
A Secure Message Broadcast System (SMBS)

Mark Crosbie Ivan Krsul Steve Lodin Eugene H. Spa�ord�

The COAST Project

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907{1398

fmcrosbie,krsul,swlodin, spafg@cs.purdue.edu

Technical Report CSD-TR-96-019

April 16, 1997

1 Introduction

This paper describes the design and implementation of a secure message broadcast system (SMBS). It is a
secure, multi-party chat program that ensures privacy in communication and does not rely on shared secret
keys. The system was built as a study of the feasibility of building e�ective communication tools using zero
knowledge proofs.

There is a general consensus in the computer security comunity that traditional password based authenti-
cation mechanisms are insu�cient in today's globally connected environment. Mechanisms such as one-time-
passwords are a partial solution to the problem. The issue that these protocols don't address is the lack of
mutual authentication. The Kerberos family of systems addresses the issue of mutual authentication but relies
heavily on the physical security of the server and safekeeping of the password database.

The design of the SMBS system addresses the following issues:

Secure communication Message broadcasts between users will be encrypted to ensure privacy of communi-
cation.

User authentication A zero-knowledge proof based on the Amos Fiat and Adi Shamir [FS86] system will be
used to authenticate users without revealing to potential eavesdroppers any information that might com-
promise the system. Although much has been written about zero knowledge proofs, and to the best of our
knowledge, few products have actual implementations that depend on this class of authentication mecha-
nisms, and none use them as e�ective authentication techniques for widespread dynamic communication
protocols [FS86, LL95, GKG92, BG92].

Portable implementation The system was designed to be portable. This was achieved by using the PERL
programming language [WS92] wherever possible.

There are three components to the system:

�Contact person for questions concerning the paper.

1. An Authentication Server veri�es the identity of all parties in the system. Authentication is the
process of validating that an entity actually is who it claims to be. An entity is not only a user, but other
components of the SMBS system.

2. A Chat Server accepts messages from all clients and distributes them to all the other participating
clients. It is the central message distribution point, and will encrypt all messages to guarantee privacy.

3. A Client is a user who wishes to participate in a message exchange with other authenticated users. A
user interacts with a client by typing messages to be displayed on other user's screens, and by reading
messages typed by other participating users. The client program authenticates itself to the authentication
server before the user is allowed to join the system.

We will present detailed state-machines for the behaviour of each of the components of the system later in
this document, but the steps involved can be summarized below:

1. The chat server and the authentication server authenticate each other using a zero-knowledge proof
[GMW86].

2. Users authenticate themselves to the authentication server and obtain from it a session key. The session key
is used to encrypt some of the tra�c to and from the user. Immediately after this key has been obtained,
users obtain from the chat server a broadcast key that will be used to decrypt broadcast messages.

3. The chat server listens on a well known port for connections. Connections will come from either users or
the authentication server.

4. The chat server learns about new users when the authentication server noti�es it of valid users. The chat
server adds the new user to an internal database of registered users, and remembers the user's session key.

5. When a user connects, the chat server veri�es that the incoming message has been encrypted using the
correct session key for that user.

6. The chat server broadcasts the message to all registered users, encrypting it with a global broadcast key.
It is encrypted with one broadcast key, rather than each individual user's key, to speed up distributing a
message.

7. Any anomaly in the communication between the chat server and the client results in the revocation of the
session key for the client, the generation of a new broadcast key by the chat server and the redistribution
of the key to the remaining clients. This could occur if the client does not acknowledge the receipt of
a message. The chat server will assume that the client has died, and will remove that client from its
database of registered users. The client will have to re-authenticate itself with the authentication server.

8. The authentication server continues to accept connections from new clients and authenticate them.

Figure 1 illustrates the three components in the system.

2 Detailed Speci�cations

The clients and servers in our design conform to the following speci�cations:

2.1 IPC Speci�cations

The authentication server, chat server, and clients communicate using the TCP/IP protocol. The servers operate
on well known hosts and well known ports, and it is assumed that clients will know these in advanced.

Clients and servers can communicate with each other using messages. Messages are divided into a control
portion and a data portion, and these can be encrypted if necessary. Figure 2 shows the structure of a message.

The message identi�cation �eld (MID) speci�es the originator of the message. Its length is variable, limited
to 255 characters, and is speci�ed as the �rst byte of the string. The only prede�ned values of this �eld are the

Client Client

Authentication
Server

Chat Server

Cl
ie
nt
 A
ut
ho
ri
za
ti
on

Message
Broadcast

Client
Authentication

Message
Broadcast

Client
Authentication

Figure 1: Conceptual Organization of the System. This dia-

gram illustrates the types of information that can be exchanged

between components in the SMBS system.

Identification
of originator

(MID)
Control
opcode
(COP)

Control
Data

(COD)

Data
length
(DAL)

Data
(DAT)

Figure 2: SMBS Message Structure. Each message passed

between the components of the SMBS system is structured as

shown in this �gure.

