SIAM J.

on Computing, J. of Parallel and Distributed Computing, Information Processing Letters, Computational

Geometry: Theory & Applications, Int. J. of Computational Geometry & Applications, Parallel Processing

Letters, Methods of Logic in Computer Science. He was Guest Editor for a Special Issue of Algorithmica
on Computational Geometry, has served as Editor of the Handbook of Parallel and Distributed Computing

(McGraw-Hill), as Editorial Advisor for the Handbook of Computer Science and Engineering (CRC Press),
and serves as Editor in Chief for the Handbook of Algorithms and Theory of Computation (CRC Press). He
has also served on many conference program committees, and state and federal panels.

6.2 Douglas E. Comer

Douglas E. Comer received his B.S. from Houghton College in 1971 and earned his Ph.D from Pennsylvania
State University in 1976. He joined the Purdue faculty in 1976, and is currently a professor in the computer
science department. Dr. Comer is an internationally recognized expert on TCP/IP, who gives lectures
at various network meetings and as a consultant to private industry. He has authored many well-known
textbooks, which include the titles: Operating System Design: The Xinu Approach; Operating System
Design, Vol.II Internetworking with Xinu; Internetworking with TCP/IP (three volumes); The Internet
Book; and Computer Networks and Internets (all Prentice Hall books). He is Editor of Software-Practice

13

and Experience (John Wiley) and Editor-in-Chief of Internetworking, Research and Experience (John Wiley).
Dr. Comer is on leave of absence for two years from Purdue, and is serving as Dean of the Interop Graduate
Institute for Softbank Corp. He has lectured on TCP/IP and Networking at the NETWORLD+INTEROP
conference workshops worldwide. He is the former chairman of the DARPADistributed Systems Architecture
Board and the CSNET Technical Committee, and member of the Internet Activities Board. He is a member
of Sigma Xi and Upsilon Pi Epsilon honoraries.

14

