
Computer Vulnerability Analysis

Thesis Proposal

Ivan Krsul

The COAST Laboratory

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907{1398

krsul@cs.purdue.edu

Technical Report CSD-TR-97-026

April 15, 1997

Abstract

Computer security professionals and researchers do not have a history of sharing and analyzing computer

vulnerability information. Scientists and engineers from older or more established �elds have long understood

that publicizing, analyzing, and learning from other people's mistakes is essential to the stepwise re�nement

of complex systems. Computer scientists, however, have not followed suit. Programmers reinvent classical

programming mistakes, contributing to the reappearance of known vulnerabilities.

In the recent past, computer systems have come to be a part of critical systems that have a direct e�ect

on the safety and well-being of human beings and hence we must have lower tolerance for software failures.

In the dissertation I will attempt to show that computer vulnerability information presents important

regularities and these can be detected, and possibly visualized, providing important insight about the reason

of their prevalence and existence. The information derived from these observations could be used to improve on

all phases of the development of software systems, as could be in the design, development, debugging, testing

and maintenance of complex computer systems that must implement a set of policies de�ned by security

analysis.

A signi�cant portion of the work that must be performed will concentrate on the development of classi�-

cations and taxonomies that will permit the visualization and analysis of computer vulnerability information.

I hope that these classi�cations and taxonomies applied to a collection of vulnerabilities will provide a set

of features whose analysis will show that there are clear statistical clusterings and patterns caused because

developers and programmers are not learning from each others mistakes. This analysis may be performed by

applying statistical analysis and knowledge discovery tools.

1 Introduction

Computer vulnerability analysis, or the process of collecting vulnerability information, classifying this information,
storing it in some consistent and logical format, and processing it using analysis tools, is not a well understood
process. In spite of the fact that software developers have been repairing vulnerabilities in their products for
many years, only a few researchers are beginning to understand that vulnerability analysis is an essential process
in the step-wise re�nement of software products.

1

Traditional sciences and engineering have a long history in the analysis of vulnerabilities of complex systems
[Per84, Sch94, And94, Pet85, LS92]. For example, the aerospace industry has a long record of recovering vulner-
ability information from incidents, storing this information and �nding regularities or patterns and incorporating
their �ndings into production systems, making each subsequent product safer than the preceding one. Making
sense of apparent chaos by �nding regularities is an essential characteristic of human beings. The Austrian-born
British philosopher of natural and social science Karl Popper even argues that \we are born with expectations...
one of the most important of these expectations is the expectation of �nding a regularity. It is connected with
an inborn propensity to lookout for regularities, or with a need to �nd regularities..." [Pop69]

There are a few instances of researchers who have indeed attempted to �nd such regularities in computer
vulnerabilities, including the vulnerability analysis project at the University of California at Davis [BD96] and
the vulnerability classi�cation e�orts by Matt Bishop at the University of California at Davis [Bis95], both of
which are used to develop generic vulnerability detection mechanisms; the intrusion detection work done by Kumar
et al. at the COAST laboratory, that concludes that vulnerabilities can be grouped together in generic classes
described by patterns [KS94, KS95b, Kum95, KS95a, CDE+96]; and the vulnerability classi�cation work done
by Aslam and Krsul that provides a taxonomy of security faults [Asl95, AKS96a]; Ross Anderson collected and
analyzed vulnerability information for automatic teller machine (ATM) cryptosystems [And94] and concluded
that designers of automatic teller machines (ATM) cryptosystems failed to understand the real threat model
because vulnerability information is not collected, published and analyzed.

We see the same vulnerabilities appear again and again (for example a sendmail bug, a �nger bug, a syslog
bug, and a Netscape bug all share the bu�er overrun problem). This should be a powerful incentive for the
development of a freely available vulnerability database that could be used to learn from other people's mistakes.
Many articles in the literature make similar arguments for the need of publicly available data collections and
analysis tools [And94, Asl95, AKS96a, Pol]: computer programmers are not learning from their mistakes and we
do not have tools that allow us to understand why this is the case.

The last few years have seen a surge in interest for the design and maintenance of vulnerability databases.
These are closely guarded commodities that are typically oriented towards the storage of vulnerability related
information, with system administrators that are capable of interpreting them in mind. These databases are not
being widely published and analyzed.

Groups in industry that market intrusion detection systems require vulnerability information for the generation
of their misuse signatures or intrusion patterns and bene�t from proprietary databases because it gives them
a competitive advantage. In many cases, industry, government, and academia resist the publication of these
databases for fear that it would make them liable if hacker groups use this information to break into other systems.
Intelligence agencies may not reveal vulnerability information because they may be using these against systems
as part of their information warfare e�orts. Finally, some systems administrators in academia, government, and
industry fear that public availability of vulnerability information may trigger a greater number of intrusions or
intrusion attempts by students or employees that otherwise would not be able to obtain vulnerability information.

2 De�nition of Vulnerability

In the development of my dissertation, and all throught this document I will write about the development of
vulnerability classi�cations and the analysis of computer vulnerabilities. Unfortunately, there is widespread
disagreement on the precise de�nition of the term \computer vulnerabilitiy." Consider, for example, the following
three widely accepted de�nitions:

1. In [BB96] Matt Bishop and Dave Bailey give the following de�nition of computer vulnerability:

2

\A computer system is composed of states describing the current con�guration of the entities
that make up the computer system. The system computes through the application of state
transitions that change the state of the system. All states reachable from a given initial state
using a set of state transitions fall into the class of authorized or unauthorized, as de�ned by
a security policy. In this paper, the de�nitions of these classes and transitions is considered
axiomatic."

\A vulnerable state is an authorized state from which an unauthorized state can be reached
using authorized state transitions. A compromised state is the state so reached. An attack is
a sequence of authorized state transitions which end in a compromised state. By de�nition, an
attack begins in a vulnerable state."

\A vulnerability is a characterization of a vulnerable state which distinguishes it from all non-
vulnerable states. If generic, the vulnerability may characterize many vulnerable states; if speci�c,
it may characterize only one..."

2. The Data & Computer Security Dictionary of Standards, Concepts, and Terms [LS90] provides the following
de�nition of computer vulnerability:

\1) In computer security, a weakness in automated systems security procedures, administrative
controls, Internet controls, etc., that could be exploited by a threat to gain unauthorized access to
information of to disrupt critical processing. 2) In computer security, a weakness in the physical
layout, organization, procedures, personnel, management, administration, hardware or software
that may be exploited to cause harm to the ADP system or activity. The presence of a vulnerability
does not itself cause harm. A vulnerability is merely a condition or set of conditions that may
allow the ADP system or activity to be harmed by an attack. 3) In computer security, any
weakness or
aw existing in a system. The attack or harmful event, or the opportunity available
to a threat agent to mount that attack."