OPCODE Value Description Control Data Needed

ACK 0 Plain text positive acknowledgment. None
NACK 1 Plain text negative acknowledgment. None
EACK 2 Encrypted positive acknowledgment. Encrypted magic cookie
ENACK 3 Encrypted negative acknowledgment. Encrypted magic cookie
ECHAT 4 Used by clients for submitting

a message to the chat server. Encrypted magic cookie
EBCAST 5 Used by the chat server to label a

message that is being broadcast by
the server. Encrypted magic cookie

CHKEY 6 Used by the chat server to inform
clients that a new session key is being
distributed. Encrypted magic cookie

NEWUSR 7 Used by the authentication server to
inform the chat server that a new user
has just authenticated itself. Encrypted magic cookie

DELUSR 8 Used by the authentication server to
inform the chat server that a user has
been revocated all authorizations. Encrypted magic cookie

DATA 9 Plain data. Used to communicate arbitrary
data. None

Table 1: De�ned values for the COD and COP �elds in SMBS messages

strings1 \authserv" and \chatserv", identifying those messages that originate at the authentication and chat
servers.

The control opcode �eld (COP) is a one byte �eld that indicates the type of message. The control data �eld
(COD) is any additional data that may be needed while specifying the type of message. The values de�ned for
these �elds are shown in Table 1.

The encrypted magic cookie is a string with the text \magic cookie ok", encrypted with the user key. The
length of the encrypted magic cookie is indicated by prepending to it a four byte long length �eld (in network
byte order)

The data length �eld (DAL) is four bytes long (in network byte order) and indicates the length of the payload
(DAT �eld). The messages that carry data in the payload are shown in Table 2.

2.2 Client

On startup, the client must obtain from the authentication server a session key Ski that will be used to encrypt
outgoing communication with the chat server. The client does this by connecting to the authentication server's
well known host and port, proving its identity using a zero knowledge proof, and obtaining the session key using
the Di�e-Hellman key exchange protocol. Immediately after obtaining a session key from the authentication
server, and before doing anything else, the client must wait for the chat server to send a key Dk that must be
used to decrypt all incoming broadcast messages.

Once these two keys have been obtained, the client can send and receive messages. To broadcast a message
the client must connect to the chat server's well known host and port and transmit a message encrypted with the
Ski key. To receive a message, the client accepts a connection from the server and receives a message encrypted
with the Dk key.

1The length for these strings is not shown for readability. The implementation would have to use the strings \n0x08authserv"
and \n0x07chatserv"

OPCODE Description

ECHAT The message submitted by the client. This message should be
encrypted with the client's session key.

EBCAST The message being broadcast by the server. This message
should be encrypted with the chat server's key.

CHKEY The new message decryption key being issued by the chat
server. This message should be encrypted with the client's session key.

NEWUSR The identi�cation (MID) and session key for the new user.
This message should be encrypted with the chat server - authentication
server private session key.

DELUSR The identi�cation (MID). This message should be encrypted with the
chat server - authentication server private session key.

DATA Arbitrary data.

Table 2: Description of what type of messages are carried in the payload of an SMBS message

Periodically, the client will send to the chat server a keep-alive message that will contain a zero-length
message2.

To see why the keep-alive message is necessary, consider the case where the client successfully obtains the
keys described above and listens without ever transmitting information (i.e. the client is passive). Assume also
that the communication link between the chat server and the client is lost shortly thereafter, and for a period
long enough for the chat server to try to send it some message. The chat server will assume that the client
has gone away and delete it from its database of active clients. Now assume that the communication link is
restored shortly after the client has been deleted. If the keep-alive message is not sent then the client would
never discover that it has been deleted from the database3.

Figure 3 shows the client's state diagram, and the following pseudo code gives a general idea of the internal
structure of the actual implementation.

� Initialize client

� Authentication with Server
� Perform the Zero knowledge proof and authenticate client

� Negotiate a session key Ski

� Wait for decrypting key from chat server
� Save the contents of the payload as the Dk key.

� Wait for connections from the network, time-outs or data from the keyboard. Loop forever
� If we have data from the keyboard

� Read data from the keyboard into a bu�er

� Construct a new message.

� Encrypt the message using Ski

� Send message

� Read response from the server. If we can't read or read EOF then assume that a NACK

� If we have data from the network
� Read and verify message

� Decrypt message with Dk key. Verify that magic cookies match.

� If everything ok, send ACK (encrypt with key Ski)

� If we time-out

2Note that a zero length message will contain some data in the payload section (DAL and DAT �elds) because the message must
be concatenated to the magic cookie generated for the COD �eld.

3Functionally, the message is a discover-if-I-am-dead message rather than a keep-alive message

Wait for
connections
or keyboard

data

Client has been
authenticated

Timeout

Connection from

Chat Server

Authenticate
with Server

Wait for
decrypting
key from

chat server

Otherwise
(Repeat only 10 times)

Client has key

Keyboard
 D

ata

Read data
and send to
chat server

Send keep-
alive to
chat server

Read data
and process

Figure 3: Client State Diagram. This diagram shows the major

logical steps that must be performed during the execution of a

client.

� Perform the exact steps as sending a message but with an empty message.

2.3 Chat Server

The Chat server accepts incoming client connections and broadcasts data to clients for display. Each client
communicates with the server by encrypting its data with a session key. This key is obtained by the client from
the Authentication server at startup.

The chat server maintains a database of clients which have connected. This database contains the client's
ID and session key Dk and IP address/port. It is assumed that this database is secure (i.e. no entries can be
inserted by any other process other than the chat server).

The chat server has a current global key which is used to encrypt messages to be broadcast to the clients.
It chooses this key at startup, and will send the key to clients as they connect. This key can be timed out and
revoked as necessary.

The following pseudocode outlines the execution of the chat server:

� Chat server starts up. It initializes everything internally. The database is cleared.

