
Categorization of Software Errors that led to

Security Breaches

Wenliang Du�

COAST Laboratory

1398 Department of Computer Sciences

Purdue University, W. Lafayette, IN 47907,USA
Aditya P. Mathury

COAST Laboratory and Software Engineering Research Center

1398 Department of Computer Sciences

Purdue University, W. Lafayette, IN 47907, USA

September 9, 1997

Abstract

A set of errors known to have led to security breaches in computer systems was
analyzed. The analysis led to a categorization of these errors. After examining several
proposed schemes for the categorization of software errors a new scheme was developed
and used. This scheme classi�es errors by their cause, the nature of their impact, and
the type of change, or �x, made to remove the error. The errors considered in this work
are found in a database maintained by the COAST laboratory. The categorization is the
�rst step in the investigation of the e�ectiveness of various measures of code coverage
in revealing software errors that might lead to security breaches.

1 Introduction

We report the outcome of an e�ort to categorize errors in software that are known to have
led to security breaches. The set of errors used in this study came from a database of errors
developed in the COAST laboratory [10]. Several existing schemes for the categorization of
software errors were evaluated for possible use in our e�ort. However, none was found fully
suitable. This led to the development of a new scheme which is reported here.

Our categorization of security errors was motivated by (a) a desire to evaluate the
e�ectiveness of traditional code-based coverage criteria in revealing software errors that
lead to security breaches and (b) a perceived need to develop a tool that assists software
developers and testers in the assessment of tests of distributed software aimed at detecting
and understanding the e�ects of possible security aws. We plan to use the categorization
reported here in the design and conduct of experiments to ful�ll (a). We hope that results

�Portions of this work were supported by contract F30602-96-1-0334 from Rome Laboratory (USAF) and
by sponsors of the COAST Laboratory.

yPortions of this work were supported by contract F30602-96-1-0334 from Rome Laboratory (USAF), by
sponsors of the COAST Laboratory, and NSF award CCR-9102331.

1

from such experiments will lead to information that might be useful in satisfying (b). The
traditional code-based adequacy criteria we are concerned with includes all control ow,
data ow, and mutation based criteria considered by Wong [15]. The distributed systems
we are concerned with are the ones developed using CORBA as the interface standard
between distributed objects and Java as the programming language.

The remainder of this report is organized into three sections. Section 2 briey discusses
current methods for detecting security aws and their limitations. Section 3 critically
examines several existing schemes for the categorization of errors in software. Section 4
presents a new scheme for this purpose and reports the outcome of our categorization
e�ort. Section 6 summarizes this report and discusses how we propose to use the outcome
of our categorization in the design of experiments.

2 Detecting security errors

Reports of security breaches due to errors in software are becoming an increasingly common.
This has resulted in new security related concerns among software developers and users
regarding their product. All stages of software development are e�ected by the desire to
make the product secure and be not vulnerable to malicious intentions of some users. Our
work is concerned with the testing of software with the goal of detecting errors that might
lead to security breaches. We refer to such errors as security errors or security aws.

Traditional methods for detecting security errors include penetration analysis, and for-
mal veri�cation of security kernels [11, 12]. Penetration analysis relies on known security
aws in software systems. These aws are generalized and a team of individuals is given
the responsibility of penetrating the system using this knowledge. Formal methods use a
mathematical description of the security requirements and that of the system that imple-
ments the requirements. The goal of these methods is to formally show that indeed the
requirements are met by the system.

One weakness of penetration analysis is that it requires one to either know or be able
to postulate the nature of aws that might exist in a system. This may not be a di�cult
task for systems that such as Operating systems and browsers that implement well known
functionality. However, for systems that have one-of-a-kind functionality a lack of experience
might render this task di�cult. Further, the e�ectiveness of penetration analysis is as good
as that of the team that performs the analysis. A lack of an objective criterion to measure
the \goodness" of penetration analysis leads to uncertainty in the reliability of the system
for which penetration analysis did not reveal any security aws.

