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ABSTRACT

Shen, HongHai. Ph.D, Purdue University, August 1994. Access Control for Collabo-

rative Environments. Major Professor: Prasun Dewan.

In this dissertation, previous work on access control for both collaborative and
non-collaborative systems is surveyed. New access control requirements for general
collaborative environments are identified, and it is shown that existing models do
not completely meet these requirements. A new access control model is developed
for meeting the requirements. In particular, a set of collaboration rights are iden-
tified based on a general collaboration model; exception-based, multiple inheritance
mechanisms are used to support both flexible and high-level access specification; and
dynamic, multiple ownership rules are developed to support flexible access admin-
istration. The model can emulate a variety of existing systems and meets the new
access requirements. It has been implemented in a generic, extensible collaborative

system, which relieves individual applications from implementing the model.
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1. INTRODUCTION

1.1 Background and Motivation

Collaborative systems, also called Computer Support Cooperative Work (CSCW),
or groupware, have been defined by Ellis et al [44] as “computer based systems that
support groups of people engaged in a common task and that provide an interface to
a shared environment.” Combining several disciplines including communication net-
works, user interfaces, and cognitive science, collaborative systems aim at assisting
users in carrying out their group activities, potentially in a distributed fashion. Since
people spend a large fraction of their time on group activities [24], such systems have
the potential of increasing the productivity of working group significantly. There-
fore, in recent years, there have been several research efforts that have focused on
collaborative systems. Examples of such efforts are Vconf [74], Colab [112], Rapport
[5], Rendezvous [90], XTV [3, 2], ICICLE [14], GROVE [43], LOTUS Notes [92], and
Suite [31, 38, 40], to name just a few.

Unlike conventional systems that endeavor to make users feel as if they are the
only users of the system, collaborative systems support and encourage the sharing of
users’ environments. To illustrate the nature of these systems, consider the software
development application that is shown in figure 1.1. The application allows multiple
users to edit C functions simultaneously and examine the coverage results of selected
functions. This example belongs to our category of collaborative systems since users
share the environment consisting of editing and testing results and work towards the
common goal of collaborative software development.

One important aspect of collaborative systems is access control. It determines
the set of operations a subject (process or user) can perform on an object. Access

control can not only preserve data from unauthorized access from other users, but



Figure 1.1

Two users in a collaborative software development session. The users, hhs (left
windows) and rxc (right windows), work on separate workstations to examine the
coverage result of a C function, insert. User hhs first selects the function insert
in his editing window (middle left window), and invokes an appropriate action in his
menu window (upper left window). The coverage results of the selected function(s)
are then shown in the testing windows of both users (lower windows). The
statements that are not covered by the test data are underlined in the testing

windows.



also protect data against unintentional accidental damaging operations made by users
themselves. For instance, it can prevent a user from deleting a function or a line
inserted by another user. It can also prevent a user from hiding a function that may
affect other users’ views.

Access control has been studied extensively in non-collaborative domains. Sev-
eral models have been proposed in operating systems and database systems [71, 9,
27, 101, 118, 11, 13, 57, 64, 48, 50, 49, 95, 26]. From their experience with build-
ing these models, researchers have identified several general design requirements for
access control systems (Saltzer [101]). Based on past work and scenarios of collabora-
tive applications, we have identified several requirements that a collaborative access
control model must meet. These include both high-level, general requirements and

lower-lever, more specific requirements derived from the former:

e Base the protection mechanism on permission rather than exclusion [101]:

The default situation should be lack of access, and the protection scheme should
identify conditions under which access is permitted. This is safer than giving

permission by default.

o Total mediation [101]:

Every access to every object should be checked for current authority.

o No secret design [101]:

The mechanisms should not depend on the ignorance of potential attackers,
but rather on possession of specific, more easily protected, protection keys or

passwords.

o Lecast privilege [101]:

Every program and every user should operate using the least amount of privilege

necessary to complete the job (the “need to know” principle).

o Fase of use [101]:



The model should be simple and easy to use. Otherwise, users will not routinely

apply the protection mechanisms.

Generality:

The model should be general and be able to support arbitrary access control
policies. In this way, it can support a wide-range of applications and meet the

potential access needs of future systems.

Automation and Extensibility:

The model should make it easy for programmers to implement access control in
multi-user applications. Code reusability resulting from automation is especially
important for collaborative systems, since the amount of work on access control

subsystem development could be substantial.

Since it is impossible to anticipate the needs of all potential applications, pa-
rameterize them, and then automate them, it is important that the model be
extensible. In particular, it should be possible for users to define their own
type-specific access rights and access rules for a particular application. An au-
tomated and extensible model lets individual applications extend the model for
meeting access needs not supported by the automated mechanism and supports

the generality requirement.

Support collaboration rights:

Besides the traditional read and write operations, all other generic operations
whose results can affect multiple users should be protected. In collaborative
systems, users can share data objects and their properties, such as viewing
properties, with other users. This has been defined by Dewan [37] as coupling.
For instance, in the software development tool shown in figure 1.1, a user may
share the view of a function with another user in the WYSIWIS (What You
See Is What 1 See) coupling mode. In this mode, if one user changes the color

or font of the function, or hides the function, the view of the other user will



be affected. This operation is not desirable if, for instance, the first user is not
the “formatter” or the other user does not want his view to be disturbed. New,
generic access rights such as the right to change a color and to format data are
necessary in collaborative domains to prevent such unauthorized operations. We
refer to these new rights as collaboration rights and use the term conventional
rights to refer the traditional rights that protects the value of objects such as
the read and write rights.

Defining rights for operations that affect multiple users supports the total me-
diation requirement and identifying a generic (hence automatable) set of these
rights supports the automation requirement. Thus this requirement can be

derived from the more general requirements of total mediation and automation.

Support multiple, dynamic user roles:

A role is an abstraction with a set of privileges that can be taken by one or
more users. Ellis [44] and Patterson [89] point out that role-based specification
should be supported so that users’ access privileges can be inferred from the
roles they take. In addition, we have found that users should be allowed to take
multiple roles simultaneously and change these roles during different phases of

collaboration.

To illustrate the need for this requirement, consider the distributed conference
system described in [116]. A conference in this system consists of several ses-
sions. Fach session begins with several talks, in which only the speaker is allowed
to talk. Attendees are allowed to ask questions only if granted permission by
the session chair. A panel follows the talks, in which each panelist takes turns
speaking, followed by discussions in which all attendees are allowed to speak.

In this system, a user may take the roles of speaker, attendee, session chair, and



panelist at the same time and may change roles during different stages of the

collaboration. His access privileges may change as he changes roles.

This requirement can be derived from the “least privilege” requirement since it
requires that users carry only the privileges that are required to perform their
current roles, rather than all their privileges all the time. It can also be derived
from the “ease of use” requirement since the concept of user roles, having a

parallel meaning in daily life, can be easily understood and used.

Flexible specification:

The specification of access rights should be flexible. In particular, the model
should support:

— Multi-grained specification. The system should support variable-grained
protection of subjects, objects, and access rights, that is, it should al-
low independent specification of each access right of each subject on each
object. Similar to the analogous coupling requirement discussed in [39],
this requirement supports data independence, which allows different pro-
tections over different shared entities; user independence, which allows
different protections for different subjects taking different roles; and right
independence, which allows different protections for different operations.
All these independences are necessary to realize the “least privilege” prin-
ciple because they make it possible to fine-tune the subjects’ privileges

according to their needs.

To illustrate the need for this requirement, consider the software devel-
opment tool again. The protected objects of the tool include hierarchical
programs, which consist of functions, which in turn consist of lines of text.
In this application, it is useful to prevent a function from being deleted

by a new user abc. It is also useful to prevent an observer group from



modifying, that is, inserting, deleting, or replacing any text in the pro-
gram. Furthermore, the application should protect individual comment
lines from being read and the whole program from being deleted by unau-
thorized users. Therefore, access rights should be associated with not only
coarse-grained user groups such as observer, but also particular users such
as abc. Moreover, they should protect not only coarse-grained operations
such as modify, but also fine-grained, specific operations such as delete.
Finally, it should be possible to protect not only coarse-grained objects

such as a program, but also fine-grained objects such as a comment line.

— Pessimistic and optimistic access control.

The system should allow the protections of both global data and their local
buffers. In addition, the system should be flexible and allow independent
access specification for both kinds of objects. In particular, the system
should support the notion of optimistic access control, where access rights
are checked at the time the local buffer of a user is committed. Under
optimistic access control, users are allowed to change their local buffers
even if they do not have the rights to change the corresponding global
data. It is useful because allowing users to make changes to their local
buffers makes it possible for them to communicate these changes to other
users or save these changes locally, even if they do not have the privilege
to change the global data. It is also useful to support a more restrictive
form of access control, namely the pessimistic access control, where access
rights are checked whenever the local buffer of a user is changed. Under
pessimistic access control, users are denied the right to modify their local
buffers if they do not have the right to modity the corresponding global
data. This requirement is inspired and supported by some single user

applications such as vi in Unix .

In Unix, if a user edits a file X for which he does not have write access, vi will first issue a
warning message: file X: [Read only], and thereafter let the user modify the local buffer arbitrarily.



To illustrate the need for this requirement, consider the software develop-
ment application of figure 1.1. User hhs may not be allowed to directly
modify the function user rxc created. However, it is useful to allow hhs
to change his local buffer of the function so that he can communicate
these changes to rxc, who can inspect these changes and decide whether
to commit them globally. On the other hand, if more restrictive access
control is to be imposed, hhs may not be allowed to even change his local
buffer so that he cannot modify the function through communicating with
a third party. The above two scenarios illustrate the use of optimistic and

pessimistic access control, respectively.

o High-level, exception-based specification:

To meet the previous requirement of ease of use, a simple, high-level model for
specifying access rights must be provided to users. Saltzer [101] pointed out that
the key to meeting the high-level and ease of use requirements “lies in better
understanding the nature of the typical user’s mental description of protection
intent, and then devising interfaces which permit more direct specification of
that protection intent”. One specific method for realizing the high-level speci-
fication requirement is to allow exceptions to be part of the specification, since

general setting with exceptions is how users typically specify their intentions.

To illustrate exception-based specification, we continue with the software de-
velopment application mentioned before. Assume a session chairman inserts
the following comment line before a function: “This function is too detailed
and trivial conceptually, please skip it for now and let user abc fix it”. The
chairman may want the line to be readable by the suite group, but not by its
member abc because of its contents. With an exception-based specification, the

above intention can be specified as “readable to suite except abc”.

o Lfficient storage and evaluation:



The access mechanism should keep the cost of storing, modifying, and checking
access specifications low. In particular, the increase of system overhead by

adding the access control mechanism should be kept low.

Flexible access administration:

The model should be able to support the following schemes for administrating

access rights.

— Flexible ownership:

The model should be able to support the single-user ownership scheme
supported in traditional systems such as Unix. In addition, it should be
able to support group ownership for two related reasons. First, one user
can create an object on behalf of a particular role. For instance, in the
software development application, user hhs may create a function common
on behalf of the suite role to allow every user who takes the suite role
to be the owner of the function. Second, multiple users may contribute to
the creation of elements of a complex object through collaboration. For
example, two persons may work together to co-author a paper. If the paper
is treated as a complex object, then it is meaningful that both persons
jointly own the object because they both contribute to its contents. In the
above two cases, multiple users may jointly own the object and each of

them should have the privileges associated with ownership.

The exact meaning of ownership may vary depending on the application.
In a classroom exam application, the teacher owns the exam in the sense
that he is in charge of administrating all the rights the students should
have. However, the “least privilege” principle requires that the teacher not
have all the rights directly himselt because the teacher is not taking the

exam himself. On the other hand, in the software development application
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mentioned above, the owner of a comment line should have all the rights

associated with the line, including the privileges to transfer these rights.

Therefore, the model should be able to support both single-user and group

ownership and allow users to specify the semantics of ownership.