� Chat server must authenticate itself with Auth. Server

� Chat server waits for connections on a well known port. Loop forever
� Chat server receives a connection.

� If the MID == authserv, then it is a connection from the authentication server
� If the message type is NEWUSR, then a new user is being added to the system. In this case,
add the client to the database and send him the Dk session key.

� If the message type is DELUSR then we must delete the user in the database, generate a new Dk

key and re-distribute this key to the rest of the clients
� For each client in the database do,

� Get the client's session key Ski.

� Send the new Dk encrypted with Ski.

� If the MID == a client ID
� Check that message type is EBCHAT. If not, discard the message

� If DAL == 0, ignore message, it is a keep-alive from a client.

� Find session key Ski for user. Decrypt message with session key

� Send the message to all other clients.
� Encrypt the message with the Dk key - current global broadcast key.

� For each client in the database, send message to client

Figure 4 shows the Chat Server State Diagram.

2.4 Authentication Server

The SMBS authentication server is seeded through a secure method with a list of all authorized client tuples.
The tuples consist of the pair (identity, large number). The authentication server's only job is to authenticate
the SMBS clients and chat server using a zero knowledge proof.

The authentication server, when started, waits for incoming connections on a well-known port. Once a
connection is established, the authentication server performs a zero knowledge proof with the process on the
other end of the connection. The procedure will validate the identity of the incoming process. If there is a failure
either with performing the Zero Knowledge Proof or with communication, the authentication server severs the
connection and waits for connections again.

Once the identity has been validated, a session key is generated and exchanged using the Di�e-Hellman key
exchange protocol. The session key is denoted Sk for the chat server or Ski for a client.

Authenticate
with Server

Otherwise

Wait for
connections

Server has been
authenticated

E
rr

or
 c

om
m

un
ic

at
in

g
w

ith
au

th
en

tic
at

io
n

se
rv

er

Connection
from

authentication
server

Get new
client

session key

Good
Data

Update
database

Encrypt data
and send to
all clients

Connection
from client

Ok

Encrypt data
and send to
all clients

For next
client

Send
encrypted

data to
client

Ok

Delete
client from

database

Error

Figure 4: Chat Server State Diagram. This diagram shows the

major logical steps that must be performed during the execu-

tion of a chat server.

If the identity is determined to be that of the chat server, the authentication server stores the generated
session key Sk and uses it for any subsequent communication with the chat server. An ACK, encrypted with
the session key Sk, is sent to the chat server and the connection is closed. If either of these two communications
fail, the authentication server is reset to its initial state. The authentication server then waits for incoming
connections again.

If the identity of the incoming connection is determined to be a client, the authentication server �rst ver-
i�es that a chat server has been authenticated. If no chat server has been authenticated, the authentication
server closes the connection and waits for incoming connections. If there is an authenticated chat server, the
authentication server constructs a message containing the client identity and the newly generated client session
key Ski, encrypts the message with Sk and opens a connection to the chat server. If this connection fails, the
authentication server closes the connection to the client and resets to its initial state. If the connection succeeds,
it sends the encrypted message to the chat server and waits for an ACK. If no ACK is received, it closes the
connection to the client and resets to its initial state. If the ACK from the chat server is received, it then ACKs
the client and closes the connection to the client. The authentication server then waits for incoming connections
again.

A session key Ski for a client can be revoked by entering the client identi�cation at the command line. This
will cause the authentication server to generate a key revocation message and send it to the chat server.

The following pseudocode outlines the behavior of the server:

� No valid chat server, initial state

� Wait for connection or keyboard input loop forever. If connection established:
� Perform Zero Knowledge Proof and generate session key using Di�e-Hellman

� If identity is chat server
� Store session key

� Send encrypted ack message to chat server using session key

� If identity is client
� If no valid chat server - close client connection

� Construct message with client id & client session.

� Encrypt message with chat server session key

� Send message to chat server

� Send encrypted ack message to client using session key

� If keyboard input, parse the command
� If command is revoke user

� Parse and validate user name

� Construct key revocation message

� Send to chat server

� If command is list users
� List users registered in the database

Figure 5 shows the Authentication Server state diagram.

3 Cryptographic Foundations

3.1 The Zero Knowledge Proof

The prover (P) will convince the veri�er (V) that he knows the prime factorization of a large composite number
n, but will not reveal to V, or anyone eavesdropping on the conversation, any hint that would help him �nd
the factors of n. We can do this because if the prime factors of n are known, then for any a one can �nd all

Initial State

Otherwise

Wait for
connections

Chat server has
been authenticated

Error communicating
with chat server

Connection
from Client

Proof State

Good
Client

Send
Certificate
to Server
and Client

Figure 5: Authorization Server State Diagram. This diagram

shows the major logical steps that must be performed during

the execution of an authorization server.

solutions of the congruence x2 � a (mod n) in polynomial time. On the other hand, if the prime factors of n
are not know then solving the congruence x2 � a (mod n) is as hard as factoring n.

Say the prime factorization of n is n = pq, where p and q are primes, and assume that arithmetic
(+;�; �;�;mod) can be done in polynomial time with large numbers. Assume also that no one knows how
to factor large numbers in polynomial time.