Attractive due to the precision they provide, formal methods su�er from the inherent
di�culty in specifying the requirements, the system, and then applying the process of check-
ing the requirements speci�cation against the system speci�cation. We view penetration
analysis and formal methods as adjuncts to the testing of a system for security aws using
traditional methods of software testing.

Several criteria have been proposed to evaluate the adequacy of tests of software. These
include criteria that are based on programmutation, control structure, functions, data ows,
etc. The cost and utility of applying these criteria di�ers widely and has not been assessed
when applied for detecting security errors. Our primary long-term goal is to evaluate the
e�ectiveness of these adequacy criteria in the detection of security errors. More speci�cally,
we propose to investigate the following questions in this study:

� How do the number and types of security errors that can be found in testing vary over

2

di�erent adequacy criteria ?

� Is there any di�erence in the e�ectiveness of the adequacy criteria evaluated over all
types of software errors and against only security errors ?

� Can the quality and amount of penetration analysis be improved with the use of
adequacy criteria ?

We plan to design several experiments to achieve these goals. The experiments will be
conducted by injecting security errors into sample programs and applying various testing
techniques to determine how often the techniques reveal the errors.

Before experiments start, there are several things we need to do �rst: The �rst thing is
to collect security errors, this will provide us with a resource set of appropriate size which
we can choose security errors from; the second thing is to categorize security errors. The
categorization provides us with the criteria on deciding what errors should be chosen and
injected to sample code.

Several people in COAST lab have contributed to the collection of security errors in the
last few years, a vulnerability database has been established by Ivan Krusl [10]. It contains
abundant security errors for us to conduct the experiment. However, the database does
not provide a suitable categorization to help us select security errors in the experiment (we
will discuss it later) and conduct the experiment. That's why we need to devise a new
categorization scheme that can not only classify security errors, but also provide helpful
guidelines to our goal.

Our current focus is on the categorization scheme, we investigated all security errors
(about 50 so far, the number is still increasing) stored in vulnerability database, and con-
ducted a deep study on the software error classi�cation and security error classi�cation, and
�nally we have come up with a new categorization scheme that we are going to use in our
experiments.

In addition, the new error categorization scheme will later be used as baseline for eval-
uating the reliability of a system.

In this paper, we will discuss our new categorization scheme. This new scheme comes
up from investigating of about 150 security aws, one third of them from Krusl's vulner-
ability database, the second third from Landwehr's paper [6], the other part of them from
unorganized data from di�erent resources (this part has not been added to the database
yet).

3 Past work

3.1 Characteristics of error classi�cation

It has been suggested that a taxonomy should have classi�cation categories with the fol-
lowing characteristics [1]:

1. The categories be mutually exclusive so that classi�cation of an error is possible into
only one category.

2. The categories be exhaustive so that taken together the categories include all possi-
bilities.

3

3. The categories be unambiguous so that classi�cation is not dependent upon inter-
pretation by multiple classi�ers. This property also leads to repeatability of the
classi�cation scheme which means that so that repeated applications of the scheme to
the same set of errors result in the same classi�cation regardless of the individual(s)
involved in the process.

Several researchers have conducted the classi�cation of security errors. In this section
we discuss the strengths and weaknesses of the existing classi�cation schemes in.

3.2 Security error classi�cation

Landwehr's scheme

Landwehr [6] proposed a taxonomy of aws found in di�erent operating systems. The
objective of this taxonomy is to provide an understandable record of security aws that have
occurred. It is based on three dimensions: Genesis, Time of Introduction, and Location.
Genesis refers to how a security aw �nds its way into a program. Time of Introduction is
the point in the software's life cycle where the error was introduced. Location is that part
of the operating system or hardware where the error lies.