Flexible delegation and revocation:

The model should support the notion of access delegation [1], which allows
an owner or a user possessing certain privileges to distribute his privileges
to others. This is useful when the responsibility of an authorizer should be
partitioned and distributed among different parties. The delegation model
should be flexible. It should allow a user to delegate not only all of his priv-
ileges, but also a selected part of his privileges, and perhaps the authority
to distribute these privileges further to others. In the software develop-
ment application, the chairman of a reviewing team may be in charge of
distributing only the coupling rights, while a user interface specialist may
be responsible for distributing only the formatting rights. Furthermore,
the chairman may delegate some of his rights to the secretary to help him

administrate these rights.

Related to access delegation is the concept of revocation, which is an op-
eration that undoes the effects of delegation [45]. It is important because
it provides a way to contain the spread of access rights. Two possible se-
mantics of revocation can be defined: a) shallow revocation, which simply
removes the previously granted right. b) deep revocation, which recur-
sively revokes rights from those to whom the grantee granted the right.

The model should be able to support both of the above semantics.

To illustrate the above requirement, consider again the example of a class-

room examination. Assume that teacher pd has delegated to his teaching
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assistants rxc the right to distribute the coupling rights of the class and
the right to further distribute these rights. We can envision two scenarios
in which pd may want to use both semantics of revocation to revoke the
rights he delegated to rxc. In the first scenario, pd wants rxc to help him
only temporarily with the administration of the coupling rights. Once pd
has the time to handle the task himself, he would like to do it totally by
himself to save himself the effort required to coordinate with rxc. In this
situation, pd requires the semantics of shallow revocation to revoke the
delegation since he would still want to keep what rxc has done. In the
second scenario, assume that pd finds that some of the coupling adminis-
tration by rxc is not correct. In this situation, pd needs the semantics of
deep revocation since he would like to undo all the administrating work

that rxc has done.

Some of the above requirements, including automation and extensibility, collab-
oration rights, pessimistic and optimistic control, and flexible ownership, are new
requirements we have identified based on previous work and application scenarios.
As discussed above, interdependencies exist among the access requirements we have
listed. They are summarized in figure 1.2.

Some of the above requirements conflict with each other. It is difficult to achieve
high-level and easy specification without sacrificing flexibility and generality, since
understanding and configuring the parameters introduced for flexibility and generality
adds complexity to the model, which will conflict with the high-level and ease of use
specification requirements. It is also difficult to meet the generality, efficient storage,
and efficient evaluation requirements at the same time. Generality will inevitably
add many run-time parameters to the model, which can affect the efficiency. Efficient
storage and evaluation can conflict with each other because of the traditional time
and space relationship. Thus, an access control model must make tradeoffs among

these conflicting requirements.
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1.2 Thesis Scope and Structure

Access control is a mechanism needed to realize system security and integrity.
However, it deals with only one aspect of system security and integrity. To ensure
system security and integrity, several addition concepts must be supported besides
access control [29]. They include: cryptographic control, information flow control
and covert channel analysis, inference control, user authentication, and concurrency
control. Among these many aspects of system security and integrity, we focus our
research on access control, which ensures that all direct accesses to objects are autho-
rized. Although access control alone is not enough to ensure security and integrity,
it does provide an important component for security and integrity.

The research methodology used to study this problem is as follows:

identify access requirements based on other work and application scenarios.
o evaluate previous work using these requirements.
o design and implement a new model to meet the requirements.

o evaluate, using inspections, simulation, and experiments, how well the new

model meets the requirements.

e compare the new model with others.

The objective of this thesis is to identify a model that provides a solution that
meets one or more requirements better than existing models. In particular, the objec-
tive is to identify an access control model that supports high-level specification and
automation without unduly sacrificing generality, flexibility, and efficiency. We will
discuss various possible design alternatives for meeting these requirements, identify
tradeoffs, and motivate our design choices.

To support the above access requirements, it is necessary to base the access control
model on a general collaboration model, which determines how users interact with

an application and how these interactions are shared. A general collaboration model
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is required for two reasons. First, it is difficult to achieve the high-level specification
requirement without using any information about the semantics of the underlying
protected objects. A collaboration model provides such information. Second, to
support collaboration rights, it is necessary to identify a set of generic collaboration
operations that is application-independent. A general collaboration model defines
generic operations and therefore the corresponding collaboration rights. We describe
a general collaboration model in chapter 2.

Although our main purpose is to provide access control mechanisms, we also dis-
cuss collaborative access control policies to determine whether the mechanisms we
provide are general enough to support a variety of access policies.

The following are the major novel components of our model:

o A generic set of collaboration rights based on a general editing-based collabo-

ration model [38].

Variable-grained specification of access rights.

A set of rules in the subject, object, and right dimensions that allow new rights

to be inherited from existing ones.

A set of rules for resolving conflicts of definitions in a particular dimension and

in different dimensions.

A multiple ownership scheme defined through inheritance relationships.
o A flexible delegation and revocation mechanism based on indirect roles.
o Automation of access control based on a generic multi-user framework.

We have implemented the access control model as part of the Suite system [38]
and use this system as a concrete example to discuss the model. Some preliminary
results have appeared in [107].

The rest of the thesis is organized as follows. Chapter 2 describes related work in

system security and integrity, discusses the collaboration model on which our access
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control model is based, surveys previous work on access control with respect to the
requirements we have identified, and discusses how well they meet these requirements.
Chapter 3 describes the model we have developed for meeting these requirements and
motivates our design decisions by concrete applications. Chapter 4 discusses the
implementation of the model as part of the Suite system and describes preliminary
experience with the implementation. Chapter 5 compares our work with other work.

Finally, chapter 6 summarizes our model and presents future directions.
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2. RELATED WORK

As discussed in chapter 1, our access control model is based on a general collabora-
tion model. In this chapter, we describe the collaboration model. We also investigate
the existing work on access control and discuss how well they meet the requirements
we have identified. We do not describe these systems in full detail. Instead, we focus
on only those parts of the systems that are related to the issues we address. We first
begin by relating access control to other mechanisms for supporting our general goal

of realizing system security and integrity.

2.1 System Security and Integrity

As mentioned in chapter 1, access control is a mechanism needed to realize system
security and integrity. However, it deals with only one aspect of security. It only
assures that all direct accesses to objects are authorized. Besides violation of direct
access control, threats to security can also occur indirectly. Denning [29] identifies the
following threats to security: browsing — searches through main memory or secondary
storage for information; leakage — the transmission of data to unauthorized users
by processes with legitimate access to the data; and inference — the deduction of
confidential data from non-confidential data. Consequently, to ensure system security
and integrity, several concepts must be supported ( [29, 30, 93, 94, 56, 27, 102, 25,
28, 72, 55, 8, 10, 70, 42]) besides access control. They include: eryptographic control,
which prevents unauthorized browsing by making data unintelligible; information flow
control and covert channel analysis, which controls the flow of information to ensure
that information gained through legitimate access will not be leaked to unauthorized
users; inference control, which controls access to queries on data to prevent statistical

compromise, i.e., deduction of confidential data of individuals by correlating group
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statistics; user authentication, which ensures that users can be properly authenticated
from running processes by some authentication mechanism such as Kerberos [113];
and concurrency control, which controls access to shared data to maintain certain
consistency properties such as serializability [88]. In the thesis, however, we focus our

research on access control, instead of addressing all the above issues.

2.2 (Collaboration Model

As discussed in section 1.1, in order to meet the requirements we have identified,
it is necessary to base the access control model on a general, high-level collaboration
model. By doing so, it is possible to identify a generic set of collaboration rights that
are application independent. Furthermore, by exploiting the underlying semantics of
objects defined by the collaboration model, it is possible to offer protection of objects
in both a flexible and high-level way. We have chosen the Suite collaboration model
as our basis [39] because, as described below, it offers a general model of interaction
on which a set of generic collaboration rights can be derived, and it also offers a
framework for realizing automation.

The Suite collaboration model has two components: an interaction model which
decides what the interaction objects are and how users interact with them; and a
coupling model, which determines the sharing among users. The Suite interaction
model is based on the idea of generalized editing [53, 41]. It offers the abstraction
of an active variable, which is a variable-grained program data structure of arbitrary
type that can be edited to trigger actions [83, 32]. The model also offers a set of
interaction objects that are manipulated by users. These objects include interaction
variables, attributes, value groups, and object windows [38]. An interaction variable
is the local copy of an active variable that an end-user interacts with. An attribute
is an interactive property associated with an interaction variable such as its display
format and the callback to be invoked when the variable is edited [31]. A value group
is a set of related interaction variables that share some attributes. An object window

is a rectangular area on the screen that displays the values of interaction variables.
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Figure 2.1 Collaboration model.

The model also supports the notion of a session, which is a series of interactions
by multiple users with a shared application. A session is activated by invoking the
corresponding application. Users can then join the session, that is, connect to the
application and manipulate the variables defined in the application. Users can also
leave the session and then later rejoin it.

Figure 2.1 illustrates the Suite collaboration model. In the figure, two users are in a
collaborative session. As the figure shows, the users have their own copies of the active

variables (interaction variables), each of which is associated with a set of attributes
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such as Attrl, Attr2, and Attr3. Userl and User2 manipulate the interaction variables
through a set of editing commands provided by the system.

The Suite coupling model [37, 39] is built on top of the Suite interaction model.
It offers sharing of various properties of interaction objects, such as the value or
format of an interaction variable, or the scrollbar position of an object window. This
sharing is represented in figure 2.1 by the lines that connect two users’ workspaces.
Moreover, the adjustable dials along the connection lines indicate that the sharing
is flexible in that users can decide which properties of interaction objects are to be
shared, and when changes made by a user to a property of an interaction objects are
communicated to other users sharing it. The level of sharing can be decided according
to several criteria, such as how structurally complete the change is, how correct it is
and the time at which it was made [39]. For instance, users can specify whether they
want to share the value of an interaction variable. If they do decide to share it, they
can further specify whether they want to share changes to the value incrementally
or only when the value is committed. Similarly, they can determine if the views of
interaction variables are to be shared. The coupling among interaction variables is
determined by the coupling attributes of these variables.

The Suite interaction model and coupling model also contain specification and
implementation components. These components allow active variables to be declared
using a conventional programming language such as C. When users connect to a
program, interaction variables for them are automatically created. The attributes of
these variables are initialized to default values. They can be changed dynamically by
either the users or the program. An inheritance-based scheme is provided to specify
attributes common to groups of interaction variables [32].

Let us illustrate the collaboration model using the concrete example of the soft-
ware development application that we mentioned earlier. The active variables of this
application are C programs, functions, and lines. A session is first created by invok-
ing the application. Users can then join the session by connecting to the application

and get object windows that display local copies of those variables defined in the
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application, as shown in figure 2.2. These copies can be edited independently by the
users to cause changes to the underlying active variables. For instance, the inter-
action variable containing the program text displayed in the object window can be
edited and then committed to change the underlying program. Moreover, users can
share properties of these interaction variables such as display formats. In the figure,
the collaborators have set the ValueCoupled and ViewCoupled attributes [37, 33] of
the interaction variables to True, thereby sharing both their values and views. As a
result, when one user changed the view of the minit function by “eliding” it!, the

result was shared by both users, as shown in the figure.

Figure 2.2

Two users in a collaborative editing session. When rxc (left) elides a function

minit by pressing the elide button, hhs’s view is also affected (right).

We have chosen the Suite interaction model as our basis because, in contrast
to other models of interaction such as the teletype-based model, the generalized
editing model offers several desirable interaction features such as uniformity, direct-
manipulation, multithread /multiuser dialogues, structure-based commands, and con-

tinuous update of presentations [41]. Most interactive applications known to us such

elide is an operation used to condense the visual representation of a data structure.
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as program editors and spreadsheets support this model of interaction. We have cho-
sen the Suite coupling model as our basis because it is the most general coupling

model known to us.

2.3 Access Control Models

In this section, we evaluate existing work on access control using the access re-
quirements listed in chapter 1. We do not consider all of the requirements since
some of the requirements are low-level and are covered by higher-level requirements.
Specifically, we evaluate the work using the following requirements: flexible and high-
level specification, multiple, dynamic roles, collaboration rights, flexible ownership,

automation and extensibility.