If n = pq then we can solve the congruence x2 � a (mod n) by solving the equations x2 � a (mod p)
(yielding the solution pair (x1; p� x1)) and x2 � a (mod q) (yielding the solution pair (x2; q � x2)). Solving
equations of the form x2 � a (mod p) can be done in the general case with the algorithm of Tonelli and
Shanks [Coh93, pages 32-35]. However, for about three fourths of the prime numbers we can �nd the square
root modulo p if we pick p to have special properties as follows:

If we pick the prime p so that p � 3 (mod 4), or p � 5 (mod 8), then we can �nd the square root modulo
p with the following equations:

p � 3 (mod 4)) x = a(p+1)=4 (mod p)

p � 5 (mod 8)) x =

�
a(p+3)=8 (mod p) if a(p�1)=4 � 1 (mod p)
1
2 (4a)

(p+3)=8 (mod p) if a(p�1)=4 � �1 (mod p)

To �nd a solution to the original congruence, the solutions x1, p � x1, x2, and q � x2 are combined using
the Chinese Remainder Theorem[Den83, pages 47{48] four times in the following four equations:

t � x1 (mod p) t � x1 (mod p)
t � x2 (mod q) t � q � x2 (mod q)
t � p� x1 (mod p) t � p� x1 (mod p)
t � x2 (mod q) t � q � x2 (mod q)

Four solutions to the original congruence exist because n contains two prime factors, and these four solutions
will result from the application of the Chinese Remainder Theorem to these equations. Call these solutions x,
n� x, y, and n� y.

The basic idea for P convincing V that he can factor n is that V presents some squares modulo n and
P replies with their square roots using the mathematical properties described above. The di�culty with this
simple approach is that there is a 50% chance that P will reveal to V enough information to factor n. Since V
has chosen a it is reasonable to assume that V knows a solution to the square root of a modulo n. This square
root must be one of the four solutions that P will compute with the above mentioned procedure. Assume then
that V knows x.

If after the computation of the square root has been completed P sends x or n�x to V then V learns nothing.
On the other hand, if the root that P sends is y or n� y then V can factor n because either gcd(x + y; n) = p
or gcd(x+ y; n) = q.

The solution to this problem is to force V to choose an a so that he does not know any solutions to the
congruence x2 � a (mod n). This can be done by letting P choose part of a. Our algorithm requires that P
and V to choose numbers b and d that will be multiplied together to produce a number a = bd (mod n). V
will not know a root to this number and hence will not be able to factor n when P returns a solution to the
congruence x2 � bd (mod n)4.

These are the steps that P and V must go through to perform the Zero Knowledge proof:

Algorithm from P's side:

4A word of caution. If V can trick P into solving the congruence x
2 � bd (mod n) with the same value for bd more than once

then he may be able to factor n.

� Assume that P knows n = pq

� Choose some random number a such that
p
n < a < n

� Let b = a2 mod n

� Send b to V

� Get d from V

� Solve x2 � bd (mod n). Let x1 be one of the four possible solutions (chosen at random).

� Get the result of a coin toss from V

� If the coin is head then send a to V. Else, send x1 to V.

Algorithm from V's side:

� Assume that V knows n but not p; q

� Choose some random number c such that
p
n < c < n

� Let d = c2 mod n

� Get b from P

� Send d to P

� Toss a fair coin so that the probability of getting heads is equal to the probability or getting tails. Send
the result of that fair toss to P

� Get y from V

� If the coin toss was head verify that y2 mod n = b, else verify that y2 mod n = bd mod n.

Note that if P receives d before sending b then he could compute b = z2=b and cheat. Hence the veri�cation
step using the fair coin. Every time through the protocol P has a 50% chance of cheating V. Hence, all steps of
the algorithm must be performed many times. If the results of the last step in V are always correct, after many
steps V accepts that P knows the factorization of n.

After k rounds through this protocol the probability of P successfully cheating V is
�
1
2

�k
. After 10 iterations,

for example, the probability of P cheating V is one chance in 1,024. After 20 iterations the chances of P cheating
V is one in 1,048,576. After 100 iterations the chances of P cheating is, approximately, one in 1030. The number
of iterations that must be performed then depends on the level of con�dence desired.

3.2 Di�e-Hellman Key Exchange

Di�e-Hellman was the �rst public-key algorithm invented [Sch96, pages 513-514]. It is named after its authors
[DH76]. It gets its security from the di�culty of calculating discrete logarithms in a �nite �eld, as compared
with the ease of calculating exponentiation in the same �eld. Di�e-Hellman can be used for key distribution.
Using the familiar Alice and Bob as the participants, the algorithm is simple. First, Alice and Bob agree on
two large integers, n and g, such that 1 < g < n. These two integers do not need to be secret and they can be
decided on over some insecure channel. The protocol goes as follows:

� Alice chooses a random large integer x and computes X = gx mod n

� Bob chooses a random large integer y and computes Y = gy mod n

� Alice sends X to Bob and Bob sends Y to Alice. Neither disclose x or y.

� Alice computes k = Y x mod n

� Bob computes k0 = Xy mod n

Both k and k0 are equal to gxy mod n and they are the shared key. No one listening on the channel can
compute that value since they only know n, g, X , and Y . Unless they can compute the discrete logarithm and
recover x or y, they can not solve the problem.

The choice of g and n can be important to the security of the system. The modulus n should be prime
and also (n � 1)=2 should also be prime. The number g should be a primitive root mod n. One of the more

important requirements is that n be large, at least 512 bits.