Landwehr's scheme describes the security aws more accurately than schemes that use
only one dimension. The genesis provides a basis for choosing di�erent strategies to avoid,
detect, or compensate for security aws. One weakness of this scheme is in that the catego-
rization by genesis is ambiguous. In Landwehr's own description of each categorization, the
validation errors include the errors of inadequate identi�cation/authentication and bound-
ary condition errors. Another weakness is in that it contains a category called \other
exploitable logic errors" into which are placed all errors not classi�ed into any other cat-
egory. We found that some errors classi�ed into this category by Lendwehr do possess
distinguishing features that could be used to categorize them di�erently.

The time of introduction categorizes errors according to the phase of the system life
cycle in which they were introduced. This attribute of an error is important in that it helps
in an understanding of weaknesses in the software development process. For example, when
one �nds that too many security errors are being introduced during the design phase, one
may be wise to consider means to improve the design process and the validation of the
resulting designs. However, this category is not directly useful in our work which deals with
the evaluation of testing strategies applied to the code and not to designs. It is for this
reason that we decided not to use this category.

The location of an error classi�es errors according to where in the system it is introduced
or found. This dimension is primarily related to security aws in an operating system. Our
research does not focus on any speci�c type of software system and hence this category is
again not found to be of direct use in our work.

Aslam's scheme

Aslam [2] has proposed a taxonomy with the objective of providing a basis for data organi-
zation in a vulnerability database that facilitates di�erent queries to be performed on the
stored data. It considers classifying coding errors into two categories, namely synchroniza-
tion and condition validation. It attributes the cause of all non-synchronization security
errors to the improper evaluation of condition. This viewpoint appears a narrow viewpoint
in that some errors are not caused by the improper evaluation of any condition. Stated

4

di�erently, we may correct the error without even changing any condition in the program.
Figure 3 illustrates this point. Further, Aslam's taxonomy was derived from security errors
found in the UNIX operating system and is not exhaustive. For example, the use of a rela-
tively weak algorithm in the encryption of a password would not be categorizable according
to Aslam's scheme.

Bishop's scheme

Matt Bishop [4] proposed a six-axis taxonomy for software vulnerability. Each vulnerability
is classi�ed on each of the six axes. The axes are: the nature of the aw, the time of

introduction, the exploitation domain of the vulnerability, the e�ect domain, the minimum
number of components needed to exploit the vulnerability and the source of the identi�cation
of the vulnerability. The objective of this taxonomy is to describe the vulnerabilities in a
form useful for the intrusion detection mechanisms. This goal is di�erent from ours. Except
for the the nature of the aw, the other axes are not directly relevant to our goal.

Other works, such as the Protection Analysis Project [14], the RISOS Project [8], and
the Flaw Hypothesis Methodology [11] also proposed their own classi�cation scheme. All
these schemes share the weaknesses pointed out above in our discussion of Aslam's and
Lendwehr's schemes.

3.3 Classi�cation of software errors

In addition to the classi�cation schemes discussed above, several schemes for the catego-
rization of software errors have been proposed by researchers. These categorization schemes
have been published in non-security community. In this section we review these schemes
and discuss their strengths and weaknesses.

Orthogonal defect classi�cation

Chillarege and Bhandari proposed an orthogonal defect classi�cation scheme [7]. The objec-
tive of this scheme is to provide fast and e�ective feedback to developers by using in-process
measurement, i.e., the defect distribution can be used to measure the development process
and highlight that part of the process that needs attention. The defect types are general
enough to be applicable to any phase of the software development process. The classi�cation
they choose actually provides the capability to reect the characteristic of defect distribu-
tion change over development process. As our study focuses on the implementation and
testing phase, and not the entire software development cycle, the ODC is overly complex
for our use. Further, it does not provide su�cient data to help determine the exact nature
of the error in the code.

Goodenough and Gerhart's scheme

The goal of Goodenough and Gerhart's scheme [9] is to give an insight into test reliability.
Their classi�cation scheme is used to evaluate the reliability of various test data selection
criterion. Many of data selection criterion are based on program's internal structure, such
as path testing, branch testing, and statement testing. The paper attempts to show that
testing based solely on a knowledge of a program's internal structure can not lead to reliable
tests. To achieve this goal, the classi�cation should reect program's internal structure,
which is the control ow of the program.