2.3.1 Matrix Model

Figure 2.3 Matrix model.
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The matrix model provides a framework for describing protection systems. It was
proposed by Lampson [71] and refined by Graham and Denning [57] for protection in
operating systems. Conceptually, the model has a set of access rules which describe
what a protection state is and how state transitions occur. It has a set of protected
objects, which are the entities to which access must be controlled and a set of sub-
jects, whose access to objects must be controlled. The protection state of the system
is represented by an access matrix A, with rows representing subjects, columns repre-
senting objects and A[s,0] denoting the access rights a subject s has over an object o.
The access checking rule of the model states that a request by subject s for accessing
object o is granted only if Afs,0] contains the requisite right. To protect the access
maftrix itself, the model introduces the notion of *-rights. A *-right is defined for each
regular access right and its holder has the privileges to grant the corresponding reg-
ular right. For example, the write* right allows its holder to grant the write right to
others. The model also contains a set of rules (commands) governing changes to the
subjects, objects, and rights in an access matrix. In particular, the model supports
the notion of ownership and defines rules allowing the owner of an object to grant
rights to others.

Because the access matrix is usually sparse in practical situations, systems based
on the matrix model seldom choose the matrix as the implementation data structure.
Instead, for efficiency reasons, they usually use two common approaches to implement
the basic matrix model: access control list (ACL) and capability list (C-list). The
former stores the matrix by columns, i.e., associates each object with a list of (subject,
right) pairs. Systems using this approach include Unix [97], Multics [101], and System
R [45, 60]. The latter stores the matrix by rows, i.e., associates each subject with
a list of (object, rights) pairs, which are called capabilities. Hydra [118] and CAP
[84] are two examples of systems using capability lists. A variation of the capability
mechanism is called the “lock and key” approach [57]. Each subject is associated
with a C-list of the form (X, K) where X is an object and K is a key. Fach object
is associated with a lock list of the form (L, R) where L is a lock and R is a right.
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When subject S is checked against right R over object X, its C-list is first searched
to get its key K of X. The lock list associated with X is then searched to get lock L
of right R. The access is granted only if K matches L. The above mechanism can be
regarded as an indirect capability approach, which makes it easy to realize the deep

revocation semantics.

— —_—  —
—] —_ —
— —_  —
— —_—  —

Figure 2.4 Access matrix data structures.

The matrix model is general in that it does not specify the exact nature of the
subjects, objects, and access rights of the system. Nor does it specify how the access
matrix is to be specified and implemented. It is flexible in the sense that an individual

system can decide how fine-grained these elements are. On the other hand, because it
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is general and does not assume any information about the semantics of the underlying
system, it is unable to address the issue of high-level specification. In addition, it does
not address the issue of collaboration rights. Finally, the matrix model only provides
a general conceptual model for protection and does not support automation. It is up

to the individual systems that are based on the model to implement the model.

2.3.2 Unix

Unix [97, 55] is an example of a system based on the matrix model that makes
some assumptions about the underlying domain to offer high-level specification. It
assumes that the protected objects are files and directories, and thus does not allow
finer-grained protected objects. Users are grouped into owner, group and others,
which correspond to the file’s initial creator, users that are in the file’s group, and
everybody else in the system. Each file is associated with the following rights for the
above user groups: read, write and execute.

Unix uses the access control list (ACL) approach to realize the access matrix. To
specify the ACL associated with each file, a user need only specify the above three
access rights for the three categories of users. Unix allows a user to be in multiple
user groups. A user’s rights are the union of the rights that all of these groups have.
The coarse granularity of objects, simple partitioning of users and limited access
rights enable Unix to offer relatively high-level access specification. As a result, few
specifications are needed to protect the objects.

Unix also supports the notion of ownership. Each directory and file is associated
with a unique owner, who is responsible for specifying the access definitions for the
object. In addition, ownership can be changed by the superuser. Unix also allows a
umask to be associated with any process. The value of the umask decides the default
protection of a file when the file is created. In particular, it specifies the default right

the owner has over a file.
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Figure 2.5

Unix specification model: operations are grouped into read, write, and execute;

users are grouped into owner, group, and others; and objects are grouped into files.

The Unix approach, however, does not meet the requirement of flexibility due
to its simplifying assumptions. Protection objects at the file level are too coarse-
grained and rigid. Take the software development example of the previous section.
We described scenarios where it is desirable to protect a fine-grained object, such as a
comment line from being read by some user. In Unix, however, we would have to treat
each comment line as a separate file to achieve the above access requirement, which
is cumbersome and inefficient. Furthermore, the simple Unix user grouping does not
support role-based specifications and exceptions, therefore only partly meets the high-
level specification requirement. It also does not support collaboration rights such as
the right to couple with others. Finally, it does not support the notion of group

ownership because at any time only one owner is associated with a file.
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Unix supports automation at the file system level. Users do not need to worry
about the implementation of protection of new files they create. However, it does not
support extensibility. That is, it does not allow users to add new types of protected

objects and access rights.

2.3.3 AFS

AFS [16] is a file system that extends the work of Unix. It assumes that the
protected objects are files and directories. Users are allowed to create their own
groups directly and use multiple groups in the access control lists. A user’s rights are
the union of the rights of those groups of which he is a member. The rights defined
over directories are the following: 1 (list a directory), i (insert files to a directory), d
(delete files in a directory), and a (administrate the access list). The rights defined
over files are the following: r (read a file), w (change a file) and k (place an advisory
lock on a file). These rights, however, are all associated with directories, and all the
files in a directory have the same access permissions. Therefore, only one specification
needs to be made if all the files in a directory have identical rights. The access list
of a directory is copied from its parent directory upon creation. The Unix access list
associated with a directory is ignored by AFS. However, the access list of a file defined
in Unix is used to represent file-level access control. Its semantics is changed in the
following way. Only the access rights associated with owners are used and others
are ignored. In addition, the right specification for the owner is used to represent

all users and an operation on a file is permitted if and only if the ACL defined on

then ALL users will not have the write right to the file. AFS uses a variation of the
*_rights approach of the matrix model to support access administration. Those users
that have an ‘a’ right over a directory can change the access list of the directory,
i.e., the ‘a’ right corresponds to the *-right of the matrix model. In addition, those
users who have the write right to the file can change the access list of the file. That
is, the write right of a file is also used as a *-right for the file. AFS also supports
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subject inheritance by allowing access rights associated with a specific user to override
the rights associated with more general user groups. In addition, AFS supports the
notion of negative access lists, which explicitly specify the denial of access rights for
users. In this way, it was able to support exception-based specification.

The AFS approach, however, does not meet the requirement of flexibility. Access
protection at the directory and file level is too coarse-grained to support finer-grained
protected objects. The protection mechanism at the file level is for all users, that
is, it is not possible to specify access rights for individual users or groups at the file
level. In addition, AFS does not allow groups to contains subgroups to allow easy
specification of subjects. It also does not support collaboration rights such as the right
to couple with others. Finally, it does not support the notion of group ownership to
allow multiple users to jointly own a directory or a file.

AFS supports automation at the file system level. Users do not need to worry
about the implementation of protection of new files they create. However, it does not
support extensibility. That is, it does not allow users to add new types of protected

objects and access rights.

2.3.4 Hydra

Hydra is an example of a protection system that is flexible and general but offers
low-level specification mechanisms. Hydra’s design philosophy is to build a collection
of facilities of “universal applicability”, from which protection subsystems can be
built flexibly. Therefore, unlike Unix, it does not assume any a priori knowledge of the
protected objects, nor knowledge of the kinds of access that should be granted to them.
Instead, Hydra uses a general notion of a “typed object” such as a “file” and a “page
of memory” as a protected object. New types of objects can be defined by users, and
each of these types can be protected. In particular, fine-grain protection of objects is
supported in Hydra because the system supports protection of arbitrary objects. For
instance, the system can treat a comment line in the software development example

as a separate protected object. In addition, Hydra does not provide a fixed collection
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of access rights, although a set of kernel rights is predefined for convenience. Instead,
it defines a general notion of “applying an operation to an object”, thereby providing

a flexible way to protect type-specific operations.

/

™~

Figure 2.6

Hydra specification model: each capability indicates which operation a subject can

do on an object.

Hydra implements the matrix data structure using the capability list (C-list) ap-
proach. For each individual subject, the system maintains a list of capabilities. A
capability indicates the access privileges a user has over each object. The kernel of
Hydra itself does not provide any mechanisms to facilitate the specification of the
capability lists. As a result, the specification can be tedious if the number of capabil-
ities a subject has is very large and has to be manually specified. Take the example
of the software development application. Each time a user adds a comment line into
the code, he has to explicitly give every user who can access the line an appropriate
capability. In addition, it does not support exception as part of specification. For
instance, it is not possible to support the specification “the line is readable to all
serc users except user abc” directly. Thus the Hydra approach does not meet the
requirement of high-level specification. In addition, it also does not directly support
multiple, dynamic user roles.

The designers of Hydra, in constructing a generic protection system, observed
that “while ownership is a useful, perhaps even an important, concept for certain

‘security’ strategies, to include the concept at the most primitive level would be to
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exclude the construction of certain other classes of truly secure systems”. As a result,
Hydra discards the ownership concept and does not associate any ownership property
with a protected object. It is up to individual applications to address the authorizer
problem.

Hydra provides automation of the above described primitive protection mecha-
nism: protection subsystems can be built on top of it without requiring detailed
implementation of the management of matrix data-structures and checking of rights.
All these are done automatically by the kernel of Hydra. It is also extensible in that
new types of objects and type-specific rights can be defined in the model.

2.3.5 Bell-LaPadula Model

The Bell-LaPadula Model (BLM), also called the multi-level model, was proposed
by Bell and LaPadula [9] for enforcing access control in government and military
applications. In such applications, subjects and objects are often partitioned into dif-
ferent security levels. A subject can only access objects at certain levels determined
by his security level. For instance, the following are two typical access specifications:
“Unclassified personnel cannot read data at confidential levels” and “Top-Secret data
cannot be written into the files at unclassified levels”. This kind of access control is
also called mandatory access control, which, according to the United States Depart-
ment of Defense Trusted Computer System Evaluation Criteria [87], is “a means of
restricting access to objects based on the sensitivity (as represented by a label) of the
information contained in the objects and the formal authorization (e.g., clearance)
of subjects to access information of such sensitivity”. The converse of mandatory
access control is discretionary access control, which is defined by [87] as “a means of
restricting access to objects based on the identity of subject and/or groups to which
they belong. The controls are discretionary in the sense that a subject with a certain
access permission is capable of passing that permission (perhaps indirectly) to any

other subject”.
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The Bell-LaPadula model supports mandatory access control by determining the
access rights from the security levels associated with subjects and objects. It also
supports discretionary access control by checking access rights from an access matrix.
With respect to specification, we can regard the multi-level model as adding higher-
level mechanisms to the matrix model. In addition to supporting arbitrary access
specifications to the access matrix, the model groups protected objects according
to different security labels and decides user privileges by their authorized security
clearance levels 2.

More formally, each object is associated with a security level of the form (classifica-
tion level, set of categories). Each subject is also associated with a maximum and cur-
rent security level, which can be changed dynamically. The set of classification levels
is ordered by a < relationship. For instance, it can be the set { top-secret, secret,
confidential, unclassified } where unclassified < confidential < secret
< top-secret. A category is a set of names such as Nuclear and NATQ. Security
level A dominates B if and only if A’s classification level > B’s classification level,
and A’s category set contains B’s. For instance, (top-secret, {Nuclear, NATO})
dominates (secret, {NATO}) because top-secret > secret and the set {Nuclear,
NATO} contains {NATO}.

In the model, an access request (subj, obj, acc) is granted if and only if all of the

following properties are satisfied:

e simple security property (no read up): if acc is read, then level(subj) should

dominate level(obj).

e “-property (no write down): if acc = append, then level(obj) should dominate

level(subj); if acc = write, then level(obj) should be equal to level(subj).

e discretionary security property: the (subj, obj) cell in the matrix contains acc.