4 Implementation Details

We have chosen to implement the SMBS system using the Perl programming language. There are two reasons
that justify this choice of programming language: 1) Perl is a highly portable language, and 2) Prototyping is
much faster than C. In its current incarnation (version 5), Perl supports modular programming by way of the
Package Construct. We made heavy use of the Perl Package feature. The following packages were created:

IPC Package. The IPC package provides a consistent interface to all those routines that are necessary for
the construction and decoding of packets (or messages) that must be used for all interprocess com-
munication. Among the routines provided by this package are the routines build ipc message and
decode ipc message. These routines perform all the necessary encapsulation, including the creation of
checksums, magic cookies, encryption of payload data, etc. Also, the message structure can be easily
enhanced without a�ecting any other module in the system.

Because testing is an integral part of the development process we provided a comprehensive set of tests
for the routines in this module in the �le test ipc.pl. These tests not only verify that messages are con-
structed correctly, but also test that the routines detect and correctly reject invalid messages or messages
that have been corrupted.

ZKP (Zero Knowledge Proof) Package. The ZKP package implements the zero knowledge proof protocol
as explained in section 3.1. The package provides two routines that act as the veri�er (zkp server) and
prover (zkp client). Both routines are given a �le handle that is bound to the TCP/IP socket that will
allow them to communicate. This �le handle must allow bi-directional
ow of information.

The zkp server routine requires that a reference to the client database be passed as a parameter. This
database is an associative array where the indices are the names of the users de�ned in the keyfile �le
and the values are the public keys for the clients.

The zkp client routine requires that numbers p, q and n, which it needs to solve the congruences, be
passed as parameters.

The zkp client and zkp server routines also accept an optional parameter that indicates that a visual
progress feedback should be printed. The visual feedback consists of a series of asterixes (*) printed in
the screen at periodic intervals.

To test the zero knowledge, a test �le is provided that feeds the prover and veri�er incorrect information
and veri�es that all errors are handled correctly. The test �le will also fork o� two children that will try
to prove their identity to each other.

Debug Package. The package allows programs to turn on and o� debugging information dynamically. Each
module can de�ne its own module identi�er, and print debugging information in several levels. Level 1 is
generally reserved for printing informative messages on error conditions and unusual situations that might
be useful to system administrators. The debugging package allows multiple programs that share packages
to turn on debugging for the same package at di�erent levels . For example, the client program might
want to display debugging information about the IPC package at level 4, but the authentication server
might want to display only those messages at level 1.

MP Package. We chose to implement the bulk of the project in Perl (for portability), but unfortuantely the
PERL multi-precision libraries were too slow. We used multi-precision libraries coded in C, so an interface
between the two was needed. Perl allows C routines to be built in to extend the language, but this involves
recompiling the local Perl installation. As we were aiming for a portable and general system, this was not
acceptable.

Instead, a C program was wrapped around the MP library which accepted commands and arguments
from the standard input and passed these on to the MP routines. The result from the routines were then
printed to the standard output. A Perl program could then simply open a pipe to this program and pass
it the required command and arguments, and read the result back in. Both commands and arguments
were handled as strings. The C wrapper program then converted these into MP numbers to pass to the
MP library.

A Perl package was written which encapsulated all the required MP routines. It provided a consistent
interface to the MP library for other Perl code to use. It in turn called a program called mpdispatch.
This was a C program which accepted commands (as strings) and arguments, and called the MP library.
The result was then written onto the standard output, which was the end of a pipe from which the Perl
program could read the result. Figure 6 illustrates this process.

Perl Code MP Package
in Perl mpdispatch

prints to
stdout

Read results
from stdout

Return the
result to Perl

MP Lib
(Performs the actual
computations and
returns the results)

Figure 6: Calling the MP library from Perl. The MP library

was written in C and we use the process outlined in this diagram

to interface it with SMBS (written in Perl).

The mpdispatch program is written in C and accepts commands and arguments from standard input.
It then translates these into the internal MP format and calls the appropriate MP library routine. The
result is printed on standard output.

This mechanism is
exible, but has the drawback that every mathematical operation requires a program
to be executed. To o�set this, we identi�ed portions of code that did many mathematical operations, and
wrote special routines to perform these operations. The Zero Knowledge Proof needed some specialized
operations (e.g. solve congruence, perform Chinese Remainder Theorem). These were built into the
mpdispatch program and increased the speed with which the ZKP could operate.

An essential part of the project was testing. As client-server systems are di�cult to test, it is essential
that all the lower-level modules operate correctly in situ. A test script was developed in parallel with the
MP-library interface to test each routine.

A script was developed that tested the boundary conditions of each routine. Each test would print "Passed"
or "Failed" after the test. After any modi�cations to the MP Perl routines, the test script was run, and all
tests very veri�ed as passing before proceeding. This script is called testmp.pl. Note however, it cannot
test all possible inputs to the routines - we discovered problems in the MP library in taking square-roots
of seemingly innocuous numbers which would never have been found with this test script.

The random number generator is needed in the Zero Knowledge Proof and Di�e-Hellman key exchange
packages. Its purpose is to provide a multi-precision random number in a speci�ed range. A requirement
of this generator was that it must be quick, e�cient and reasonably random. Random numbers are di�cult
to generate on computers, but there some well known sources of randomness in any system. We chose to
use the audio device available on most Sun SPARCstations, in conjunction with the time of day.

The randnum() routine in PERL takes two parameters which give the upper and lower range of the random
number to be generated. These are multi-precision numbers. If they are equal (i.e. there is no range) then
their value is returned (e.g. randnum(15,15) returns 15). If the lower range is greater than the upper
range, they are switched (e.g. randnum(30,15) is equivalent to randnum(15,30)).