3. The Handbook of INFOSEC Terms [han96] provides the following de�niton of computer vulnerabilty:

\1) A weakness in automated system security procedures, administrative controls, internal
controls, and so forth, that could be exploited by a threat to gain unauthorized access to in-
formation or disrupt critical processing. 2) A weakness in system security procedures, hardware
design, internal controls, etc., which could be exploited to gain unauthorized access to classi�ed or
sensitive information. 3) A weakness in the physical layout, organization, procedures, personnel,
management, administration, hardware, or software that may be exploited to cause harm to the
ADP system or activity. The presence of a vulnerability does not in itself cause harm; a vulnera-
bility is merely a condition or set of conditions that may allow the ADP system or activity to be
harmed by an attack. 4) An assertion primarily concerning entities of the internal environment
(assets); we say that an asset (or class of assets) is vulnerable (in some way, possibly involving an
agent or collection of agents); we write: V(i,e) where: e may be an empty set. 5) Susceptibility
to various threats. 6) A set of properties of a speci�c internal entity that, in union with a set of
properties of a speci�c external entity, implies a risk. 7) The characteristics of a system which
cause it to su�er a de�nite degradation (incapability to perform the designated mission) as a
result of having been subjected to a certain level of e�ects in an unnatural (manmade) hostile
environment. 8) Weakness in an information system, or cryptographic system, or components
(e.g., system security procedures, hardware design, internal controls) that could be exploited."

From all these de�nitions we can at least infer that a computer vulnerability is the characterization of actions
taken by a software system in violation to policy. It is unfortunate that policies are often not stated explicitly
during the development of software systems and when they are speci�ed they are often ambiguous.

3

Consider the �rst de�nition given above and it's application to a well known and documented vulnerability{
the xterm log vulnerability in Unix systems [KS95a, KS95b, CDE+96, Bis95]. The xterm program runs as root
and is tricked into changing the ownership of an arbitrary �le to that of the current user. We can model the
program execution as a three step process where the program starts execution, asks for a �le name, and changes
the ownership of the �le so as to give control of �le to the user.

As Figure 1 shows, every �lename entered by the user will cause the system to take a di�erent path in the
state machine describing the execution of the system. The number of states in the machine are �nite because
in all actual computing systems there is a limited amount of memory. In practice, however, the number of such
states will be extremely large. In this case we are worried about those states that result from the application of
the chown system call (in the �gure S0

3, S
0

4, S
0

q , S
0

q+1, S
0

k, S
0

n, and S0

n+1). A security policy will need to identify
those states that can be considered to be compromised and a characterization of these states will provide the
vulnerability information desired.

…
…

…

S1 S2

S3

S4

Sq

Sq+1

Sk

Sn

Sn+1

S3

S4

Sq

Sk

Sn

Sn+1

Sq+1

´

´

´

´

´

´

´

System Starts

System prompts
user for a filename

System chowns
the filename

/etc/passwd

/etc/services

/home/tom/.rhost

~/.rhost

/homes/krsul/thesis.tex

/usr/bin/tmp/xyz

/u/coast5/tmp/xyzzy

Figure 1: Sample characterization of vulnerable states for
a simple version of the xterm log bug. It is not possible to
determine all possible vulnerable states without a signi�-
cant amount of semantic information.

Users familiar with the Unix operating system would readily agree that states S0

3 and S0

4 are clear violations
of the security policy explicitly stated by the Unix access control mechanisms; it may be argued that states S0

q

and S0

q+1 are violations of policy because it is widely accepted that modi�cations to .rhost �les should always

4

be viewed with suspicion; whether states S0

k, S
0

n, and S0

n+1 are violations of policy is debatable because a fair
amount of semantic information about the content and purpose of these �les must be known a-priory.

And indeed, there are many cases where the explicit de�nition of policy depends heavily on perspective. Take,
for example the actual case of Netscape running on a Windows 95 machine: How can a policy be speci�ed for the
access of �les by Netscape? There is no access control mechanism provided by the operating system and hence
Netscape itself must voluntarily enforce a security policy. Developers might, for example, specify that Netscape
has complete control of all �les in its temporary and cache directories. In at least one machine at the COAST
Lab, however, the default for this temporary directory (as con�gured by the Netscape installer) is C:\DOS. From
the perspective of the developer the policy might have been su�cient. From the perspective of the user this
policy is certainly not speci�c enough and must be re�ned because this directory also contains the systems �les
and should not be tampered with.

This same problem exists in other operating systems with access control mechanisms like Unix. In these
operating systems users can tell Netscape what temporary directory to use, and the fact that a user might choose
to have all his applications run with the same temporary directory does not mean that Netscape should modify
�les it has not created, regardless of what is explicitly stated by the Unix access control mechanism.

Another example can be found with the Frame Maker application running under Solaris 2.5. The default
behavior of this application, as installed in the Computer Science department at Purdue University, is to create
a �le called fmdictionary in the home directory of the person running the application whenever a word is added
to the user dictionary. If there already exists such a �le, Frame Maker will replace it with a new �le containing
the personal dictionary of the user.

The policy for what is allowed and not allowed with this software has not been explicitly stated. It's expected
behavior, and hence the perceived policy, will be di�erent from the point of view of the programmer (the policy is
that the user may never have a �le called fmdictionary in his home directory) and from the user (that may have
a �le or a symbolic link called fmdictionary that may have important information regarding, say, a dictionary
of FM radio stations).

In her book \Cryptography and Data Security", Dorothy Denning states that an access control policy speci�es
the authorized accesses of a system and gives the following de�nitions of system states and policies [Den83]:

The state of a system is de�ned by a triple (S;O;A), where:
1. S is a set of subjects, which are the active entities of the model. Subjects are also considered to

be objects; thus S � O.

2. O is a set of objects, which are the protected entities of the system. Each object is uniquely
identi�ed with a name.

3. A is an access matrix, with rows corresponding to subjects and columns to objects. An entry
A[s; o] lists the access rights (or privileges) of subject s over object o.

Changes to the state of a system are modeled by a set of commands, speci�ed be a sequence of
primitive operations that change the access matrix.

A con�guration of the access matrix describes what subjects can do { not necessarily what they
are authorized to do. A protection policy (or security policy) partitions the set of all possible states
into authorized versus unauthorized states.

As shown by the above examples, actual systems lack such detailed and explicit protection policies. Hence,
it is di�cult to provide a precise working de�nition of what a vulnerability is because this depends on a precise
security policy for any system being analyzed. Also, a working de�nition of a vulnerability based on explicit
policies is particularly di�cult in technologies such as Microsoft's ActiveX [Gar96]. Systems running ActiveX,
either as part of Microsoft's proposed Active Desktop [act96] or as part of the Microsoft Explorer WWW browser,

5

dynamically download binary executables from the Internet without verifying that their execution satis�es the
policies for the system in which it will run. Microsoft argues that it's Authenticode Technology guarantees the
authenticity of software as [aut96] explains:

\Today's web sites provide not only a rich experience for users but also the possibility of unwittingly
downloading malicious code. With increasingly active content on the Internet, end users often must
decide whether or not to download code over the Internet. However, end users cannot really tell what
a piece of software will do, until they've downloaded to their PCs."