2As shown in [91], it is awkward, though not impossible, to specify this kind of access definition
using the matrix model.
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By basing its mandatory component on hierarchical security categories, BLM
provides high-level specification of mandatory access control. However, if a collab-
orative application, such as the software development tool, chooses to impose the
discretionary access control, the multi-level model can support only the low-level
specifications provided by the matrix model. It also does not allow exceptions as
part of the specification. Therefore it only partly meets the high-level specification
requirement. In addition, like other traditional models, the model does not address
the issue of collaboration rights. It also does not address the issue of flexible access
administration. Finally, it does not address the automation issue because it is up to

individual systems to decide what kind of system support they will provide.

2.3.6 System R

Traditional database systems represent the approach of using the underlying struc-
ture of objects to facilitate the specification of the access matrix. In database systems,
there are a large number of data objects that need protection and it is nearly im-
possible to specify the access rights for each object individually. We use System R,
a well-known relational database system developed by IBM [45], as a model to il-
lustrate the traditional database approach to solving the specification problem. In
System R, protected objects are variable-grained data objects, which can be relations,
fields of relations and relational views. Relational views can be defined through the
SQL query language and used to partition the relations horizontally. Access rights
are select (read), insert, delete and update. All these rights apply to entire relations
and views except update, which applies to fields. The update privilege to a field of
a relation implies the capability to update the field in all the records of the relation.
The select, insert and delete right on a view or a relation implies the right to select,
insert, or delete a record in the view or relation. In this way, System R is able to
provide a relatively high-level specification model.

Like other conventional systems, System R supports only the read, insert, delete

and update rights. Therefore, it does not meet the requirement of collaboration
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Figure 2.7

Specification in System R: Relational view inherits its access definitions from
corresponding relations. For instance, the update right of field £3 in the relational

view is inherited from £3 of the relation.

rights. In addition, it does not support role-based specification, nor does it support
exception as part of the specification.

System R uses the *-right concept of the classical matrix model. It allows users
to dynamically transfer the rights and allows these rights to be further transferable.
It also supports both the shallow and deep revocation semantics. However, it does
not support the notion of joint ownership.

System R supports automation. The access control mechanism is built within the
database management systems (DBMS), on top of which individual databases are

built. The system takes care of the maintenance of the access matrix and enforcement
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of its semantics. However, it is not extensible in that only predefined rights and

predefined type of objects (relations) are supported.

2.3.7 Rabitti’s Model

The work described by Rabitti et al [95] is a recent model that endeavors to meet
both the flexible and high-level specification requirements. It is proposed for the
protection of object-oriented databases. This work is based on an earlier work by
Fernandez [49] that uses inferences of access rights to facilitate access specification.
Inferencing can be used, for instance, to assert that the write right implies the read
right. If this assertion is true, then it is unnecessary to specify and store the read
definition once the write definition is entered. Rabitti’s work also uses data semantics
by allowing inheritance of access definitions from the object class hierarchy, so that
it is unnecessary to specify and store access definitions for each object. To facilitate
specification and maintain consistency in the presence of a large amount of data
objects, this work also uses the notion of negative rights, which are explicit denial of
access privileges; strong rights, which are rights that cannot be overridden by other
rights; and weak rights, which are rights that can be overridden by strong rights.
By doing so, both the high-level and flexible specification goals can be achieved. In
addition, exception-based specification is also supported in the model by the notion
of negative rights.

The model also allows users to take multiple roles. It grants users a right if any of
the roles they take has the positive right. In other words, users inherit all the positive
rights of the roles they take.

Part of the model has been realized in the Orion Object-Oriented Database System
[12], which provides system support through DBMS.

Like other conventional systems, the model discusses only the read, insert, delete,
and write rights and does not address the issue of collaboration rights. It does not

address the specification problem when there are a large number of rights. The
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approach of allowing users to inherit all the positive rights of their roles is over-

simplified. The issue of flexible authorizer is also not addressed in the work.

2.3.8 Current Work on Collaborative Access Control

Several existing collaborative systems also provide some access control. Among
them are the GROVE outline editor [43], the DCS distributed conference system [86],
the UCSD multimedia conference system [116], and the UNC Jointly-Owned Object
System [63].

2.3.8.1 GROVE Outline Editor

GROVE is a group outline editor designed for use by a group of people inter-
acting synchronously during a work session. The protected objects can be outline
items, which are arranged in a structure hierarchy. They can also be sets of outline
items called views. Users can define three types of views: private views, which are
accessible only to the users themselves, shared views, which contain items accessible
to an enumerated set of users, and public views, which contain items accessible to
all users. If we classify users according to the privileges they have to the above three
types of views, we get a Unix-like partition: self, which corresponds to private views,
group, which corresponds to shared views, and others, which corresponds to public
views. Within a shared view, an item is associated with an authorization form, which
a user can use to interactively enter access definitions. GROVE also supports struc-
ture inheritance of protected items: a child item in the hierarchy inherits the access
definitions from its parents.

By providing the above mechanism, GROVE is able to provide a high-level spec-
ification model similar to Unix. It also partially supports the flexibility requirement
by allowing multiple-grained protected objects.

GROVE supports ownership based authorization. For shared view objects, the
owner is responsible for specifying the access control list, i.e., the read and write

rights of each user over the object.
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The flexibility of GROVE is, however, limited. It currently supports only the
read and write rights and does not support finer-grained rights such as insert and
delete rights, and collaboration rights such as the right to change data format or
couple with others. It also does not address the issue of multiple ownership. In
addition, it does not support users taking multiple, dynamic roles. Finally, because
GROVE is a specific application and not a system, it does not support extensibility.
It supports only outline items. It is not possible to support other protected objects

and non-predefined rights in the model.

2.3.8.2 DCS

DCS is a distributed conference system that provides a set of mechanisms for
real-time conference management. Within a conference, users’ rights are decided by
the roles they take, which can be “voter”, “non-voter”, or “observer”. A voting
mechanism is provided to let voters control conference activities, such as merging and
splitting of conferences, and changing of user roles. Both voters and non-voters have
read and write access to all files within the conference. Observers are denied write
access, but may view conference files and other objects.

Because DCS bases its protected objects on files and conferences and limits the
operations to reading and writing of files and voting on conferences, the number of
protected objects and rights in DCS are relatively small. Therefore, it is able to
provide a high-level specification mechanism similar to Unix. DCS also supports
automation in that the protection mechanisms it provides are generic and can be
applied to any conferences under its management.

On the other hand, its flexibility is limited since it does not support fine-grained
protected objects. In addition, it does not address the issue of collaboration rights.
Because the application domain of DCS is restricted to conference control, the exten-
sibility of the system is limited. It only supports a set of predefined rights, and a set
of predefined roles related to conference control. It also does not address the issue of

flexible authorizer schemes.



36

2.3.8.3 UCSD Multimedia Conference System

Vin et al [116] propose an access control mechanism for supporting multimedia
collaborations. The mechanism uses the notion of a “stream” to represent media
communication from a source to a set of destinations. A stream specifies, for each
media, which users are allowed to transmit the media and which users are allowed to
receive it, and at which time the transmission of media can be initiated. A session is
used to model the exchange of media among a set of users. It consists of a sequence
of semantically related streams, and the time at which the exchanges are allowed to
occur. The notion of stream and session thus determines the access rights of users for
a media by specifying who can exchange the media and when. In addition, the model
defines a conference as a temporally ordered sequence of sessions to reflect the dynamic
changes in the access rights of users during different times of collaboration. Therefore,
the work supports a set of collaboration rights, such as the transmission rights and
receiving rights. The specification model of the system includes a set of temporal logic
rules so that time-related requirements can be specified easily. The notion of media
data is abstract and can be used to represent multiple-grained protected objects, and
therefore is flexible. The model also allows users to take multiple roles dynamically
and infers the rights from their roles. In addition, the model supports automation
since it provides system support for the implementation of the semantics of the model.

However, the model does not address the issue of high-level specifications in the
presence of large amounts of data. It does not support the collaboration rights such
as the right to change date formats. It also does not support exception-based speci-
fication. In addition, it does not allow dynamic definition of ownership semantics, or
support group ownership. Finally, its extensibility is also limited because it does not

allow users to define the rights of their own.

2.3.8.4 UNC Jointly-Owned Object System

Guan et al [63] propose an extension to the classical matrix model that supports

the notion of joint ownership. In their work, they provide a mechanism that allows
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multiple users to own an object. In addition, they associate conditions with objects
that determine the access to them. A condition can be authority-based or quorum-
based. An authority-based condition associates a user list (called control authorities)
with an object, and specifies that before a right of an object is given out, the users
appearing in the list must be present. A quorum-based condition, on the other hand,
associates a number q with an object, and specifies that before a right is given out,
at least q co-owners of the object must be present to meet the quorum q. The work
also provides a set of primitives at the system level to support automation.

The work emphasizes joint-ownership of objects. It does not address other re-
quirements related to collaborative systems, such as the issue of multiple, dynamic
roles, collaboration rights, and flexible ownership semantics. It also does not address
the issue of high-level specification. On the other hand, because the model is an

extension of the basic matrix model, it meets the flexibility requirement.

2.3.9 Summary of Previous Work

In summary, previous work in access control does not fully address all the require-
ments we identified. The following table summaries the capabilities provided by the

previous work. In the table, a blank entry stands for “not meeting the requirement”.
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Figure 2.8 Summary of previous work.
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3. THE ACCESS CONTROL MODEL

3.1 Overview

As mentioned in the first chapter, the components of our approach for meeting
the requirements include a generic set of collaboration rights, variable-grained spec-
ification of access rights along the object, subject, and access right dimensions, and
a set of inheritance and conflict resolution rules. In this chapter, we describe these
components, motivate our design choices, and compare them with alternative design
choices.

Before getting into the details of the model, we first give an overview of the model.
Our model is an extension to the classic matrix model. Although the simple matrix
model is inadequate for meeting the requirements as discussed in the previous chapter,
it is the most basic one upon which other models are built. It supports the most
primitive functionality of an access control model: with appropriate configuration of
an access matrix, the access needs of any system can be defined. Therefore we choose
the model as our extension base.

One of the disadvantages of the matrix model with respect to access specification
is that it requires users to enter access definitions explicitly for all the granted rights
in the matrix. To reduce the specification effort, our model extends the matrix model
by allowing only part of the matrix to be specified explicitly and inferring the rest of
the rights automatically.

We define the protection state of our model as a 4-tuple (S,0,A,F), where S is
the set of subjects consisting of both individual users and their groupings, O is the
set of objects consisting of individual objects and their groupings, A is an extended
access matrix that stores both explicitly specified access definitions and those that

are inferred automatically, and F is a function used to infer rights that have not



Figure 3.1 Definition of the new model.
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been explicitly specified. As shown in figure 3.1, a cell Afs,0] in the access matrix
represents the permission a subject s has over an object o. The permission can be
an individual right corresponding to a single operation. It can also be a right group
corresponding to a group of related operations. Moreover, the permission can take the
form of a positive right or a negative right. A positive right is an explicit granting of
a permission. A negative right is an explicit denial of a permission [95]. The inference
function F takes as argument a (subject, object, right, A) tuple and returns the value
{True, False, Undecided}.

To check the access privilege r of subject s over object o, the system first looks up
the matrix entry Afs,0]. If Afs,0] contains an explicitly specified right, then access is
granted or denied accordingly. Otherwise access is granted only if F(s,0,r,A) evaluates
to true. In our model, F is defined by a set of inheritance and conflict resolution rules.
These rules use the semantic relationships among the subjects, objects, and rights.
They are defined for individual object, subject, and right dimensions and also for the
cross product of these dimensions. By using these rules, the model allows a more
specific definition to override a more general one.

To illustrate our approach, consider the example of the software development
application. Assume that we want to associate the following access definition with a
private comment line: “make the comment line readable to all members of the suite
group except hhs”. We will first define a group suite consisting of user pd, rxc,
hhs, etc. We will then give a positive read right to the suite group and a negative
read right to user hhs. Now if user hhs tries to read the comment line, his request
will be rejected because a negative definition is explicitly defined in the matrix. On
the other hand, all other members of the suite group will be able to read the line
because, according to our inference rules, their rights can be inferred from the positive
right defined for the suite group in the matrix.