The randnum() call is interpreted by the mpdispatch(), which routine calls the generate rand() routine
in C. This attempts to open the audio device /dev/audio and read data from it. This data is hopefully
random (if the microphone is turned on), and is used to build a random multi-precision number. The time
of day is added to each digit to introduce extra randomness if the microphone is not enabled. The audio
device must be present for the random number generator to work. Furthermore, it must be turned on - a
check is made at the start of the mp.pl package to see if the audio device is returning information which
would indicate that the microphone is turned o�. If so, the package exits with an error.

Crypt Package. The crypt package provides an interface to the encryption/decryption program. The encryp-
tion and decryption processes in this project are performed using the IDEA program [LM91, Lai92]. There
are two routines in the crypt package, encrypt and decrypt. Both routines take the same arguments as
input: a string S and a key k. The string S must be non-zero in length. Also, it must be less than 1024
characters, which is the IDEA program bu�er size. The key k is a string with non-whitespace characters
used to encrypt or decrypt the string S.

The data encrypted by IDEA is normally located in �les and is generally binary, not ASCII format. This
required the use of encoding/decoding routines to transform the binary data into some usable ASCII
representation and back again. Every instance of encrypted data is encoded and manipulated in this
format. Before being decrypted, this data is decoded into the native format.

Both the encrypt and decrypt routines return an array of information. The �rst value is the status of the
operation, which can be no error, or a failure mode described below. If no error occurred, the second value
is the returned string. The output from the encryption routine is the encoded encrypted string S0 given
by S0 = encode(Ek(S)) where E is the IDEA program, k is the encryption key, and encode is the encoding
program. The output of the decryption routine is S0 given by the expression S0 = Dk(decode(S)) where
D is the IDEA program, k is the key, and decode is the decoding program.

We've chosen to use the IDEA block cipher for encryption and decryption. According to Schneier [Sch96,
page 319], IDEA appears to be signi�cantly more secure than DES and the software implementations are
about as fast as DES. IDEA operates on 64-bit plaintext blocks using a 128 bit key. It uses both confusion
and di�usion mixing operations from di�erent algebraic groups to provide its security. We are using IDEA
in its default operating mode, cipher block chaining.

We exercise several tests to test the crypt package. These test are designed to test all combinations of
valid and invalid instances of input to the crypt package, string data and keys. These tests are performed
in a serial fashion with the output from the test compared to the expected output yielding a pass/fail
message. The tests are designed to exercise all the failure modes of the crypt package. These modes are:
no error, no data, an IDEA error, or too much data.

Testing the string data required tests using strings of various lengths and validity. The test program
uses zero length input, valid length input, overlength input, and invalid data for testing. Di�erent keys
of varying length and characters are used to test the keys. For the process of argument testing, if both
arguments are not passed, the routines return an error.

Di�e-Hellman Key Exchange Package. The Di�e-Hellman [DH76] key exchange package implements the
protocol as explained in Schneier [Sch96, pages 513-514]. The package provides a client routine that
communicates to another instance of the client routine. The two instances of the client routine are either
the authentication server and a chat client or the authentication server and the chat server. Both sides of
the key exchange execute the same routine. The protocol goes as follows:

� A and B agree on two large integers n and g where 1 < g < n and n is a safe prime and g is a
primitive root of n

� A chooses a random large integer x and computer X = gx mod n

� B chooses a random large integer y and computer Y = gy mod n

� A sends X to B and B sends Y to A.

� A computes k = Y x mod n.

� B computes k = Xy mod n.

The integers n and g for our Di�e-Hellman key exchange protocol implementation were derived from
Maple using the following simple algorithm:

with(numtheory);

seed:=7413278905432789054327890546781242345708914367854320543272679984;

n:=safeprime(seed);

g:=primroot(seed/2,n);

Since both n and g can be public, they are stored in the �le in plaintext. The protocol does not rely on
security by obscurity.

The input to the client routine is a �lehandle for socket communication, the identi�cation of the server
(from this key exchange client's point of view), and the identi�cation of the other side. The client routine
performs one side of the key exchange from the perspective of A (also known as Alice). The client
routine uses the MP library routines for choosing a random number x between 1 and n and calculating
X = gx mod n. This number X is sent to the other side while Y is received from the other side and
then the session key k = Y x mod n is calculated. The output of the client routine is either the exchanged
session key or unde�ned if an error in the input or the negotiation occurred.

The process of testing the Di�e-Hellman key exchange requires that two TCP connections are established,
one acting as server and the other as client. To test a valid exchange, the server and the client compute
session keys and then the client sends the computed key to the server for comparison. To test for invalid
input, tests are performed for invalid �le handles and blank or missing identi�cation strings.

4.1 Clients and Server

The three programs described below constitute the SMBS system.

4.1.1 Authentication Server

The main goals of the authentication server are to authenticate a client and distribute a negotiated session key.
The authentication server reads its private keys p and q from a �le that has been encrypted using IDEA with
a pass phrase. It also reads from a �le the public keys of all the potential participants, including broadcast
message clients and the chat server. The authentication server then waits listening on a well-known port for
incoming connections.

When an incoming connection is made, the authentication server begins the authentication process by
participating in a mutual authentication protocol using a zero knowledge proof of identity where the incoming
client connection tries to prove who it is by being able to solve for the prime factors in its public key read earlier.
If the client successfully authenticates itself, then the authentication server tries to authenticate itself to the
client using the same process. This will ensure that both the client and the server have proof of who they are
communicating with.