\Unlike the retail environment, software on the Internet is not labeled or "shrink-wrapped." There-
fore, end users don't know for sure who published a piece of software on the Internet. They also don't
know if the code has been tampered with. As a result, end users take on a certain amount of risk when
downloading, Java applets, plug-ins, ActiveX Controls, and other executables over the Internet."

\Internet Explorer 3.0 uses Authenticode technology to help address this problem for end users.
Authenticode identi�es the publisher of signed software and veri�es that it hasn't been tampered with,
before users download software to their PCs. As a result, end users can make a more informed decision
as to whether or not to download code."

The problem with this model is that developers, administrators, and users may not have the same view as to
what policies should be in e�ect when the binary code has been deployed. An ActiveX control that scans a hard
disk and reports its contents to a particular server, for example, may be appropriate for a user that is being aided
by a consultant but may not be appropriate for users in the military.

At this point, the quest for �nding a precise de�nition of the term \computer vulnerability" that everyone
can agree on may seem hopless. There are, however, a subset of vulnerabilities that we may be able to clearly
identify. The vulnerabilities that result from the violation of clear access control mechanisms (such as protection
bits in Unix) are included in this subset, and these will be used as a starting point for my dissertation.

At this point it is not clear that these are the only vulnerabilities we can identify unambiguously. Part of the
work left during this dissertation is to develop a precise working de�nition of vulnerability that will encompass a
large but manageable subset of the vulnerabilities encompassed by the de�nitions given in this section.

3 Related Work

Several groups have constructed vulnerability databases with various degrees of sophistication. Examples of such
databases are1: the database at the COAST Laboratory; the CMET database at the AFIW (Air-force Information
Warfare); the database maintained by Mike Neuman; the database at the University of California at Davis; the
database at CERT; the internal databases at Netscape, SUN, and NCSA; etc.

The schemas for the databases I have seen, the CMET database, the AFIW database, the COAST database,
the database at the University of California at Davis, the CERN database, and the database maintaned by Mike
Neuman, share a common feature: they are designed for the storage of information, and not for its automatic
manipulation. They are designed to store and classify the textual information that is normally available in the
Internet, if at all. In any of these databases it is possible to search for vulnerabilities present in a particular
version of an operating system, display the patches that have been released for a particular vulnerability, an
display the scripts used to exploit a vulnerability or class of vulnerabilities.

However, in none of these databases can we perform even the most basic analysis on the information stored
within. None of the databases mentioned above have enough information or an adequate representation to perform

1Information about these databases was provided through personal exchanges at workshops or using e-mail messages.

6

operations such as determining if a vulnerability is present in a particular system2, whether �nding a vulnerability
in an operating system implies that the same vulnerability is present in another, or if the vulnerability information
in the database seems to imply that there is a direct correlation between software metrics and the existence of
vulnerabilities (correlation and cluster analysis). The ability to perform these operations is of importance in the
prevention of the exploitation of unknown (but familiar) vulnerabilities.

In [Asl95, AKS96a] Aslam and Krsul explore the development of a classi�cation scheme that can aid in
the understanding of software faults that can subvert security mechanisms. Their classi�cation scheme divides
software faults into two broad categories: Coding Faults that result from errors in programming logic, missing
requirements, or design errors; and Emergent Faults resulting from improper installation or administration of
software so that faults are present even if the software is functioning according to speci�cations.

Several projects have dealt with the issue of identifying and classifying software faults, including the Protection
Analysis (PA) Project which conducted research on protection errors in operating systems [CBP75, BPC75]; the
RISOS project that was aimed at understanding security problems in existing operating systems and to suggest
ways to enhance their security[A+76]; the paper published by Carl Landwehr (et al.) in which he published a
collection of security
aws in di�erent operating systems and classi�ed each
aw according to its genesis, or the
time it was introduced into the system, or the section of code where each
aw was introduced [L+93]; and the
survey published by Brian Marick of software fault studies from the software engineering literature (the studies
reported faults that were discovered in production quality software) [Mar90].

Finally, there are several products that incorporate vulnerability information for detection of their presence
in computer systems. The more widely known are the COPS security checker [FS91], SATAN, Tiger, ISS, and
the TAMU security checker.

4 Proposed Solution

In the ideal case it would be desirable to perform sophisticated computer analysis on existing vulnerability
information including, but not limited to, the detection of hidden and signi�cant, and possibly non-obvious,
relationships in vulnerabilities; the application of correlation and clustering analysis to existing vulnerability
information to aid in the understanding of the relationships between vulnerabilities and the systems they are
found on; and the generation of software engineering tools that will �nd vulnerabilities on computer systems
before these are deployed.

Data analysis tools work best when the data is well de�ned and when features are available. I propose to
organize vulnerability information as points or vectors in n dimensional space. The term \vulnerability database"
is so overloaded with meaning that we will speak of a vulnerability state space consisting of tuples of the form
< �; �;
; : : : ; ! > where �, �,
, and ! are enumerable characteristics of vulnerabilities such as cause, exploit,
locale, and result. Each fully speci�ed tuple represents a point in an n dimensional space.

This notation allows for the explicit manipulation of data in the vulnerability state space according to mean-
ingful operators. One such operator is, for example, the projection operator. Consider, as illustrated by Figure 2,
a three dimensional state space where there the only features analyzed are �, �, and
. It should be possible to
apply a projection operator to eliminate one of the dimensions and obtain from the state space a two dimensional
bit pattern that can be used for cluster analysis or pattern recognition. The argument generalizes to n dimensions
where projections can create hyper-planes where analysis can be performed.

There are serveral tools and mechanisms that we might use in the search for useful and insightful patterns in

2Determining if a vulnerability is present in a system is not the same as listing the operating systems that are known to have been

a�ected by the vulnerability. Determining if a vulnerability is present involves examining the system of interest and determining if

the conditions necessary for the system to be vulnerable are satis�ed.

7

Figure 2: Detection of patterns on projections of the
database. The �gure illustrates how projections of a three
dimensional state space can generate a two dimensional
grid that could be used to detect patterns using cluster
analysis.

the data of a good vulnerability state space including tools for discovery statistics, visualization, neural networks,
applied perception, and machine learning [Wat95, Hed95, kdd, HS94].

The database model that this vulnerability state space is implemented on is not of critical importance. The
COAST group, for example, has structured its database as a relational hierarchy implemented as
at text �les.
Other institutions have structured theirs as relational databases administered by commercial database engines.
Others have structured their databases as simple
at �les.

5 Contributions

Virtually every �eld where failure can be catastrophic has recognized that accumulation of information about
failures is critical to the stepwise re�nement of technology, particularly when the systems that fail are highly
complex. In \The logic of failure," Dietrich Dorner [Dor96] points out that complex systems that fail often have
four characteristics that make them specially prone to failure: complexity, intransparence3, internal dynamics,
and incomplete or incorrect understanding of the system. Although this book analyzes highly dynamic systems
such as nuclear power plants, management of entire cities or countries, etc., we �nd that many of these ideas can
be applied to computer science in the search for explanations on why computer systems fail (or have vulnerabilities
that can be exploited).