The rest of the chapter is organized as follows. In section 3.2, we motivate the
use of both positive and negative rights, and discuss how the access checking rule is

defined. In sections 3.3, 3.4 and 3.5, we motivate and describe the basic elements of
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the three dimensions of the extended access matrix and the associated access rules
in detail. In section 3.6, we discuss access rules that involve multiple dimensions.
Finally, in section 3.7, we describe our solution to the access administration problem,
including how to support flexible ownership and flexible delegation and revocation of

access rights.

3.2 Matrix Definition and Access Checking Rule

Positive and Negative Rights

In conventional systems based on the matrix model, it is generally assumed that it
is only necessary to specify in the matrix the access rights a subject has. If a matrix
entry is empty, then the subject is denied the access to the object. A right that
explicitly grants permissions is called a positive right. Rabitti et al [95] introduce
the notion of a “negative right” to facilitate access specification for object-oriented
database systems [68, 65]. A negative right is an explicit denial of a permission and
complements the notion of a positive right. In models supporting both positive and
negative rights, a subject can be denied access either because it has no right over
the object or has a negative right over the object. Rabitti et al have shown that the
notion of a negative right is a powerful tool when permissions are inherited in object
hierarchies. To illustrate its power, consider the software development application
again. Assume a user hhs is to be denied read access to a comment line of a 1000-
line-long program. Instead of granting him the positive read right over the 999 other
lines, it is simpler to grant him a positive read right over the program and a negative
read right over the comment line.

By using negative rights, exceptions becomes part of specifications. Therefore,
the notion can be used to support easy specification not only in the object dimen-
sion as has been done in object-oriented databases[95], but also in the subject and
right dimensions. To illustrate the use of negative rights in the subject dimension,

consider a scenario in the software development application involving dynamic user
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roles. Suppose user rxc adds a comment line to a program that criticizes some code
another user hhs writes. User rxc would like to grant the read access of the comment
line to all the users taking the suite role except hhs. If only positive rights were
used, user rxc would have to identify all suite users other than hhs and grant them
the read right individually. This approach suffers from two related disadvantages:
First, it is painful for rxc to specify this definition if the list of suite members is
long. Second, since users may take and relinquish the suite role dynamically, the
above specification may become invalid later. With the notion of a negative right,
the above can be achieved by granting a positive read right to suite and a negative
read right to hhs. In addition, the use of negative rights can reduce the time required

to search the inheritance space, as will be discussed in section 3.6.

Extended Matrix Definition and Access Checking Rule

An entry in our extended matrix takes three forms: positive, negative, or inferred.
Positive and negative rights are explicitly specified. Inferred is the default setting of
the matrix, and is represented by a blank entry. It designates inference from function
F. The access checking rule of our model is defined as follows:

Access Checking Rule: A subject s has access privilege v over object o if and
only if

a). Als,o] contains a positive right r.

or

b). Als,0] does not contain a negative right r, and F(s,0,r,A) evaluates to true.

While our rule makes inference the default setting, it is possible to define other
rules that make denial or granting of rights as the default. We discuss below these
alternatives and compare them.

Consider first the alternative of letting users explicitly specify granting and infer-
ence, and interpreting the default blank entry as the denial of a right. Accordingly,

the access checking rule will be modified as follows:
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Alternative Access Checking Rule: A subject s has access privilege r over
object o if and only if

a). Als,o] contains a positive right r.

or

b). Als,0] specifies inference and F(s,0,r,A) evaluates to true.

This approach does not require the notion of negative rights, but still allows
the deduction of implicit rights. However, it may be awkward to specify a matrix
configuration using the approach. Our assumption is that with the help of F. the
majority of rights can be inferred. Using the above approach, the users would have to
explicitly specify for these rights an entry of “inferred”, which is tedious. Continuing
with example of the software development application, assume that user hhs is to be
denied read access to a private comment line of a 1000-line-long program. It would
be tedious if users have to specity for all lines except the comment line a matrix entry
of “inferred”.

The final alternative is to let users explicitly specify the denial and inference of a
right, and interpret the default null entry as the granting of a right. It also suffers the
same disadvantage with regard to specification since it requires explicit specification
for “inferred”.

Therefore, the best way to ease the specification problem is to let “inferred” be the
default setting and allow users to specify overridings to this default setting. In fact,
this is in the spirit of the approach used by the classic matrix model. The assumption
of the matrix model is that users need specify only a few overridings (positive rights),
and the rest of the matrix entries are the denial of rights. Therefore, the basic matrix
model takes “denial” as the default setting and allows users to specify overriding
(grant) to the setting. In our model, the default setting of the access matrix is
“inferred”, while overridings take the form of either grants (positive rights) or denials

(negative rights), which are symmetric to the default setting.
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3.3  Object Dimension

In this section, we address two issues related in the object dimension: What are
the protected objects in a collaborative system, and how can we provide a specification
model in the object dimension that meets the flexibility and ease of use goal? We will
first list and discuss all the objects that need to be protected. We will then address
the specification issue by defining a set of inheritance and conflict resolution rules.

Finally, we will discuss how to handle exceptions to the inheritance rules.

Protection Objects

The set of protected objects depends on the collaboration model on which an
access control model is based. As described in chapter 2, the collaboration model
decides what the interactive objects of the system are, how users interact with them,
and how users share these objects. From the total meditation principle, every object
that users share should be protected since one user’s operation on a shared object
may affect others. We list below all the objects defined by our collaboration model

that are shared and consequently need to be protected by the access control model.

e active variables

As described in chapter 2, our collaboration model supports the notion of active
variables, which are variable-grained program data structures that users can edit
to trigger actions. They are shared in that multiple users can edit and change

their values, and therefore are protected.

e interaction variables

Interaction variables are copies of the active variables that users manipulate.
They are associated with a set of attributes that represent their properties,
such as their formatting and coupling settings. The coupling model allows the
values and attributes of interaction variables of multiple users to be coupled.
Therefore, we protect the manipulation of values and attributes of interaction

variables.
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e value groups

Value groups are sets of related interaction variables of a user that share some
common properties. Like interaction variables, value groups of multiple users

can be coupled to share properties, and are therefore protected.

e object windows

An object window is a screen area in which copies of active variables are dis-
played and manipulated. User’s object windows are also protected objects since
they can be coupled to share their cursor positions, scroll bars, window positions

and window sizes.

® sessions

A session is a series of interactions by multiple users with a shared application.
It is shared in the sense that by joining a session, users are allowed to share the
objects defined in the session. Activating, joining, leaving and terminating a
session therefore has impact on other users and is controlled by making sessions

as protected objects.

e roles

A role has a unique id and a list of members who take the role. It is associated
with a set of privileges. By taking and leaving roles users will acquire or abandon
their access rights. Therefore, creating, joining, leaving, and deleting roles can

affect others and is protected by making roles as protected objects.

® access matrix

The access matrix is a protected object since it contains explicitly specified

access definitions shared among all users.

Supporting the protection of the above shared objects introduces the problem
of easy specification. In particular, fine-grained protection of active variables and

interaction variables introduces a potentially large number of protected objects. In the
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rest of this section, we will discuss how to define a high-level and flexible specification

model for the protection of these variables.

Protection of Active Variables and Interaction Variables

The notion of active variables and interaction variables are closely related because
the latter is the local buffer of the former. Therefore, one approach to address the
specification problem is to treat both kinds of variables as one entity and associate
the same access rights with them. Under this approach, if a user hhs is denied the
right to modify a function, he will also be denied the right to modify his local buffer
of the function. This approach, though simple, is inflexible since it does not meet
the requirement of supporting optimistic access control described in chapter 1. An
alternative, more flexible approach is to allow access definitions to be associated with
both active variables and interaction variables, but allow the interaction variables
to inherit their access definitions from corresponding active variables. Under this
approach, even if users are denied the rights to do certain operations on active vari-
ables, they still have the option to do these operations on their local buffer. Returning
to the above example, it is possible to give hhs the right to modify the interaction
variable so that he can modify the local buffer of the function and communicate the
changes to other users or save them to a local file, although he is not allowed to
commit these changes to the active variables. In the above case, optimistic access
control is supported. Alternatively, hhs can be denied the right to modity his local
buffer because he does not have the right to modify corresponding active variables,
that is, pessimistic access control is supported. A drawback with the above approach
is that users have to worry about the specification for two different kinds of protected
objects.

The approach we have taken is simpler than the second approach, but it is still
able to support both optimistic and pessimistic access control. If interaction variables
are isolated, access control on them is disabled. As a result, total autonomy of access

control is granted for individual, isolated users, as long as their operations do not affect
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each other. However, if users’ interaction variables are in anyway coupled with other
users’ interaction variables, then their access to the interaction variables is controlled.
Furthermore, we assume that the access control definitions are associated with the
corresponding active variables to ensure that once coupled, interaction variables share
the same access definitions so that consistency of access definitions can be maintained.
Returning to the above example, user hhs, when isolated from other users, will be able
to modify his own interaction variables. However, after he is coupled with another user
rxc, he loses this ability since the access definition associated with the active variable
will not allow him to do so. Compared with the second approach, our approach is
simpler since users do not have to worry about the specification for two different kinds
of access objects.

We discuss below how pessimistic and optimistic access control can be simulated
by this approach. We define a WriteR right which determines whether users are al-
lowed to modify their local buffers of an active variable. In addition, we introduce
another right UpdateR, which determines whether users are allowed to update (com-
mit) the changes of their local buffers to the active variable. Moreover, we predefine
the relationship “UpdateR implies WriteR”!, which specifies that the right to change
an active variable implies the right to change its local buffer.

To simulate pessimistic access control, no access specification is made for the
WriteR right. As a result, when users attempt to make changes to their local buffers,
they succeed only if they have been given the UpdateR right because the WriteR right
is automatically inferred from the UpdateR right by the relationship. To simulate
optimistic access control, a positive access specification is explicitly defined for the
WriteR right. In this way, users are allowed to change their buffers even if they do
not have the UpdateR right.

In the rest of the thesis, we assume that users are all coupled with one another
in some way, and therefore access control over their interaction variables is needed.

Since, in such cases, we define that their interaction variables will have the same access

!The semantics of the relationship will be defined formally in section 3.4. Intuitively, the rela-
tionship specifies that the system can infer a positive WriteR from a positive UpdateR.



49

definitions as the active variables, we will not distinguish between active variables and
the interaction variables. Therefore, from now on, we will treat only active variables
as protected objects, and will not use the term “interaction variable” unless it is

necessary to make the distinction.

Access Specification for Active Variables

As discussed before, active variables are variable-grained program data structures
that multiple users can edit to trigger actions. These data structures include integers,
real numbers, characters, subranges, enumerations, arrays, sequences (variable length
arrays), records, unions, and pointers. To illustrate how we include active variables in
our protection model, we use the example of the software development application. In
this application, active variables are the name of the program being edited and tested,
and the functions defined in the program. The declaration in figure 3.2 describe these
active variables. In the figure, type Text is defined as a sequence of character strings.
A sequence is an array of variable length consisting of two parts: a number specifying
the length and an array holding the contents. Type Func is a structure consisting of
a function name and its text body. The Funcs type is defined as a sequence of type
Func. The active variables defined above are program name, which is of Sting type,
and funcs, which is of Funcs type.

To meet the requirement of flexibility, we allow the protection of not only the
top-level active variables, but also their components, and the components of their
components, and so on. For example, as shown in figure 3.3, it is possible for user
hhs (right windows) to specify an access definition to prevent user rxc (left windows)
from eliding a particular function getvalue in the sequence of functions. Even finer-
grained protection is possible, as also shown in the figure where user rxc is denied
read access to a comment line in the function getvalue.

Fine-grained specification requires users to specify and the system to store an
access specification for each active variable, which is tedious and inefficient for most

applications. This problem is similar to the problem encountered in specifying the



typedef char * String;

typedef struct {
unsigned int num_of_lines;
String *line_arr;
} Text; /* Text = Sequence of String; */

typedef struct A
String name;
Text text;

} Func;

typedef struct {
unsigned int num_of_funcs;
Func * func_arr;
} Funcs; /* Funcs = Sequence of Func; */

String program_name;

Funcs funcs;

Figure 3.2 Declaration of active variables



Figure 3.3

Fine grained specification. User hhs (right windows) denies rxc the elide right to
the function getvalue. Thus, rxc (left windows) gets an error message when he
tries eliding it. The figure also shows an even finer-grained specification: hhs

protects a comment line from being read by rxc.