5

One problem with this scheme is in its ambiguity. As an example of this ambiguity,
consider the incorrect statement if (A) : : : which should actually be if (A.AND.B) : : : .
Clearly there is a failure on the part of the programmer to test for condition B. Thus,
this fault is of type missing control ow path. However, this is also of type inappropriate
path selection because the condition has been expressed incorrectly. Furthermore, this
classi�cation scheme is too narrow to classify security errors. We found there are some
security errors that do not �t into any of the proposed categories. For example, security
errors caused by race condition cannot be classi�ed according to their scheme.

Ostrand and Weyuker's scheme

Ostrand and Weyuker's scheme [13] was designed with the goal of evaluating the e�ectiveness
of current and proposed software development, validation, and maintenance techniques. The
key feature of this scheme is that it attempts to identify the fault characteristics in several
distinct areas. Within each area, one of several possible values can be chosen to describe
the fault. As we have discussed before, the more accurately we categorize faults, the more
easy it is to avoid a strong bias in selecting security errors. We decided not to use this
scheme because the attributes used do not reect key features related to security errors.

Basili and Perricone's scheme

Basili and Perricone [3] has a goal to analyze the relationship between the frequency and
distribution of errors during software development. The classi�cation they use is ambiguous,
as mentioned by the authors. This might cause di�erent analysts to interpret the categories
di�erently.

4 Proposed scheme for the classi�cation of security errors

4.1 Characteristics of our scheme

The primary goal of this research is to devise a usable and practical scheme for categorizing
security errors. Such a scheme is essential for understanding and controlling the factors
which a�ect software security. Therefore, the categorization should reect key features of
security errors. In addition, this scheme will serve as a basis for evaluating the e�ectiveness
of software testing techniques for revealing errors that lead to security breaches.

We propose using a multiple attribute approach similar to the one proposed by Ostrand
and Weyuker [13]. Another approach to classi�cation is to place a given error into a single
category which most closely matches some feature of the error. By doing so, we risk losing
information. Classifying an error into a single category leads to abstraction at the risk of
throwing away several features of the error while retaining only the feature represented by
the category into which the error is classi�ed. This is not desirable from our point of view.

Consider, for example, using a single-category classi�cation approach which places an
error into one of the four categories A, B, C, and D. Now, suppose we �nd that testing
technique T could help detect, on an average, 95% of security errors. However, the reason
for this high percentage might be that most of the security error we have selected in our
experiment might have attribute E which we decided to abstract away as it is implicitly
included in categories A to D. Thus, classi�cation to one category might to results from
our experiments that are not trustworthy as they are biased towards the categories we have
selected and ignore the categories that have been abstracted away.

6

Keeping more information in categorization is a way to avoid the bias. Towards this
end, we decided not to assign an error to a single category. Instead, we attempt to identify
the error's characteristics in several distinct areas. Within each area one of several possi-
ble values can be chosen to describe the error. Together all areas provide more detailed
information about the security errors than would be available with a single category scheme.

From an operational viewpoint, a security error is due to some reason, has an impact
that violates a security policy, and may be �xed eventually. The sequence is shown in
Figure 1 This operational sequence will be expanded in this section to provide a taxonomy
that will then be used to classify security errors.

Cause Impact Fix

Figure 1: Life cycle of a security error.

4.2 Classi�cation scheme

By cause

Landwehr's categorization by genesis describes the cause of the security errors in more
detail than others. As we focus on inadvertent errors, we do not use the intentional part of
Landwehr's taxonomy. Also, we have modi�ed the de�nition of some categories to get rid
of its ambiguity.