3Intransparence is de�ned as the fact that an observer of the operation of a system cannot see the inner workings of a program.

It contributes to the development of faulty software because developers can not see the execution of the program without the help

of sophisticated monitoring tools, and sometimes even these tools are not useful because their presence alters the behavior of the

system.

8

Complexity is certainly a factor in the appearance of vulnerabilities as has been demonstrated by a particularly
failure-prone system: sendmail. It has been argued that this system is so complex that the only truly intelligent
action regarding this system would be to replace it with a simpler, more manageable one. That software devel-
opment is a complex business is not a ground-breaking realization. Already in 1975 Frederick Brooks wrote in
his book The Mythical Man-Month that \Since software construction is inherently a systems e�ort{an exercise
in complex interrelationships{communication e�ort is great, and it quickly dominates the decrease in individual
task time brought about by partitioning." [Jr.95]

In \Why Cryptosystems Fail" [And94], Ross Anderson writes the following about this topic:

\When an aircraft crashes, it is front page news. Teams of investigators rush to the scene, and

the subsequent enquiries are conducted by experts from organisations with a wide range of interests -

the carrier, the insurer, the manufacturer, the airline pilots' union, and the local aviation authority.

Their �ndings are examined by journalists and politicians, discussed in pilots' messes, and passed on

by
ying instructors. In short, the
ying community has a very strong and institutionalised learning

mechanism. This is the main reason why, despite the inherent hazards of
ying in large aircraft, which

are maintained and piloted by fallible human beings, at hundreds of miles an hour through congested

airspace, in bad weather and at night, the risk of being killed on an air journey is only about one in a

million."

Several other sources including \When Technology Fails" [Sch94] and \Normal Accidents" [Per84] make it
clear that prompt and complete information dissemination is critical if we want to learn from past mistakes.
More often than not, it is not the designers of the systems that �nd and debug complex systems but observers
who �nd patterns that lead to the cause of failures.

Scientists and engineers that are responsible for the development of critical systems are used to the idea
of learning from past mistakes. In \Why Buildings Fall Down" [LS92], Levy and Salvadori describe in great
detail some of the more spectacular structural failures in history and provide evidence that structural failures
are likely to become less common because of the application of the knowledge gathered in the examination of
past failures to modern designs. The same argument can be made in the design of airplanes, bridges, nuclear
power plants, or any complex system where it is virtually impossible to design a correct system from scratch
[Pet85, Jr.95, Sch94, Per84, Dor96, And94]. As Confucius said: \If you wish to control the future, study the
past" [bri95].

Accordingly, a fundamental contribution from my work will be the organization of past vulnerability data into
a state space where the classi�cation of vulnerabilities (i.e. for each vulnerability assigning values to each of the
dimensions of the space) is repeatable. Given the dimensions of the space and the vulnerability information, any
person should be able to re-create the state space.

Some of the dimensions of this space will be classi�cations that will be self sustained, consistent, objective,
and capable of distinguishing important features that can be used to �nd patterns of and dependencies that might
help us better understand the nature of computer vulnerabilities.

The complexity, intransparence, and sheer volume of code in computer systems systems make it di�cult to
�nd such patterns and dependencies. Existing data mining techniques and other feature-extracting tools widely
used in such areas as computer vision and pattern recognition could be used to extract information that would
allow a much better understanding of why and how vulnerabilities get introduced in computer systems.

An example will illustrate the type of knowledge that can be obtained: Assume that the vulnerability database
to be used would contain software metrics and system call counts for the systems that have known vulnerabilities.
Assume further that the knowledge discovery tools found a high correlation between systems that have bu�er
overrun vulnerabilities, systems that have high decision counts, and systems that use the gets system call.

9

Software designers could then have information that could identify potential bu�er overrun vulnerabilities of
their systems automatically by simply computing the necessary metrics and comparing the results with those
obtained in the example.

At this point, the example presented is complete speculation. However, those readers that have followed-up
on the discovery of computer vulnerabilities in the past few years might agree that it is not entirely unreasonable.
Even this result, however trivial it may seem at �rst, would be a considerable advancement in the �eld towards
the development of tools that will help detect vulnerabilities during the development phase of a project.

For my dissertation I will attempt to �nd such relationships in vulnerability data and a prerequisite for this
work is coming up with a list of features that will allow statistical analysis and data mining in the vulnerability
state space from many sources that can be used as a starting point for �nding these [SCS86, Tas78, KP78, RN93,
KS94, KS96, OC91, Eva84, LR92, SSTG92, Tou94, OC90, Tas78]. The collection classi�cation of vulnerabilities
using these features should be an objective, reliable and repeatable process.

6 Completion Conditions

As with most scienti�c theories, con�dence in our theory must be built by repeated observations that will validate
our predictions. The philosopher of Science Karl Popper has emphasized that a good theory makes a series of
predictions that can be proved false, or falsi�ed, by observations. In his book Conjectures and Refutations he
states that \...every genuine test of a theory is an attempt to falsify it, or to refute it. Testability is falsi�ability."
[Pop69]. As the physicist Stephen Hawking remarked: \Any physical theory is always provisional, in the sense
that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree
with some theory, you can never be sure that the next time the result will not contradict the theory. On the other
hand, you can disprove a theory by �nding a single observation that disagrees with the predictions of the theory...
Each time new experiments are observed to agree with the predictions the theory survives, and our con�dence
in it is increased; but if ever a new observation is found to disagree, we have to abandon or modify the theory."
[Haw88]

And indeed I make a signi�cant prediction: Computer vulnerability informationpresents important regularities
and these can be detected, and possibly visualized, providing important insight about the reason of their prevalence
and existence. I expect to provide enough supporting evidence that will show the usefulness of the knowledge
acquired and techniques developed throughout the development of the dissertation.

It is conceivable, however, that during my research I may �nd that the result of experimentation will show
that falsity of our theory, in which case a substantial contribution to the �eld would still be made because the
prediction I have verbalized is implicitly assumed by a portion of the computer security community.

6.1 State Space Size

As stated in section 4, my work requires a collection of vulnerabilities for the state space, each with as many
characteristics (also known as features or dimensions) �lled in as possible from the possible set (i.e. the number
of dimensions in the state space). Fully quali�ed features represent points in the multi-dimensional space and
partially quali�ed vulnerabilities represent hyper-planes.

How many points or hyper-planes (i.e. samples) do we need to be able to apply the proposed data analysis
tools? Without detailed knowledge of the distribution and characteristics of the data in question, we cannot know
a-priori the number of samples required. The machine learning community, however, can provide us with some
guidelines that will help us estimate the number of samples required for learning and classi�cation algorithms in

10

general. It is important to note that at this point in time, these guidelines set only very tentative limits to the
initial size of the state space.