After a successful mutual zero knowledge proof authentication, the server and the client exchange session
keys using the Di�e-Hellman key exchange protocol. If the authentication client is the chat server, the session
key is stored for use with all subsequent communications with the chat server. If the authentication client is
a broadcast message client, the newly generated session key is encrypted and sent to the chat server provided

a chat server has already been authenticated. Once all the key exchanging and handshaking is completed, the
server starts to listen for incoming client connections again.

If at any point during the authentication process or key exchange protocol an error occurs, the connection is
dropped and the previous connection information for that particular client is lost. Also, if the communication
process to the chat server encounters a problem, the chat server must re-authenticate itself to the authentication
server and re-negotiate a session key.

Commands to the authentication server can be typed in on standard input. If the command is help, the list
of available commands will be printed. If the command is list, the list of users in the database will be printed.
If the command is quit, the open connections are closed and the program exits. If the command is revoke, the
server asks for the identi�cation of a user to be deleted. If the identi�cation is valid, the users is deleted from
the database. A message is sent to the chat server suggesting the particular client to remove from the list of
authenticated clients. This invalidates the client for the rest of the session.

Authentication Server Usage

% auths.pl <options>

If no options are speci�ed, it uses default hostnames and default ports for the chat server.

To change the port and host being used for the chat server, use:

-ch <hostname> - hostname of the chat server

-cp <port> - port number for communicating with chat server

To change the port number that the auth server listens on, use:

-ap <port> - port number to listen for connections on

For example, to run the auth server verbosely on port 5004 and expected the chat server to be run on host
yavin port 5005, do

auths.pl -v -ap 5004 -ch yavin -cp 5005

4.1.2 Chat Server

The chat server was built with one simple rule | if any error occurs in communicating with a client then that
client is ignored from then on. Many special cases are avoided by doing this as it simpli�es the code considerably.

The chat server maintains a database of all clients it currently knows about. This is simply an array in
memory giving the session key for that client, its machine address and port. This information is passed to the
chat server by the authentication server when a new client has successfully passed the authentication process.

The chat server authenticates itself with the authentication server and then authenticates the authentication
server. Once it has done this, it negotiates a session key with the authentication server. Finally, it generates
a large random number (Dk) which will be used as a session key to encrypt outgoing broadcast messages. It
then waits for connections on its well known port. If a connection comes in from the authentication server, it is
either a NEWUSR command or a DELUSR command. A NEWUSR message tells the chat server that a new
client has successfully authenticated. The client's session key, address and port are sent to the chat server. It
adds these to its database and then attempts to send the current Dk to the new client. If it fails to do this,
then it removes the client from the database.

If a client connects, it is to send a chat message to other clients. The chat server decrypts the message using
the client's session key, and veri�es the message integrity. It then encrypts the message with the current Dk

session key before sending it to each client in turn. Again, a failure to send to a client will result in the client
being deleted from the database.

The chat server has options to control on which host the authentication server will be located. This allows
the distribution of the programs on multiple machines, and more importantly, allows the authentication server
to run on a secure machine.

The chat server also has a -test option. This performs testing on some internal routines to ensure they do
correct parameter validation. This is used to ensure some basic correctness. Testing the client-server aspect of
the chat server is di�cult, and is done by demonstration instead.

Chat Server Usage

chats.pl <options>

If no options are speci�ed, it "does the right thing" and starts up on default ports that should correspond
to the ports in use by the authentication server. It assumes that all the clients, and the authentication server
are running on the same machine. This can be changed by the command line options.

To change the port and host being used for the authentication server use:

-ap <port> - port for communicating with the auth server

-ah <machine> - machine name for communicating with the auth server

E.g. if the auth. server is on narnia, port 5004 do:

chats.pl -ah narnia -ap 5004

To change the port which the chat server listens on for connections use:

-cp <port> - port to listen on for connections

For example, to run a chat server on port 5006 do

chats.pl -cp 5006

The chat server assumes that its key is stored in a �le named pkeys chatserv. This is built using the
register client program. A password is used to encrypt this �le when it is built. This password is used by
the chat server to decrypt the �le to extract the key and its prime factors p and q

Finally, for peace of mind, the -test option allows you to run a variety of tests on the chat server to make
sure it is behaving itself. They aren't as exhaustive as I'd like, but they're better than nothing. Be sure to run
the testmp.pl script to test the MP routines, and the other test scripts as well.

4.1.3 Client

As described earlier in this document, the client was built to communicate with the chat server sending and
receiving encrypted information. Upon startup, the client authenticates itself to the authentication server and
authenticates the authentication server (hence preventing the impersonation of the server), negotiates a session
key with the authentication server using the Di�e-Hellman protocol, and waits for connections from the chat
server.

When connections do happen they can be only of type EBCAST and CHKEY. In the �rst case, the message
is decrypted with the decryption key distributed by the chat server and in the second case the client decrypts
the message with the session key negotiated with the authentication server.

The client has options to control on which host the authentication and chat servers will be located, and
which ports to use.