51
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large number of format properties for active variables[32]. To support easy specifi-
cation of these format attributes, Dewan [32] introduced the notion of value groups,
which group values of active variables according to their types, contexts, siblings, an-
cestors, and other properties. The format attributes can be associated with not only
active variables, but also their value groups, which are inherited by their members.
This approach is also used for specifying the coupling attributes of active variables
[37].

While the notion of value groups were initially defined to support easy specifica-
tion of formatting and coupling definitions, we have found them also appropriate for
specifying access definitions. We describe below various value groups defined in [32]
that are useful for access specifications, and illustrate their usage in access control

using examples from the software development application.

¢ Generic Group:

The generic group includes all active variables of the application. The access
definitions associated with this group are shared by all active variables. For
example, if we deny “by-standers” the write right to the generic group, then

they can change neither the program name, nor any functions in the application.

e Type Groups:

Type groups include both predefined and user-defined types. An example of
a predefined group is integer, which contains all integer values. An example
of user-defined group is Func, which contains all values of that type and the

descendents of these values.

To illustrate the advantage of making type groups protected objects, assume
that a formatter is allowed to change the fonts of all the text in a program.
This specification can be achieved by giving the formatter the FontR right to

the type group String.

e Instance Groups:
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Instance groups are defined for individual values. A simple value is associ-
ated with a simple instance group, while a structure value is associated with
a structure-instance group, and includes the value and its descendents. They
can be used, for example, by rxc to associate a specification with a specific
comment line that denies hhs the read right on it. It can also be used by rxc
to associate a specification with a function that denies hhs the delete right of

the function, and all the lines within the function.

e Context Groups:

A context group is associated with variables appearing within a record, an
array or a sequence, that is, in a particular “context”. Among the context
groups defined in [32], we find the record field context group particularly useful
for access specifications. A record field context group contains all variables
that appear as a particular field of a record of a particular type. To illustrate,
consider the case when we want to deny abc the right to read the body of any
function except its names. This can be easily specified by associating a negative

read right with abc for the context group Func.text.

e Child Groups

They are associated with the children of structure variables. These include fields
of records and elements of sequences and arrays. In particular, a structure-type
is associated with a type-child group that groups all children of structures of
that type. An instance-child group is associated with a structure value that
groups all descendents of that structure. As an example of using the child
group, assume that rxc is to be granted the right to elide all the functions.
This access intention can be specified by giving rxc the elide right over the

instance child group of the variable funcs.

The above is only a partial list of all the value groups defined in [32]. Besides

these value groups, the following value groups are also defined:
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e Constructor Groups:

They are associated with the constructors for creating arrays, sequence records,

enumerations, and pointers. For example, “record” is a constructor group.

e Array and Sequence Context Group

They include, for each sequence or array type, the list-first, list-last, and list-

middle groups, which may have special formatting needs.

e Pointer Reference Context Group

They include all variables referred to by pointers of a particular type.

While the above value groups are useful for specifying formatting properties, we
have not found them useful for the specification of access definitions. For instance,
the array and sequence context group divides an array into the first, middle, and
last part, which is useful in situations where they may have distinctive formatting
properties. However, we have not found situations in which it is necessary for them
to have distinctive access needs. Because it is currently not clear to us whether all the
above value groups will become useful for access specifications in practical situations,
we choose to support them by default and will leave it open whether they are practical

for access specifications.

Conflict Resolution

Because a value can belong to multiple value groups, and therefore can inherit
attributes defined in these groups, it becomes necessary to resolve conflicting attribute
definitions. Dewan ([32]) uses two kinds of relationships to arrange the inheritance
hierarchy among value groups: IS-A is used to define the type inheritance and IS-
PART-OF is used to define the structure inheritance among value groups. Figure 3.4
illustrates an inheritance hierarchy using an example from the software development
application. In the figure, we assume that function 1 consists of three lines 11, 12, and

13, and function 2 consists of two lines 14 and 15.
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Figure 3.4 Inheritance hierarchy of value groups. In the figure, concrete lines are

used to represent type inheritance and dotted lines structure inheritance.
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As shown in the figure, it is possible for a value group to have two parents 2.
To resolve the multiple inheritance problem, the notion of an inheritance directive is
introduced in [32], which determines from which of these groups an attribute should be
inherited and the order in which it should be searched. The directive can be none, in
which case the inheritance is not used, structure-only, in which case the IS-PART-
OF link is used, type-only, in which case the IS-A link is used, structure-first,
in which case the IS-PART-OF is given preference, and type-first, in which case
the IS-A is given preference. The notion is also used in our access model since it
provides a general and flexible way to resolve the multiple inheritance problem. In
addition, we observe that in many applications, users create an object by inserting
a new member into a structure variable, and they typically want the objects in the
structure to have the same access right by default. In the software development
application, for example, users create a line or a function by inserting a member
into a function or a program that are structure variables. The inserted line and
function should inherit their access information from their structure parents so that
they have the same access definitions by default. In a file system, creating a file
can be regarded as inserting a member into the directory structure. By default,
the file should inherit its access list from its structure parent, i.e., the directory, to
allow, for instance, directories of private files to be created easily. Therefore we have
chosen structure-first as our default inheritance directive because we expect this
default setting to be frequently used by applications. This default setting, however,
is reconfigurable by each individual applications to tailor their access needs.

We summarize the above discussions by defining the following inheritance rule for
the object dimension:

Object Inheritance and Conflict Resolution Rule: A right r of subject s
on object o is inherited from the value groups containing o that are chosen by the in-

heritance directive, i.e., F(s,V(o,r),r,A) — F(s,o,r, A) and F(s,V(o,r),—r, A) —

It is shown in [32] that at most two parents are possible for a value group.
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F(s,0,—r, A) where V(o,r) is the set of value groups specified by the inheritance direc-
tive associated with o and r, r is either a positive or a negative right, and — denotes
“imply”. In case of conflicts, the access definition in the first value group chosen by
the inheritance directive is used.

An alternative approach to resolve the conflict problem is to check the consistency
of all the access definitions and disallow any conflicts. This alternative, though sim-
pler, is inappropriate in an environment in which the set of access objects can be very
large and dynamic. Whenever a new access definition is entered, potential conflicts
could arise. Checking all these conflicts is costly ? and sometimes even unnecessary
when a particular user may need to access only a small portion of a large set of ob-
jects. Thus, it is not only too rigid, but also computationally expensive to adopt the
approach of simply disallowing all conflicts. The above argument also applies to the

resolution of conflict problems in the access and subject dimensions discussed later.

Exceptions to Structure Inheritance

The object inheritance rule specifies that a variable should inherit rights down
from its structure or type parents. In some situations, it is also useful to synthesize
rights up to a parent, that is, check the rights of the children before doing operations
on the parents. To illustrate, consider the delete operation over structure variables.
Assume that a user hhs decides to delete a function getvalue, which he can delete
since he created it. Besides the code added by hhs, however, the function getvalue
also contains some comments another user rxc has created. To prevent the comments
from being erased accidently by others, rxc, as their owner, has specified that all users
be granted a negative delete right to these comments. Therefore, even though user hhs
has the delete right to the function, he should not be allowed to delete the comments
added by rxc. In this situation, we notice that the right should not only be inherited
down from the parent objects, but also be synthesized up from the child objects.

3As will be described later in section 3.5, allowing multiple, dynamic roles will also introduce
conflicts and makes it even more expensive to check the consistency of all access definitions.
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Similar observations also apply to those operations such as elide and hide, which,
when applied to a structure variable, affect both the variable and its descendents.

To support such synthesis for the above operations, we define the semantics of
these operations as follows. For a structure variable, the operation consists of two
steps. The first step does the operation on each elements of the variable, with access
rights checked each time the operation takes place. If the first step succeeds, that is,
all operations on the children are successtul, then the second step is taken to execute
the operation on the whole structure, with the access right checked.

We use the above example to illustrate these semantics. If hhs wants to delete
the function getvalue, the operation is first applied to all members (lines) within the
function, which will be successful only if appropriate access right allows the deletion
of each member. Since hhs does not have the delete privileges over the comment lines
owned by rxc, these comment lines cannot be deleted at the first step. Therefore,
the second step to delete the function is not allowed to be taken. These semantics
are inspired by the rmdir command in Unix — a directory cannot be removed unless

it is empty, i.e., all the files within it are removed.

3.4 Access Dimension

The requirement for supporting collaboration rights demands that all operations
whose results can affect multiple users be protected by collaboration rights (section
1.1). In this section, we first identify these rights, and then address how an easy to
use specification model can be provided in the access dimension.

We list below all the access rights on the protected objects identified in section 3.3.
Each of these rights corresponds to an operation on an object defined by the Suite
collaboration model. Thus, unlike systems such as Unix in which several operations
such as insert, append, modify, and delete share the same right (the write right), each

operation in our model has its own right to meet the flexibility requirement.

Rights on Active Variables
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For active variables, the following access rights are defined:

e The ReadR, WriteR, InsertR, and DeleteR rights, which determine whether a
user can read a variable, write a variable, insert an element into a structure

variable, or delete an element from a structure variable.

o The ElideR, HideR, and SelectR rights, which determine whether a user can

elide, hide, or select a variable.

o The TitleR, IdentR, FontR, and ColorR rights, which determine whether a

user can change the title, indentation, font, or color of a variable.

e The ValueCoupledR right, which determines whether a user can share value

changes to a variable with another user.

o The ViewCoupledRright, which determines whether a subject can share viewing

properties of a variable with another user.

o The FormatCoupledR right, which determines whether a subject can share for-

matting properties of a variable with another user.

e The TransmitRawR, TransmitParsedR, TransmitValidatedR, and
TransmitCommittedR rights, which determine whether a user can transmit raw
changes, syntactically correct changes, semantically correct changes, or com-

mitted changes of a variable to another user.

o The TransmitIncrementR, TransmitCompleteR, TransmitPeriodR,
TransmitTimeR, and TransmitTransmitR rights, which determine whether a
user can transmit changes to a variable to another user incrementally, on com-

pletion, periodically, after a certain time, or explicitly.

e The ListenRawR,ListenParsedR, ListenValidatedR, and ListenCommittedR
rights, which determine whether a user can listen raw changes, syntactically cor-
rect changes, semantically correct changes, or committed changes of a variable

from another user.
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o ThelListenIncrementR,ListenCompleteR, ListenPeriodR,ListenTimeR, and
ListenTransmitR rights, which determine whether a user can listen changes to
a variable from another user incrementally, on completion, periodically, after a

certain time, or explicitly.

Rights on Roles

For roles, the following access rights are defined:

o The CreateRoleR and DeleteRoleR rights, which determine whether a user can
create a new role or delete an existing role. Creating a new role will allow users
to join the role thereafter, while deleting a role will delete the role, including

its member list.

o The TakeRoleR, LeaveRoleR, AddMemberR and RemoveMemberR rights, which
determine whether a user can take (join) a role by adding itself to the member
list of the role, leave (relinquish) a role by removing itself from the member list,
add a user into the member list of a role, or remove a user from the member

list of a role, respectively.

e The ReadRoleR and ModifyRoleR rights, which determine whether a user can
read or modify the informations associated with a role, including its name and

member list.

Rights on Sessions

The following access rights are defined for sessions:

o The CreateSessionR right, which determines whether a user can create a new
session. After a session is created, it will be able to accept subsequent incoming

connection requests from the participants.

e The DeleteSessionR right, which determines whether a user can delete an

existing session.



61

e The JoinSessionR right, which determines whether a user can join a session.

o The RemoveParticipantR, which determines whether a user can remove a par-

ticipant from a session.

e The ReadSessionR and ModifySessionR rights, which determine whether a
user can read the information related to a session such as its current participants,

or change the information of a session.