In [WK91], Weiss Kulikowsk claim that that for classi�ers and learning systems, a surprisingly small number
of test cases are needed for accurate error rate estimations: at 50 test cases there is a good chance that, even
though the test sample error rate is 0%, the true error rate is as large as 10% (See Appendix A for a de�nition
of these errors). At 1000 samples, the true error is almost certainly below 1%. Traditionally, a small statistical
sample size is around 30 samples.

Many simplifying assumptions were made for this particular approximation, including some assumptions about
the distribution of the test cases. These are assumed to be a good representation of the true population.

Another useful insight regarding the size of the state space is the rule that learning systems need samples that
must exceed two to three times the number of features [DH73]. If we have 30 features in the state space, we must
have at least 60-90 samples.

After reviewing some of the machine learning literature [WK91, DH73, Qui86, QCJ, Bre94, FS96] we can
provide an initial estimation of the number of samples and number of features that will be needed: approximately
100-200 samples and 20-30 features.

6.2 Feature Indenti�cation

A feature for a computer vulnerability is characteristic or metric of the vulnerability, it's exploitation, and the
software it manifests itself on. The number of possible features for a vulnerability, according to the rather limited
de�nition in section 2, is in�nitely enumerable and one of the challenging aspects of this dissertation is the
identi�cation of a small set of useful features for the state space.

The following is an enumeration of some of the possible features we have identi�ed to date. At this point
there is no guarantee that any or all of these features will be useful for my analysis, or that we will be able to
collect them automatically and objectively.

Impact. The impact and consequences of the exploitation of the vulnerability by a threat agent.

Immediate Impact. Rather than the ultimate or eventual impact of the vulnerability (which in Unix tends to
be root access), the �rst or immediate impact of the vulnerability.

Threat. Threat based on Don Parker's threat classi�cation scheme [Pow96].

System Vendor.

System Version.

Application.

Application Version.

Advisories. Institutions or groups that have issued an advisory about the vulnerability.

Analysis. Do we have a detailed analysis about the vulnerability?

Detection. Does a mechanism for detecting the exploitation of the vulnerability exist?

Test. Does a mechanism exist for detecting a vulnerability in a particular system?

Patch. Does a patch exist for the vulnerability?

11

Exploit. Does an exploit script exist for the vulnerability?

Aslam Classi�cation. The Aslam et al. classi�cation [AKS96b].

System Category. To what system component does the vulnerability belong to?

Software Metrics. A number of software metrics collected from the vulnerable systems might be useful includ-
ing:

Program Complexity .

System Call Usage. The use of several notorious system calls in programs that contain vulnerabilities.

Programming Language. Programming language used in the system that contains the vulnerability.

Access Required for Exploitation. What previous access is required for the exploitation of the vulnerability?

Ease of Exploit. How easy is it to exploit the vulnerability?

Origins and Causes. What are the origins and causes of the vulnerability?

7 Current State

In the past months I have been working on the development of a data set that will be used to test my theories. A
byproduct of my research is a vulnerability database that is substantially better than the previous collection of
vulnerabilities that resulted from the work done by Taimur Aslam for his masters thesis [Asl95]. As of this writing,
the database consists of several �elds that can be of types text, list, or hierarchical classi�er. Text �elds are free
format and can include any information. Values for list �elds are limited to codes de�ned in a �eld de�nition �le.
Similarly, values for hierarchical classi�ers are limited to codes de�ned in hierarchical �eld de�nition �le.

The vulnerability database can be found in /homes/krsul/security/vulner. This directory must be mounted
as a Cryptographic File System[Bla93] before it can be used. Applications and tables related to the database can
be found in /homes/krsul/security/vdbase. We will refer to this directory as the $VAPP directory. Library �les
including �eld de�nitions and lists and classi�ers are in the $VAPP/lib directory. I will call this last directory the
$VLIB directory.

The �elds acceptable in the database as well as their types are de�ned in the $VLIB/field list directory.
As of this writing the list of acceptable �elds allowed in the database are:

(Identi�cation)

Field ID Title Description Type

vid Identi�cation Vulnerability ID or identi�cation string Text
title Title Title of vulnerability Text

(Description and impact)
Field ID Title Description Type

desc Description Vulnerability description Text
u impact Ultimate Impact Ultimate consequences of the exploitation

of the vulnerability by a threat agent
H. classi�er

i impact Immediate Impact Immediate consequences of the exploita-
tion of the vulnerability by a threat agent

H. classi�er

impact verbatim Impact Textual description of impact Text
threat Threat Threat based in Don Parker's threat

classi�cation
H. classi�er

12

(System Identi�cation)

Field ID Title Description Type

system System(s) System(s) vulnerable List
system version System version System Version Text
system vendor System vendor System vendor List
system verbatim Misc. system Additional system information

(Application)
Field ID Title Description Type

app Application(s) Application(s) vulnerable List
app version Application version Application Version Text
app verbatim Misc. application Additional application information Text

(References)

Field ID Title Description Type

advisory Advisory/ies Advisory/ies that warn/describe about
the vulnerability

Text

reference References References to the vulnerability in litera-
ture or on the net

Text

(Detailed analysis, detection techniques and �xes)

Field ID Title Description Type

analysis Analysis A detailed analysis of the vulnerability Text
detection Detection Method of detecting that the vulnerability

is being exploited
Text

�x Fix A �x that can be used to eliminate the
vulnerability.

Text

test Test Method/s that can be used to detect
whether the vulnerability is present in a
system

Text

workaround Workaround A temporary workaround for the vulnera-
bility. Used until a patch can be applied.

Text

patch Patch(es) A patch or a series of patches that can be
used to eliminate the vulnerability.

Text

(Detailed information about exploitaition)
Field ID Title Description Type

exploit Exploit Scripts Reference to exploit scripts or programs Text
idiot IDIOT Pattern IDIOT Pattern used to detect the ex-

ploitation of the vulnerability.
Text

access required Access Required Access required for the exploitation of the
vulnerability.

List

eo exploit Ease of Exploit How easy is it to exploit the vulnerability? List
comp exploit Complexity of

Exploit
How complex is the exploitation of the
vulnerability?

List

13

(Classi�cations and features)

Field ID Title Description Type

class Classi�cation Classi�cation H. classi�er
category System/Category To what system or component does the

vulnerability belong to
List

origin causes Origin and Causes Origin and causes of the vulnerability List

(Veri�cation of vulnerability)

Field ID Title Description Type

verif Veri�ed by Person or entity that veri�ed the
vulnerability

Text

The following lists and hierarchical classi�ers are currently de�ned in the vulnerability database:

Classi�er: Access required
This classi�er was originally de�ned from a talk given by Tom Longsta� [Lon97] and de�nes the kind of
access that is required to exploit the vulnerability.

� Remote using a common service

� Trusted system

� User account

� Physical access

� Privileged access

Classi�er: Application
This classi�er de�nes the application that has the vulnerability. This classi�er is relevant for those
vulnerabilities that are present in user-level programs, daemons, servers, etc. that are not a part of the
operating system istelf (kernel?)