1. Validation error: Validation is used when a program interacts with the environment.
There are three items that need validation: input, origin, and target. An error occurs
when the assumptions about at least one of these three items does not conform to the
reality. Input validation ensures that the input is what is expected. It includes the
number, type and format of each input �eld. It should forbid any bad input to enter
the software system. Origin validation ensures that the origin is actually the one it
claims to be. It includes checking the identity of the origin. Target validation ensures
that the information goes to the place it is supposed to. This includes checking the
identity of the target so that protected information does not go to an untrusted target.

2. Authentication error is one that permits a protected operation to be invoked without
su�cient checking of the authority of the invoking agent.

3. Serialization/aliasing error: A serialization aw permits the asynchronous behavior of
di�erent system components to be exploited to cause a security violation. Many time-
of-check-to-time-of-use (TOCTTOU) aws fall in to this category. We also include
aliasing aws in this category. These aws occur when two names for the same object
can cause its contents to change unexpectedly and, consequently, invalidate checks
already applied to it.

4. Boundary checking error is one that is caused by the failure to check boundary to
ensure constraints. Not checking against excessive values associated with table size,
�le allocation, or other resource consumption leads to boundary checking error. Bu�er
overow is a result of a boundary checking error.

5. Domain error occurs when the intended boundaries between protection environments
have holes. This causes information to leak out implicitly.

7

6. Weak or incorrect design error occurs when the error is traced to the design phase.
For example, weak encryption algorithm falls in to this category.

7. Other exploitable logic error is one that does not fall into the above categories.

By direct impact

1. Execution of code is any unauthorized execution of code on a target computer.

2. Change of target resource is any unauthorized alteration of resource on a target com-
puter, the resource include �les, environment, processes and etc.

3. Access the target resource is any unauthorized access of resource on a target computer.
The access does not include alteration and the resource is the same as above.

4. Denial of service is any action that degrades or blocks the computer or network.

We prioritize the above four categories according to their severity. The execution of code
has the highest priority and the denial of service has the least priority. If a security error
causes more than two kinds of impact, we categorize it according to the highest priority,
i.e., according to the most serious impact it causes.

By �x

Demillo and Mathur's fault classi�cation scheme [5] is the best candidate for categorizing
security faults by �x because it is unambiguous and capable of automation. More impor-
tantly as it is based on the original source code and the code after correction, it �ts well for
categorization by �x.

The scheme classi�es an error into one of is the following categories.

1. Spurious entity: A fault whose correction requires the removal of its characteristic
substring falls under this category.

2. Missing entity: A fault whose correction requires the insertion of a syntactic entity
into the incorrect program falls under this category. A missing entity could be, for
example, a sequence of statements, a single statement, an expression, or a unary
operator. These four syntactic entities form the sub-categories of the missing entity
category.

3. Misplaced entity: If the correction of a fault requires a change in its position within
the code, it is classi�ed under this category.

4. Incorrect entity: When a fault cannot be classi�ed as missing entity, misplaced entity,
or spurious entity, then it is classi�ed into this category.

In summary, our scheme is presented in Figure 2.

5 Sample categorization

To illustrate the categorization scheme, we give two examples of problem descriptions and
show the resulting classi�cations. Both examples are from Vulnerability Database main-
tained by Ivan Krusl in the COAST laboratory [10].

8

execution of code
change the target resource
access the target resource
denial of service

spurious entity
missing entity
misplaced entity
incorrect entity

validation error
authentication error
serialization/aliasing error

domain error
weak/incorrect design error
other exploitable logic error

boundary checking error

Cause Impact Fix

Figure 2: A scheme for the categorization of security errors.

Problem 1: Security hole in guestbook script for web servers using SSI.
Description of problem symptoms: Guestbook applications allow a person browsing a web
site to \sign" an electronic guestbook and leave an appropriate message. All versions of
this program have a vulnerability that under certain conditions allows a remote user to
execute arbitrary commands on the server as the user id of the httpd daemon. These
conditions are: 1) the server allow Server Side Includes (SSI) on the directory in which the
guestbook is located, 2) the guestbook application allows the remote user to write HTML
tags into the Comment �eld of the guestbook, and 3) the guestbook application does not
�lter appropriate HTML tags.
Description of �x: See Figure 3.