Rights on Object Windows

The following access rights are defined for object windows:

e The CursorRright, which determines whether a user can move the cursor around

the object window.

e The ScrollR right, which determines whether a user can scroll the contents of

the object window.

e The ResizeR, and MoveR rights, which determine whether a user can change

the size or the position of the object window.

Introducing a large set of rights aggravates the problem of specification and storage
of rights. To ease the problem in the access dimension, we introduce the notion of
right groups. They are defined by classifying the individual rights into several logical
categories. Fach category consists of rights that users are likely to give or deny as
a group. For example, the TransmitRawR, TransmitParsedR, TransmitValidatedR
and TransmitCommittedR rights all specify the rights to transmit values according to
their correctness level, therefore we put them in the right group TransmitCorrectR.
The ReadR, WriteR, InsertR, and DeleteR rights are all included in the DataR right
group, because they all correspond to the operations on the value of a variable. The
ElideR, HideR and SelectR rights all correspond to the operations that change the

view of an object, therefore they are included in the right group ViewR.
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Because of the number of the rights involved, it is not sufficient to group rights
within one level of hierarchy. Therefore, we also allow right groups to contain
other right groups, thereby allowing the right groups to form a tree structure. For
instance, the right group TransmitR includes the right groups TransmitEventR,
TransmitCorrectR, TransmitPeriodR, and TransmitTimeR. [ts member groups spec-
ify the rights of transmission based on the criteria of event, semantic correctness,
period, and time. The TransmitR is in turn included as a member of the right group
CoupleR. At the root of the tree is the right group A11R, which includes all the in-
dividual rights and right groups. Note that unlike an individual right, a right group
does not correspond to any specific operation on an object.

To allow the rights to be granted or denied as a right group, we define the transitive
include relationship among them. This relationship is used in the following rule:

Right Inheritance Rule: A positive or negative right r of subject s on object
0 is inherited from the right groups it belongs, i.e. F(s,o, R, A) — F(s,0,r,A) and
F(s,0,—R,A) — F(s,0,—r, A) where R includes r.

A set of predefined include relationships are provided by our model, which are
listed in appendix B. Some of these relationships are shown in figure 3.5.

We have restricted the include relationships to form a tree structure, instead of a
more general lattice structure. That is, a right can belong to at most one right group
instead of multiple groups. Conceptually, the semantics of the include relationship
does not restrict the structure to be a tree, as long as there is no recursive definition
of the relationships. However, while a lattice structured include relationship is more
general and logically feasible, we have not found typical situations where it is useful
for a right to be in multiple right groups. Therefore we currently do not support the
lattice structured include relationship.

To illustrate the use of the above inheritance rule, consider the following scenarios
in a classroom examination application. Assume that students hhs, rxc and abc are
to be allowed to couple with the teacher pd, but not with one another. To prevent

unauthorized coupling between user hhs and rxc, it is only necessary for user pd to
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Figure 3.5 Some include relationships among access rights.
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grant rxc and hhs a negative TransmitR right to each other. Without right groups, it
would be necessary to grant the negative right for each individual transmission right,
which is tedious.

The notion of a right group can be used in combination with negative rights to
further simplify the specification task. To illustrate, assume that user rxc would like
to grant all the data rights (Read, Write, Insert, and Delete) to user hhs, except
the delete right. He can achieve this by giving hhs a positive DataR, and a negative
DeleteR. Without these notions, it would be necessary to grant the read, insert,
and write rights to hhs individually. Fine-grained access rights together with right
groups gives users fine-control over collaboration while relieving them from the task
of tediously specifying all the rights individually.

In addition to the include relationship described above, we also define the imply
relationship between rights to support easy specification. This relationship was first
proposed in [49] for protection of read, write, insert, and delete rights in traditional
database system. It models the fact that the right to do a more powertul operation
should guarantee the right to do a less powerful one. For instance, the right to do the
write operation should guarantee the right to do the insert operation since the write
operation is considered more powerful than the insert operation. This relationship is
used in the following rule:

Right Inference Rule: A right r of subject s on object o, if undecided, is inferred
from the rights that imply r, i.e., F(s,o,rx,A) — F(s,o0,r, A) and
F(s,0,—r, A) — F(s,0,—ra, A) where re implies r.

Though originally defined for database systems, the notion of right implication is
crucial for the more complex collaborative systems, for two reasons. First, it reduces
the problem of specifying a large number of rights necessary in a collaborative system.
Second, in a complex system, it is more likely that users may specify conflicting access
definitions because they have to specity, often dynamically, a large number of access
rights. The imply relationship can be used by the system to detect some of these

conflicts automatically. For example, if a write right is to be granted to a user who
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has been previously denied the read right explicitly, the system can detect the conflict
because the negative read right may imply the negative write right.

We have identified several useful imply relationships among the access rights
we support. Previous work has defined the imply relationship among the ReadR,
WriteR, InsertR and DeleteR as follows: WriteR implies InsertR, InsertR im-
plies ReadR and DeleteR implies ReadR. We describe and justify below the additional
relationships we have identified.

For the rights over the active variables, we further define:

e HideR implies SelectR, and ElideR implies SelectR

because users have to select an object before they can elide or hide it.

e TransmitRawR implies TransmitParsedR, TransmitParsedR implies

TransmitValidateR, and TransmitValidateR implies TransmitCommittedR

because if users can transmit arbitrary raw changes to a variable, they can cer-
tainly transmit changes that are syntactically correct. Likewise, if users can
transmit syntactically correct changes, they can certainly transmit the semanti-
cally correct changes, which must be syntactically correct. In addition, if users
can transmit semantically correct changes, they can transmit the committed

changes, which must be semantically correct ?.

e ListenRawR implies ListenParsedR,ListenParsedR implies ListenValidateR,

and ListenValidateR implies ListenCommittedR

because if users can receive arbitrary raw changes to a variable, they can cer-
tainly receive changes that are syntactically correct. Likewise, if users can re-
ceive syntactically correct changes, they can certainly receive the semantically
correct changes, which must be syntactically correct. In addition, if users can
receive semantically correct changes, they can receive the committed changes,

which must be semantically correct.

“The observations on these operations are borrowed from the work on flexible coupling [37].
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e TransmitIncrementR implies TransmitCompleteR, TransmitCompleteR implies
TransmitPeriodR, TransmitPeriodR implies TransmitTimeR, and

TransmitTimeR implies TransmitTransmitR
because if users can transmit arbitrary changes incrementally, they can certainly

transmit changes on completion, periodically, after a certain time, or explicitly.

e ListenIncrementR implies ListenCompleteR, ListenCompleteR implies
ListenPeriodR, ListenPeriodR implies ListenTimeR, and ListenTimeR im-

plies ListenTransmitR

because if users can receive arbitrary changes incrementally, they can certainly

receive changes on completion, periodically, after a certain time, or explicitly.

For the rights defined over user roles, we define:

e AddMemberR implies TakeRoleR
because if users are allowed to add arbitrary subjects into the member list of a
role, they should also be allowed to add themselves into the member list.

e RemoveMemberR implies LeaveRoleR

because if users are allowed to remove arbitrary subject from the member list
of a role, they should also be allowed to remove themselves from the member

list.

e ModifyRoleR implies CreateRoleR, ModifyRoleR implies DeleteRoleR,
ModifyRoleR implies AddMemberR, and ModifyRoleR implies RemoveMemberR
because the modify operation allows all of the above operations.

e CreateRoleR impliecs ReadRoleR, DeleteRoleR implics ReadRoleR, AddMemberR
implies ReadRoleR, and RemoveMemberR implies ReadRoleR

because we allow users to look at the role information before they do the above

operations.



N \/

Figure 3.6 Some imply relationships among access rights defined over active

variables.
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Figure 3.7 The imply relationships over role rights.
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Figure 3.8 The imply relationships over session rights.
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For the rights defined over sessions, we define:

e ModifySessionR implies CreateSessionR, ModifySessionR implies

DeleteSessionR, and ModifySessionR implies RemoveParticipantR
because the modify operation allows all of the above operations.
e CreateSessionR implies ReadSessionR,DeleteSessionR implics ReadSessionR,

JoinSessionR implies ReadSessionR, and RemoveParticipantR implies

ReadSessionR

because we allow users to look at the session information before they do the

above operations.

Conflict Resolution

Figure 3.9 Conflict of imply and include.

Supporting both the include and imply relationships allows an access right to be

inferred from multiple sources. To illustrate, consider a scenario in which a new user
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abc joins the serc role and is not familiar with the system. To ensure security, hhs
gives abc the right to insert lines (positive InsertR) into a function he just created,
but denies abc the data rights (negative DataR) on the function so that he cannot
delete or modify the existing text of the function. We have a conflict since the negative
ReadR right can be inferred from the first definition while the positive ReadR right
from the latter (figure 3.9). In such situations, the imply relationship is used first.
This is because the imply relationships are defined over the individual rights and exist
even if right groups are not defined. From another perspective, right groups can be
regarded as mere macro conventions. Moreover, the imply relationship is introduced
for both easy specification and right consistency, while the include relationship only
for easy specification. Thus, rights are more tightly related by the imply relationship
than the include relationship. Therefore, in the scenario above, the imply relation is
used to grant abc the read right.

The following conflict resolution rule summarizes the above discussion:

Right Conflict Resolution Rule: The imply relationship is used in preference
to the include relationship in case of conflicts.

To summarize this section, we define a set of generic collaboration rights based on
a general collaboration model. The presence of a large set of access rights, however,
brings the problem of easy specification, efficient storage, and potential inconsis-
tencies. To cope with this problem in the access dimension, we support two kinds
of inheritance relationships, include and imply, to deduce new rights from existing
rights and make consistency checks. These relationships can conflict, and we have

motivated and defined a conflict resolution rule to address the problem.

3.5 Subject Dimension

This section will address two issues that are analogous to the ones discussed in
the previous section: which subjects should we support, and how should we define a
specification model in the subject dimension to meet the flexible and easy specification

requirements.
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A subject is an entity that initiates an access request to a protected object. As in
conventional systems, a user such as pd or hhs is treated as a subject in our model.
In addition, a role is treated as a subject in our model. A role is an abstraction
that bears a unique name (id) and is associated with a member list. Since it is also
a subject, it i1s also associated with a set of access rights. For example, the role
suite bears a unique name suite, has a member list of {pd, rxc, hhs}, and is
associated with a set of access rights. A member of a role can be a user, or another
role. We say that a user or role “takes” a role if it appears in the member list of
the latter. Furthermore, we define that if s takes the role of S, then s inherits all the
access definitions associated with S. Formally, we use the following rule to define the

semantics of take:

AN

Figure 3.10 Take: inherit all rights of a role.

Subject Inheritance Rule 1: Subjects inherit both positive and negative rights
from the take relationship, i.e., if s takes the role of S, then F(S,0,r,A) — F(s,0,1r, A)
and F(S,0,—r, A) — F(s,0,—r, A).
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Because we allow multiple users to take a role, the notion of a role includes the
concept of a user group supported by traditional systems such as Unix. Moreover,
in accordance with the requirement of supporting multiple, dynamic user roles, we
also allow a role to take multiple roles simultaneously, and change the taking of roles
dynamically. For instance, during a code reviewing process, a person may take the
roles of both chairman and narrator. After the inspection of one module, he may
relinquish the chairman role and take the author role. Therefore, unlike traditional
user groups that usually allow only static, simple grouping of users, roles allows
grouping of users in a more flexible and dynamic way.

To illustrate the use of the above defined inheritance rule, we continue with the
example of the software development application. If we allow the faculty role to
insert new functions into the program but explicitly deny the student role from
doing so, then pd gets the right when he takes the faculty role. On the other hand,
hhs does not have the right because he takes the student role. Without the notion
of roles, it would be necessary to associate an access definition for every user that
takes the faculty or student role.