� Netscape WWW Browser

� SUN's HotJava WWW Browser

� Java Developer Kit's appler viewer

� Oracle PowerBrowser

� CD digital audio player utility for X11/Motif

� Network Information System

� Apache WWW httpd

� Microsoft FrontPage

� Microsoft Internet Explorer

� Netscape's News Server

Classi�er: Category
This classi�er attempts to identify the system component that a vulnerability belong to.

� General system software

� General system utilities

� Logging software

� Software that deals with electronic mail

� Software that deals with networking

� Cryptographic software

14

Classi�er: Classi�cation
This classi�er de�nes the Aslam classi�cation for the vulnerability. The Aslam classi�cation was designed
by Taimur Aslam and later re�ned by Ivan Krsul at the COAST laboratory [AKS96a].

� Coding Faults
� Synchronization errors

� Timing window/Race condition: A fault can be exploited because of a timing window between
two operations.

� Improper serialization: A fault results from improper serialization of operations.

� Atomicity: Did the error occur when partially-modi�ed data structures were observed by another
process? Did the error occur because the code terminated with data only partially modi�ed as part of
some operation that should have been atomic?

� Condition validation errors
� Boundary Condition Error

� Condition is missing

� Condition is incorrectly speci�ed

� Predicate in condition is missing

� Access Validation Error
� Condition is missing

� Condition is incorrectly speci�ed

� Predicate in condition is missing

� Origin Validation Error
� Condition is missing

� Condition is incorrectly speci�ed

� Predicate in condition is missing

� Input Validation Error
� Condition is missing

� Condition is incorrectly speci�ed

� Predicate in condition is missing

� Failure to Handle Exceptional Conditions
� Condition is missing

� Condition is incorrectly speci�ed

� Predicate in condition is missing

� Program design errors
� Program uses relative path names

� The use of relative path names to specify dynamically linked libraries.

� Failure of software to authenticate that it is really communicatingwith the desired software or hardware
module it wants to be accessing.
� Implicit trust: For example, routine B assumes routine A's parameters are correct because routine
A is a system process.

� Emergent Faults
� Con�guration errors.

� Program/utility installed in the wrong place.

� Program/utility installed with incorrect setup parameters.
� SUID/SGID shell

� SUID/SGID programs written in PERL that don't use the "taintperl" program.

� SUID/SGID routines that use the system(), popen(), execlp(), or execvp() calls to run

15

something else.

� Secondary storage object or program is installed with incorrect permissions.

� Environment faults are introduced when speci�cations are translated to code but su�cient attention is not
paid to the run-time environment. Environmental faults can also occur when di�erent modules interact in
an unanticipated manner. Independently the modules may function according to speci�cations but an error
occurs when they are subjected to a speci�c set of inputs in a particular con�guration environment.

Classi�er: Ease of Exploit
This classi�er was originally de�ned from a talk given by Tom Longsta� [Lon97] and attempts to identify
how easy (or how hard) it is to exploit the vulnerability.

� Simple command

� Toolkit available

� Expertise required

� Must convince a user to take an action

� Must convince an administrator to take an action

Classi�er: Impact
This classi�er attempts to identify the impact of the vulnerability. This classi�er is used to de�ne both
direct and indirect impacts. Direct impacts are those that are felt immediately after the vulnerability is
exploited and indirect impact are those that ultimately result from the exploitation of the vulnerability.

� Access to data
� Access to administrative or system data

� Access to user level data

� Loss of data
� System data is lost or corrupted by the exploitation of a vulnerability

� User data is lost or corrupted by the exploitation of a vulnerability

� Execution of commands
� Execution of administrative or system commands

� Generalized root access
� Internal users can obtain generalized root access

� External users can obtain generalized root access

� Execution of speci�c system commands
� Internal users can execute speci�c system commands

� External users can execute speci�c system commands

� Execution of user level commands
� A software that is running in behalf of the user can execute a user level command in violation of
access controls set by administrators

� Internal users can execute user level commands in violation of access controls set by administrators

� External users can execute user level commands in violation of access controls set by administrators

� Execution of code
� Execution of machine language code with system privileges

� Internal users can execute machine language code with privileges

� External users can execute machine language code with privileges

� Execution of machine language code with user privileges
� Internal users can execute machine language code

� External users can execute machine language code

16

� Execution of scripts with system privileges
� Internal users can execute scripts with privileges

� External users can execute scripts with privileges

� Execution of scripts with user privileges
� Internal users can execute scripts

� External users can execute scripts

� Denial of service
� System resources are exhausted

� System resources are eliminated

Classi�er: Origin and causes

This classi�er was originally de�ned from a talk given by Tom Longsta� [Lon97] and attempts to identify
the origins of the vulnerability.

� Lack of training

� Procedures not followed

� Problem re-introduced

� Bug �x not propagated

� Inconsistent speci�cations

� Debug code not removed

� From [Eis97]: Faulty assumption/model or misdirected blame.

Classi�er: Sources
This classi�er is used to identify the source of the vulnerability (i.e. where does the information we have
comes from).

� Information posted to the Internet (Public!)
� Information posted to a newsgroup

� Information posted to a public mailing list

� Information posted to a private mailing list

� Information obtained through personal or private e-mail

� Information published in the literature

� Information exchanged
� Information from Haystack Labs.

Classi�er: System
This classi�er is used to indicate the systems that are known (to us!) to have the vulnerability.

� SUN Solaris

� SUN OS

� Microsoft DOS

� Microsoft Windows 95

� Microsoft Windows NT

� BSDI Unix

� Linux Unix

� Novel UnixWare

� NetBSD Unix

� FreeBSD Unix

17

� MIT-distributed Athena

� Cygnus Network Security

� openVision

� SGI IRIX

� Digital OSF/1

� NEC XX-UX

� Hewlett-Packard Unix

� IBM's AIX

� OpenStep

� OSF

� Caldera

� NEC's Goah

Classi�er: Threat
This hierarchical classi�er attempts to classify the threat that vulnerabilities create and was extracted
from \Current and Future Danger: A CSI Primer on Computer Crime & InformationWarfare" by Richard
Power [Pow96]. The classi�cation is attributed to Don Parker of SRI International as a classi�cation of
hostile actions that your adversary could take against you.

� Threats to availability and usefulness
� Destroy, damage or contaminate

� Deny, prolong or delay use of access

� Threats to integrity and authenticity
� Enter, use of produce false data

� Modify, replace or reorder

� Misrepresent

� Repudiate

� Misuse or fail to use as required

� Threats to con�dentiality and possesions
� Access

� Disclose

� Observe or monitor

� Copy

� Steal

� Exposure to threats
� Endanger by exposure to any of the other threats

Classi�er: Vendor
This classi�er is used to identify the vendor of the systems or that the vulnerability is present on.

� Sun Microsystems, Inc.

� Microsoft

� Sillicon Graphics Inc.