@form_variables = keys (%form_data);

foreach $variable (@form_variables)
 {
 foreach $word (@bad_words)
 {
 $form_data{$variable} =~ s/\b$word\b/censored/gi;
 }
 if ($allow_html != "yes")

@form_variables = keys (%form_data);

foreach $variable (@form_variables)
 {

Strip non-negotiable HTML.
Un-Webify plus signs and %-encoding
$form_data{$variable} =~ tr/+/ /;
$form_data{$variable} =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg;

$form_data{$variable} =~ $value =~ s/<!--(.|\n)*-->//g;

Replace bad words.
foreach $word (@bad_words)
 {
 $form_data($variable} =~ s/\b$word\b/censored/gi;
 }
if ($allow_html != "yes")

Original Code

Modified Code (is highlighted)

Figure 3: Original and modi�ed code for problem 1.

Problem 2: bind() allows binding to sockets in use.
Description of problem symptoms: Onmost systems, a combination of setting the SO REUSEADDR
socket option and a call to bind() allows any process to bind to a port to which a previous
process has bound width INADDR ANY. This allows a user to bind to the speci�c address
of a server bound to INADDR ANY on an unprivileged port and steal its udp packets/tcp

9

Table 1: Categorization of sample security errors in VDD.

Error ID C
�
ause I

�
mpact F

�
ix

Problem 1 validation error execution of code missing entity

Problem 2 domain error access target resource missing entity

connection.
Description of �x: See Figure 4 .

if (sk2->num != snum)
 continue; /*more than one */
if (sk2->rcv_saddr != sk->crv_saddr)
 continue; /* socket per slot ! -FB */
 if (!sk2->reuse || sk2->state == TCP_LISTEN)

 continue; /*more than one */
if (sk2->num != snum)

 current->euid != sk2->socket->inode->i_uid)
{
 sti();
 return(-EADDRINUSE);
}
if (sk2->rcv_saddr != sk->rcv_saddr)
 continue; /* socket per slot ! -FB */
 if (!sk2->reuse || sk2->state == TCP_LISTEN)

Original Code

if ((sk2->rcv_saddr == 0 || sk->rcv_saddr == 0) &&

Modified Code (is highlighted)

Figure 4: Original and modi�ed code for problem 2.

Table 1 shows the three fault categorizations that resulted from these two problem
reports.

6 Summary and future work

Work reported here focuses on reviewing the existing schemes for the categorization of se-
curity errors and other of general software errors. Based on this review we have devised
a new scheme that suits our goal. proposed an security error classi�cation scheme in this
paper. Our classi�cation scheme allows distinct categorization of each security error ac-
cording to the speci�ed criteria from three points of view. These three viewpoints not only
reect the feature of security error but also provide the basis for our future work which is to
experimentally determine the e�ectiveness of testing techniques in revealing security errors.

In the experiment, we plan to inject security errors into some sample programs and
apply various testing techniques to determine how often the techniques reveal the errors.
The data we collect from this experiment will help us estimate the e�ectiveness.

10

References

[1] E. G. Amoroso. Fundamentals of Computer Security Technology. Prentice-Hall PTR, Upper
Saddle River, NJ, 1994.

[2] T. Aslam. A taxonomy of security faults in the unix operation system. Master's thesis, Purdue
University, August 1995.

[3] V. R. Basili and B. T. Perricone. Software errors and complexity: An empirical investigation.
Communications of the ACM, 27(1):42{52, January 1984.

[4] M. Bishop. A taxonomy of unix system and network vulnerabilities. Technical Report CSE-95-
10, Department of Computer Science, University of California at Davis, May 1995.

[5] R. A. Demillo and A. P. Mathur. A grammar based fault classi�cation scheme and its application
to the classi�cation of the errors of TEX. Technical Report SERC-TR-165-P, Purdue University,
1995.