Client Usage

% client.pl <options>

If no options are speci�ed, it uses default host names and default ports for the authentication and chat
servers. To change the port and host being used for the servers use:

-ch <host name> - host name of the chat server

-cp <port> - port number for communicating with chat server

-ah <host name> - host name of the auth server

-ap <port> - port number for communicating with auth server

To change the port number that the client uses:

-p <port> - port number to listen for connections on

For example, to start the client on port 5616 and expect the chat server to be on yavin on port 5005 and
the authentication server to be on narnia on port 5005, issue the command:

client.pl -p 5616 -ah narnia -ap 5004 -ch yavin -cp 5005

4.2 Adding Authenticated Users

The process for adding users to the system is fairly straightforward. The following procedure is used:

1. The client generates Bloom primes p and q (use safeprimes in Maple) for use as the private key.

2. The client then runs the register client.pl program. The program asks for a user identi�cation string, p,
and q. It returns with the public key n. The private keys are encrypted with IDEA using a pass phrase
and stored in a �le. The client should keep this pass phrase and �le secure.

3. The client sends the public key to the manager of the authentication server. The user need not worry
about this operation being secure as the key (n) is public.

4. The authentication server manager, after verifying that the public key (n) actually belongs to the user,
edits the �le "key�le" to add the client. The key�le format is ID:KEY where ID is the identi�cation string
of characters used above to generate the public key and KEY is the public key n derived above.

This would be done for the authentication server, the chat server, and all clients. The authentication server
and its key�le are required to be run on a secure machine. Furthermore, the key�le should be kept on read-only
media and edited o�-line.

4.3 Finding Bloom Primes in Maple

To �nd Bloom primes, known as a safeprime in Maple, the following simple program can be used:

with(numtheory);

p:=safeprime(seed1);

q:=safeprime(seed2);

The seeds, seed1 and seed2, should be of su�cient length (around 50 digits) of a random sort of nature (i.e.
type �fty random numbers with your eyes closed). The safeprime function will return the next Bloom prime
after the seed.

5 Conclusions

The goal of our project was to determine the feasability of implementing a number of crytpographic algorithms.
We chose a secure communication system as a test vehicle. We aimed to design a protocol that would allow
secure communication, and use this to determine how feasible it is to build reliable, real-world cryptographic
systems.

5.1 Future Work

Currently the random number generator uses the audio device to obtain random background noise. This depends
on the availability of such an audio device | we would like to make random number generation more portable
in this respect.

Prime numbers are generated using Maple. We would like to include a prime number generator to allow the
system to be installed anywhere.

The servers are not multithreaded which reduces the concurrency possible. This can easily be changed.

Currently, SMBS uses IDEA as the encryption algorithm. We will allow any algorithm to be used by
providing \hooks" that another encryption package can use. For example the \encipher this data block" and
\decipher this data block" hooks could be overloaded by another encryption package, such as DES.

The interface to the multi-precision (MP) library is too cumbersome to be practical. We wrote the MP
interface in Perl so our system could be prototyped quickly. A better implementation would be to use other
crypto libraries [Lac] or use the GNU multi-precision package.

The client, chat server and authentication server could be ported to Java [Mic95]. This would enhance the
portability of the system | Java is bytecode interpreted and so is platform independent. The interface to the
SMBS system would be through a Web broswer running the Java applets. This convenient interface would make
SMBS far easier to use.

6 Acknowledgements

The authors wish to acknowledge Dr. Samual Wagsta� and Dr. Eugene Spa�ord.

References

[BG92] Mihir Bellare and Oded Goldreich. On de�ning proofs of knowledge. In Proceedings of CRYPTO

92: Advances in Cryptology, Lectures in computer science. University of California, Santa Barbara,
1992.

[Coh93] Henri Cohen. A couse in computational algebraic number theory. Graduate texts in mathematics.
Springer-Verlag, 1993.

[Den83] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, 1983.

[DH76] Whit�eld Di�e and Martin Hellman. New directions in cryptography. Transactions on Information

Theory, IT-22(6):644{654, November 1976.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi�cation and signature
problems. In Proceedings of CRYPTO 86: Advances in Cryptology, Lectures in computer science,
pages 186{194. University of California, Santa Barbara, 1986.

[GKG92] Dimitris Gritzalis, Sokratis Katsikas, and Stefanos Gritzalis. A zero knowledge probabilistic login
protocol. Computers & Security, 11(8):733{745, December 1992.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity. In Proceedings
of 27th IEEE Annual Symposium on the Foundations of Computer Science, 1986.

[Lac] Jack Lacy. Cryptolib 1.1. Announced in sci.crypt.

[Lai92] Xuejia Lai. On the design and security of block ciphers. Hartung-Gorre Verlag, Konstanz, Switzer-
land, 1992. This is the author's Ph.D. dissertation. \Secret-key block ciphers are the subject of this
work. The design and security of block ciphers, together with their application in hashing techniques,
are considered. In particular, iterated block ciphers that are based on iterating a weak round function
several times are considered. Four basic constructions for the round function of an iterated cipher
are studied.".

[LL95] Chae Hoon Lim and Pil Joong Lee. Several practical protocols for authentication and key exchange.
Information Processing Letters, 53(2):91{96, 1995.

[LM91] X. Lai and J. L. Massey. A proposal for a new block encryption standard. In Advances in Cryptology

| Eurocrypt '90, pages 389{404, Berlin, 1991. Springer-Verlag.

[Mic95] Sun Microsystems. The Java Language Speci�cation, release 1.0 alpha 3 edition, May 1995.

[Sch96] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley &
Sons, Inc, New York, NY, USA, 2nd edition, 1996.

[WS92] Larry Wall and Randal Schwartz. Programming PERL. O'Reilly and Associates, 1992.