� Netscape Corporation

� Berkeley Software Design, Inc.

� Data General Corporation

� FreeBSD, Inc

18

� Hewlett-Packard Company

� IBM Corporation

� NEC Corporation

� The Santa Cruz Operation, Inc.

� NeXT Software, Inc.

� The Open Group

� The Santa Cruz Operation (SCO)

� Caldera

Classi�er: Complexity of Exploit
This classi�er attempts to identify the complexity of the exploitation of a vulnerability, regardless of
whether a script or toolkit exists for the exploitation of the vulnerability.

� Exploitation is a simple sequence of commands or instructions

� Exploitation requires a complex set or large number of commands or instructions.

� The exploitation requires timing and synchronization. Tipically requires a script that tries several times
and may require slowing down the system.

8 Future Work

Although I do not plan to address these issues fully in my dissertation, my work could be expanded to the design
of vulnerability databases that contain information useful for at least the following categories:

1. It is desirable to express the vulnerabilities so that tools can use these descriptions to detect the presence
of vulnerabilities in a particular system.

2. It is desirable to express the vulnerabilities so that intrusion detection patterns can be generated automat-
ically.

In the �rst case, it is important to discern between being able to detect vulnerabilities and being able to exploit
them. Presumably, a vulnerability database oriented towards the detection of vulnerabilities would not include
enough information to allow the exploitation of these vulnerabilities. The computer security community seems to
agree that it is di�cult to reveal any information about the vulnerability without revealing enough information
that could be used to exploit it. Some have gone as far as claiming that the sole announcement of a vulnerability
is enough of a hint to allow the more sophisticated hackers to produce exploit scripts. However, in practice it
may be possible to structure the information to make the generation of exploit scripts as di�cult as possible.

The generation of intrusion detection signatures or patterns, and in particular patterns for the IDIOT intrusion
detection system[KS94, KS95b, Kum95], is a di�cult and time consuming task. IDIOT patterns are encodings
of vulnerabilities as Colored Petri Nets that encode the transitions that a typical vulnerability (from a class of
similar vulnerabilities) takes. Development of a pattern implies detailed working knowledge of the problem and
of the structure of the system being analyzed.

For example, [CDE+96, KS95a, KS94, Kum95] all describe in detail a pattern to detect the exploitation of
a famous xterm log bug: The problem is that a user could create only one end of a named pipe and run xterm

requesting that it create a log with the same �lename as the named pipe just created. Xterm would attempt to
comply and the creat() system call (attempting to create the log �le) would block on the named pipe. The
exploit script would then rename the named pipe to some arbitrary value, create a symbolic link from the old
name of the pipe to the password �le, and open the other end of the pipe (by cating the pipe). The creat()

system call in xterm would then succeed and the program would continue. Unfortunately, the next system call

19

called by the program was a chmod() that would change the ownership of the log �le (now the password �le) and
because xterm was running setuid root, the password �le would be compromised.

The IDIOT pattern that detects the exploitation of this particular vulnerability, as well as others, looks for
a setuid root program that executes a creat() followed by a chmod() system call with a di�erent �le name.
Unfortunately, setuid root programs that have a valid reason to create a �le and change the ownership of a
di�erent �le, in that order, would trigger the pattern and a false alarm would sound. If one wishes to reduce the
number of false positives, a more complicated pattern, perhaps, is required.

What is interesting about this particular pattern is that it will detect the exploitation of any bug that shares
the same primary characteristics. Hence, it seems logical to assume that all possible vulnerabilities of this kind
require only one entry on the vulnerability database (and hence only one pattern needs to be written). In a
vulnerability as simple as this, it may be feasible to comb the existing databases to search for similar problems
that have been seen before. However, for more complex vulnerabilities this may be a time consuming and error
prone task.

What is really needed is a classi�cation mechanism that allows us to unequivocally group similar vulnerabilities
together. In trying to address this particular issue, Taimur Aslam [Asl95] worked on a taxonomy of security faults
in the Unix operating system. This work includes a classi�cation scheme, based on a binary decision tree, that
allows such grouping of vulnerabilities. Many of these classi�cations are rough indications of the kinds of problems
that make intrusions possible. However, they are by no means detailed enough to allow the automatic generation
of IDIOT patterns.

My dissertation could be expanded to the generation of more detailed classi�cations that could be used both
for the development of pattern generators and as additional dimensions to the state space providing more detailed
descriptions of vulnerabilities so feature extraction and data mining tools could be re�ned further.

9 Appendix A - Machine learning de�nitons and terminology

Test Sample Error is the perceived error rate of a classi�er or learning system on the test data.

True Error is the actual error rate of a classi�er or learning system when presented data it has not seen durin
the training stages.

References

[A+76] R.P. Abbott et al. Security Analysis and Enhancements of Computer Operating Systems. Technical
Report NBSIR 76-1041, Institute for Computer Science and Technology, National Bureau of Standards,
1976.

[act96] The Microsoft Active Platform Overview. http://www.microsoft.com/ActiveX/, October 1996.

[AKS96a] Taimur Aslam, Ivan Krsul, and Eugene Spa�ord. Use of A Taxonomy of Security Faults. In 19th

National Information Systems Security Conference Proceedings, Baltimore, MD, October 1996.

[AKS96b] Taimur Aslam, Ivan Krsul, and Eugene Spa�ord. Use of a taxonomy of security faults. Technical
Report TR-96-051, Purdue University, Department of Computer Sciences
Purdue University
West Lafayette, IN 47907-1398, September 1996.

20

[And94] Ross Anderson. Why Cryptosystems Fail. Technical report, University Computer Laboratory, Cam-
bridge, January 1994.

[Asl95] Taimur Aslam. A Taxonomy of Security Faults in the Unix Operating System. Master's thesis, Purdue
University, 1995.

[aut96] Microsoft Authenticode Technology. http://www.microsoft.com/intdev/security/misf8-f.htm, 1996.

[BB96] Matt Bishop and Dave Bailey. A Critical Analysis of Vulnerability Taxonomies. Technical Report
CSE-96-11, Department of Computer Science at the University of California at Davis, September
1996.

[BD96] Matt Bishop and Michael Dilger. Checking for Race Conditions in File Accesses. Computing Systems,
9(2):131{152, 1996.

[Bis95] Matt Bishop. A Taxonomy of UNIX System and Network Vulnerabilities. Technical Report CSE-95-10,
Department of Computer Science at the University of California at Davis, 1995.

[Bla93] Matt Blaze. A Cryptographic File System for Unix. In Proceedings of the First ACM Conference on

Computer and Communications Security, pages 9 { 16, Fairfax, VA, November 1993.

[BPC75] Richard Bibsey, Gerald Popek, and Jim Carlstead. Inconsistency of a Single Data Value over time.
Technical report, Information Sciences Institute,University of Southern California, December 1975.

[Bre94] Leo Breiman. Bagging predictors. Technical Report TR 421, Department of Statistics, University of
California, September 1994.