[6] C. E. Landwehr, et al. A taxonomy of computer program security aws. ACM Computing

Surveys, 26(3), September 1994.

[7] R. Chillarege, et al. Orthogonal defect classi�cation { a concept for in-process measurements.
IEEE Transactions on Software Engineering, 18(11):943{956, November 1992.

[8] R. P. Abbott, et al. Security analysis and enhancements of computer operating systems. Tech-
nical Report NBSIR 76-1041, Institute for Computer Science and Technology, National Bureau
of Standards, 1976.

[9] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection. IEEE Transactions

on Software Engineering, SE-1(2):156{173, June 1975.

[10] I. Krsul. Computer vulnerability analysis thesis proposal. Technical Report CSD-TR-97-026,
Computer Science Department, Purdue University, 1997.

[11] R. R. Linde. Operating system penetration. In AFIPS National Computer Conference, pages
pp. 361{368, 1975.

[12] E. J. McCauley and P. J. Drongowski. The design of a secure operating system. In National

Computer Conference, 1979.

[13] T. J. Ostrand and E. J. Weyuker. Collecting and categorizing software error data in an industrial
environment. The Journal of Systems and Software, pages 289{300, 1984.

[14] R. Bibsey, G. Popek and J. Carlstead. Inconsistency of single data value over time. Technical
report, Information Sciences Institute, University of Southern California, December 1975.

[15] W. E. Wong and A. P. Mathur. E�ectiveness of mutation and data ow testing. Software

Quality Journal, 4:69{83, 1995.

11

Table 2: Categorization of security errors in VDD by their Cause, Impact and Fix. The
appearance of a \?" in the column marked Fix indicates that su�cient code was not
available to categorize the error.

Error ID C
�
ause I

�
mpact F

�
ix

rpcbind warm authentication error change target resource ?

freebsd setlocale boundary checking error execution of code missing

rlogin term boundary checking error execution of code ?

solaris getopt boundary checking error execution of code ?

talkd dns boundary checking error execution of code ?

apache cookie boundary checking error execution of code missing

solaris ps serialization/aliasing error execution of code incorrect

socket ioctl domain error denial of service ?

NIS DNS validation error execution of code ?

xmcd cddpath overow boundary checking error execution of code ?

xterm vulnerability serialization/aliasing error execution of code

mgetty sendfax validation error execution of code ?

rdist boundary checking error execution of code ?

sperl ?

dip boundary checking error execution of code ?

tcsh back tic validation access target resource ?

test cgi validation error access target resource ?

java acl path validation error access target resource ?

java classloader ?

java abs path validation error execution of code ?

sendmail 875b boundary checking error execution of code ?

crontab temp�le guess authentication error change target resource ?

netscape servkey guess design error execution of code incorrect

telnet dynlib authentication error execution of code ?

java dns validation access target resource ?

bsd ftpguestrot ?(not clear) ?

sendmail MIME overrun boundary checking error execution of code ?

aix gethostbyname bounary checking error execution of code ?

dns bind boundary checking error execution of code ?

ie ntlm auth authentication error access target resource ?

12

Table 3: Categorization of security errors in VDD by Cause, Impact, and Fix.

Error ID C
�
ause I

�
mpact F

�
ix

winnt rpc vulnerability validation error denial of service ?

ibm nls environment boundar checking error execution of code ?

innd shell escape validation error execution of code ?

inn ucbmail shellEscape validation error execution of code ?

imap bu�er overow boundary checking error execution of code ?

sysinstall freebsd authentication error access to target resource incorrect

lpd bu�er overow boundary checking error execution of code incorrect

shockwave-security-hole authentication error access target resource ?

winNT sampermission design error execution of code ?

remote NT password cracking authentication error access target resource ?

bind packet stealing domain error access target resource missing

winNT-long�lenames-subst-bug boundary checking error denial of service ?

selena sl guest validation error execution of code missing

nat lang buf overow boundary checking error execution of code ?

13