[bri95] Encyclopedia Britannica, Fifteenth Edition. Encyclopedia Britannica Online version 1.2, 1995.

[CBP75] JimCarlstead, Richard Bibsey II, and Gerald Popek. Pattern-directed protection evaluation. Technical
report, Information Sciences Institute,University of Southern California, June 1975.

[CDE+96] Mark Crosbie, Bryn Dole, Todd Ellis, Ivan Krsul, and Eugene Spa�ord. IDIOT - Users Guide.
Technical Report TR-96-050, Purdue University, September 1996.

[Den83] Dorothy Denning. Cryptography and Data Security. Addison-Wesley Publishing Company, 1983.

[DH73] Richard Duda and Peter Hart. Pattern classi�cation and scene analysis. Wiley, New York, 1973.

[Dor96] Dietrich Dorner. The Logic of Failure. Metropolitan Books, 1996.

[Eis97] Marc Eisenstadt. My hariest bug war stories. Communications of the ACM, 40(4), April 1997.

[Eva84] M. Evangelist. Program complexity and programming style. In Proceedings of the International

Conference of Data Engineering, pages 534{541. IEEE, 1984.

[FS91] Daniel Farmer and Eugene H. Spa�ord. The COPS Security Checker System. Technical Report
CSD-TR-993, Software Engineering Research Center, Purdue University, September 1991.

[FS96] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. 1996.

[Gar96] SimsonGar�nkel. Could ActiveX pose a threat to national security? http://www.packet.com/packet/,
Nov 1996.

[han96] Handbook of INFOSEC Terms Version 2.0. CDROM, 1996.

[Haw88] Stephen W. Hawking. A Brief History of Time: From the Big Bang to Black Holes. Bantam Books,
1988.

21

[Hed95] Sara Reese Hedberg. The Data Gold Rush. BYTE, October 1995.

[HS94] Marcel Holsheimer and Arno Siebes. Data Mining: The Search for Knowledge in Databases. Technical
Report CS-R9406, Centrum voor Wiskunde en Informatica, 1994.

[Jr.95] Frederick P. Brooks Jr. The Mythical Man-Month. Addison-Wesley, 1995.

[kdd] S*i*ftware: Tools for Data Mining and Knowledge Discovery. WWW URL
http://info.gte.com/�kdd/siftware.html.

[KP78] B. Kernighan and P. Plauger. The Elements of Programming Style. McGraw-Hill Book Company,
second edition, 1978.

[KS94] Sandeep Kumar and Eugene Spa�ord. A Pattern Matching Model for Misuse Intrusion Detection. In
17th National Computer Security Conference, 1994.

[KS95a] Sandeep Kumar and Eugene Spa�ord. A Taxonomy of Common Computer Security Vulnerabilities
based on their Method of Detection. Technical report, Purdue University, 1995.

[KS95b] Sandeep Kumar and Eugene H. Spa�ord. A Software Architecture to Support Misuse Intrusion De-
tection. Technical Report CSD-TR-95-009, Purdue University, 1995.

[KS96] Ivan Krsul and Eugene Spa�ord. Authorship analysis: Identifying the author of a program. Technical
Report TR-96-052, Purdue University, Department of Computer Sciences
Purdue University
West Lafayette, IN 47907-1398, September 1996.

[Kum95] Sandeep Kumar. Classi�cation and Detection of Computer Intrusions. PhD thesis, Purdue University,
August 1995.

[L+93] Carl Landwher et al. A Taxonomy of Computer Program Security Flaws. Technical report, Naval
Research Laboratory, November 1993.

[Lon97] Tom Longsta�. Update: Cert/cc vulnerability knowledgebase. Technical presentation at a DARPA
workshop in Savannah, Georgia, February 1997.

[LR92] D. Longley and S. Rigby. An Automatic Search for Security Flaws in Key Management Schemes.
Computers & Security, 11(1):75{89, March 1992.

[LS90] Dennis Longley and Michael Shain. The Data and Computer Security Dictionary of Standards, Con-
cepts, and Terms, 1990.

[LS92] Matthys Levy and Mario Salvadori. Why Buildings Fall Down. W. W. Norton & Company, 1992.

[Mar90] Brian Marick. A survey of software fault surveys. Technical Report UIUCDCS-R-90-1651, University
of Illinois at Urbana-Champaign, December 1990.

[OC90] P. Oman and C. Cook. A Taxonomy for Programming Style. In Eighteenth Annual ACM Computer

Science Conference Proceedings, pages 244{247. ACM, 1990.

[OC91] P. Oman and C. Cook. A Programming Style Taxonomy. Journal of Systems Software, 15(4):287{301,
1991.

[Per84] Charles Perrow. Normal Accidents: Living With High-Risk Technologies. Basic Books, 1984.

[Pet85] Henry Petrosky. To engineer is human : the role of failure in successful design. St. Martin's Press,
1985.

22

[Pol] W. Timothy Polk. Automated Tools for Testing Computer System Vulnerability. Unknown if a
published version of the paper exists.

[Pop69] Karl R. Popper. Conjections and Refutations. Routledge and Kegan Paul, 1969.

[Pow96] Richar Power. Current And Future Danger: A CSI Primer of Computer Crime & InformationWarfare.
CSI Bulletin, 1996.

[QCJ] J. R. Quinlan and R. M. Cemeron-Jones. Oversearching and Layered Search in Empirical Learning.

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, pages 81{106, 1986.

[RN93] J. Ranade and A. Nash. The Elements of C Programming Style. McGraw-Hill Inc., 1993.

[Sch94] Neil Schlager. When Technology Fails: Signi�cant Technological Disasters, Accidents, and Failures of

the Twentieth Century. Gale Research Inc., 1994.

[SCS86] H. Dunsmore S. Conte and V. Shen. Software Engineering Metrics and Models. The Ben-
jamin/Cummings Publishing Company, 1986.

[SSTG92] S. R. Snapp, S. E. Smaha, D. M. Teal, and T. Grance. The DIDS (distributed intrusion detection
system) prototype. In USENIX Association. Proceedings of the Summer 1992 USENIX Conference,
pages 227{33, Berkeley, CA, USA, June 1992. USENIX Association, USENIX Association.

[Tas78] Dennie Van Tassel. Program Style, Design, E�ciency, Debugging, and Testing. Prentice Hall, 1978.

[Tou94] M. Toure. An interdisciplinary approach for adding knowledge to computer security systems. In
Proceedings. The Institute of Electrical and Electronics Engineers 28th Annual 1994 International

Carnahan Conference on Security Technology, pages 158{68, New York, NY, USA, October 1994. The
Institute of Electrical and Electronics Engineers, IEEE.

[Wat95] Karen Watterson. A Data Miner's Tools. BYTE, October 1995.

[WK91] Sholom Weiss and Casimir Kulikowski. Computer systems that learn : classi�cation and prediction

methods from statistics, neural nets, machine learning, and expert systems. M. Kaufmann Publishers,
1991.

23