As discussed in the previous section, we support a set of coupling rights. For
example, we support the ValueCoupledR right, which decides whether a subject (e.g.
hhs) is allowed to couple the value of a function getvalue with another subject (e.g.
student), and the IncrementTransmitR right, which decides whether a subject (e.g.
hhs) is allowed to transmit the value of an object to another subject (e.g. rxc)
incrementally. Unlike other conventional rights such as read and write, these rights
involve two subjects instead of one. More precisely, one subject is also treated as an
object. We refer to the second subject (student and rxc in the above examples) as
the “passive subject”. To ease the specification, we allow users to define the right to
couple with a group of passive subjects rather than only individual subjects, and allow
inheritance to be used to infer the right to couple with individual passive subjects.
From another perspective, if we regard (obj, passive subject) as a complex object, then

the grouping of passive subjects allows the grouping of the corresponding complex
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objects. We use the take relationship to also group passive subjects, as defined by
the following rule:

Subject Inheritance Rule 2: If r is a coupling right involving passive subjects
s and s2, and s2 takes the role of s, then F(sl,(o,s),r,A) — F(sl,(0,s2),r,A) and
F(sl,(0,8),—r, A) — F(sl,(o,s2),—r, A).

To illustrate, assume that a user hhs is granted the ValueCoupledR right to a
complex object (getvalue, teacher), that is, hhs is allowed to couple the value of
the function getvalue with the role teacher. According to the above inheritance
rule, hhs also has the right to couple with user pd because pd takes the role of teacher.
Likewise, the denial of hhs to value-couple the function with the student role implies
the denial of hhs with user rxc because rxc takes the role of student.

We also support another inheritance relationship among subjects, which is useful
in maintaining access privileges. It is often useful to allow a subject to take a subset
of the positive access rights (privileges) of others. For example, a PhDStudent may
have all the positive data rights of MSStudent, and pd (manager) may have all the
positive data rights of rxc and hhs (employees), as illustrated in figure 3.11. We
therefore define a relationship, have, which treats positive access rights as privileges
and supports inheritance of selected privileges. Formally, have is defined as a mapping
from S x Rx S to { true, false} where S is the domain of subjects and R is the domain
of positive rights. We support inheritance of selected rights rather than all the rights
because it reflects the “least privilege” principle [101] more faithfully. The following
inheritance rule defines the semantics of have:

Subject Inheritance Rule 3: If subject sl has right r of subject s2, i.e.,
have(sl,r,s2) = true, then F(s2,r,0,A) — F(sl,r, 0, A) where r is a positive right.

Conflict Resolution
Allowing a user to take multiple roles in the above manner introduces potential
conflicts. Continuing with the example of the software development application,

assume that serc is granted the positive right and student is granted the negative
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Figure 3.11 Hawve: inherit selected privileges.

right for some object. How should we decide the right for rxc who takes the role of
both student and serc?

To motivate our solution, let us turn to some more examples. First, we observe
that the take relationship actually defines a lattice structure which decides which
role is more “specific”. For instance, PhDstudent is more specific than student, and
student is more specific than all. In the spirit of object-oriented languages, we use
more specific roles in preference to less specific roles. As an example, assume that
user rxc takes the roles of all, student, and PhDstudent. Further assume that we
give a positive right to the roles all and PhDstudent and a negative right to the role
student. Under these assumptions, rxc is granted the right because PhDStudent is
the most specific role he takes. Thus, we derive our first rule in resolving conflict:

Subject Conflict Resolution Rule 1: A more specific role defined by the take
relationship should be used first.

However, it is possible for a user to take two roles with different rights, neither
of which is more specific than the other. As an example, assume that the serc role
is granted a positive right and the student role is granted a negative right. Further
assume that there is no take relationship between the two roles. As illustrated in
figure 3.12, the effects of the above specification on subjects taking both roles can be
interpreted as either positive or negative. In this situation, we require that users give

a “hint” that indicates which roles should be used first. In particular, we provide an
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Figure 3.12 Conflicts due to multiple roles.

ordered access list of the form (w;S1wy5s...w,5,) where w; is either + or -, denoting
positive right or negative right respectively, and 5; is a role. We interpret the list to
be “position sensitive”. That is, the position of the roles in the list is regarded as a
“hint” indicating which roles should be used first. Following the heuristic of “putting
important things first”, we use roles appearing earlier in the list in preference to those
appearing later. According to this rule, -student+serc will give negative rights to
those taking both roles while +serc-student will grant them positive rights. This is
our second rule in resolving conflicts:

Subject Conflict Resolution Rule 2: In case of conflicts, a hint specified by
users is used to determine which role should be used first. In particular, we choose
the access definition that appears earliest in the access list.

By adopting the above rules, our approach provides a simple yet flexible solution
to the conflict problem. At one extreme, all the negative definitions can be put before
the positive ones to ensure maximal security, as in the case of
(-student-capo+faculty+serc). At the other extreme, all the positive ones can be
put before negative ones to ensure maximal sharing, as in the case of
(+faculty+serc-student-capo). Between these two extremes, users can adjust
their access needs by putting subjects at different positions.

The above two rules specify how to resolve conflicts due to the take relationship.

Conflicts can also arise when a negative right is inferred from the take relationship



76

and a positive right is inferred from the have relationship. In our algorithm, the
take relationship is used in preference to the have relationship for the following two
reasons: First, the take relationship can infer both positive and negative rights, which
is safer than the have relationship as the latter can infer only positive rights. Second,
the take relationship infers rights a user inherits directly from the roles he takes, while
the have relationship infers rights a user gets indirectly from other roles which he may
not take. Therefore, we define the following rule:

Subject Conflict Resolution Rule 3: The take relationship is used in prefer-
ence to the have relationship in case of conflicts.

To summarize, allowing multiple, dynamic user roles introduces the problem of
how to deduce users’ rights naturally and efficiently from the roles they take. We
address the problem by defining a set of inheritance rules that allow both the take
and have inheritances and conflict resolution rules that are position sensitive and

choose take over have.

3.6 Multi-dimensional Inheritance

In the above sections, we have described multiple inheritances in the object, access
right, and subject dimensions. There is another important question we have to an-
swer: in what order are the inheritances in the three dimensions used when resolving
a right?

Conceptually, we can view the multi-dimensional inheritance from a single dimen-
sion by treating other dimensions as subdimensions of nodes in the viewed dimension.
For example, we can view multi-dimensional inheritance within the framework of ob-
ject dimensional inheritance. To decide the value of (s,o0,r), we first find o and check
whether it is possible to infer the value of (s,0,r) from the access control list associ-
ated with o, by using inheritance in subject and right dimensions if necessary. If not,
we proceed by using inheritance in the object dimension. In this way, we regard the

object dimension as the prime dimension, and the subject and right dimensions as
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sub-dimensions. Similarly, we can also regard the subject dimension as the prime one
and treat the object and right dimensions as sub-dimensions.

Figure 3.13 illustrates the above discussion by showing how the search looks like
if the object dimension is treated as the prime dimension and the access and subject
dimensions are treated as sub-dimensions. In the figure, we assume that each object
is associated with an access control list, and that objl may inherit its access rights
from obj2, while obj2 may inherit from obj3 and obj4, as shown in the upper graph.
The lower graph shows that we start the search first from objl (object dimension).
It we cannot infer the right by using the access control list associated with objl and
inheritance within subject and right dimension (pane 1, within the subject-access
sub-dimension), then we proceed by using inheritance in the object dimension. That
is, obj2 is chosen and above process is repeated, and so on.

Figure 3.14 describes the search algorithm when we regard the object dimension
as the prime one, access dimension as the sub-dimension, and subject dimension as
the sub-sub-dimension. We can see that the most outside loop is for the inheritance
of the object dimension, then the right dimension, and the inner-most loop is for the
subject dimension. Moreover, if a right cannot be inherited from all three dimensions,
we return a negative right. This is more conservative than returning a positive right
and therefore safe. From the algorithm, we can also see that negative rights help
short-circuiting the search space, since it is not necessary to do an exhaustive search
of the inheritance space to infer denial of access.

Different inheritance orders have different impact on the efficiency of the lookup,
which in turn depends on the access data structures used to represent the access
matrix. For instance, if all of the access definitions are associated with objects, i.e.,
access control list is used, then starting the search from the object dimension will
be the most efficient one because it is easy to find out all the subjects and rights in
the inner two loops, such as pane 1 and pane 2 in figure 3.13. On the other hand, if
access definitions are associated with subjects, and we use the same search algorithm

as above to start the search from objects, it will be costly to find out all the subjects
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(b). Search starts from pane 1, then pane 2.

Figure 3.13 Multi-dimensional inheritance when the object dimension is treated as

the prime dimension.
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/* Multi-dimensional inheritance algorithm to check (s, o, r) = 7 %/

loopQ: for every object 0x such that F(s,0x,r,A) -> F(s,o,r,A)
as decided by the object inheritance rules and
conflict resolution rules do {

loopR: for every right Rx such that F(s,0x,Rx,A) -> F(s,0x,r,A)
as decided by the right inheritance rules and
conflict resolution rules do {
loopS: for every subject Sx such that F(Sx,0x,Rx,A) -> F(s,0x,Rx,A)
as decided by the subject inheritance rules and

conflict resolution rules do {

if A(Ox, Sx, Rx) = +/- return +/-;

return -;

Figure 3.14 Multi-dimensional inheritance algorithm
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and rights in the inner loops associated with an object. It would require us to search
the information associated with every subject to collect the access definitions related
to a particular object, which would be inefficient. Although indexing could be used to
relieve the problem to some extent, it will be far more straight-forward and convenient
if we choose to search from the subject dimension in the first place. As an example,
consider the simple case of capability systems that associate access definitions with
subjects shown in figure 3.15. Assume that we want to find out whether subjl has
an R right over objl. It would be inefficient to start the search from the object
dimension, that is, to collect all the capabilities all the subjects have over objl, and
determine subjl’s rights from these capabilities. Starting the search from subjl’s
capability list would be far more straight-forward and efficient. On the other hand,
in systems that use access control lists, starting the search from the object dimension

would be most efficient for similar reasons.
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Figure 3.15 Example of capability lists.
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In our model, we do not specify the exact multi-dimensional inheritance order.
Instead, we give inheritance rules and conflict resolution rules in various dimensions,
and let the system developers who use our model decide the prime and sub dimensions
and data structures to represent the access matrix. As will be discussed in chapter
4, in the particular implementation of our model in the Suite system, we choose the
object dimension as the prime dimension, access dimension as the sub-dimension, and
subject dimension as the sub-sub-dimension, with the underlying storage mechanism

of the access matrix being an extended access control list.

3.7 Access Administration

As discussed in section 3.3, the access matrix itself should be a protected object
because otherwise users can penetrate the protection by changing the matrix arbi-
trarily. In this section, we address issues related to protection of the access matrix,
which we refer to as access administration. In particular, we address the authorizer
problem, that is, who should be responsible for specifying the access definitions. In

addition, we discuss support for flexible access delegation and revocation.

3.7.1 Protection of Access Matrix

As mentioned in chapter 2, the classical matrix model uses the notion of *-rights
for the protection of the access matrix. The *-rights are defined over the conventional
rights. Only owners and *-right holders have the privilege to grant the corresponding
rights. A simplified, coarser-grained version of this approach is adopted by systems
such as Unix, where the administration of the access matrix entries is the sole respon-
sibility of the owner. Compared with the more general approach, the Unix approach
is easy to use, but is less flexible.

To meet the requirement of flexibility, we also use fine-grained *-rights and own-

erships for the protection of access matrix entries. For each individual right R, we
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define an R* right that protects the value of R °. Introducing a large number of *-
rights brings the associated problem of easy specification and consistency checking.
Therefore, we introduce the notion of *-right groups, and define a set of include and
imply relationships over the *-rights to ease this problem.

To define the include and imply relationships among *-rights, we observe that
the semantic relationships among conventional non-* rights also exist among their
corresponding *-rights. For the imply relationship, the capability to grant others the
right to do a strong operation such as write means the capability to grant others
the right to do a weak operation such as read. Therefore from the “WriteR implies
ReadR” relationship, we can draw a new relationship “WriteR* implies ReadR*”. For
the include relationship, we have grouped the *-rights into a tree hierarchy similar
to the non-*-rights. Therefore the include relationship of non-*-rights is mapped
into corresponding *-rights. For example, from “CoupleR includes TransmitR and
ListenR”, we can define “CoupleR* includes TransmitR* and ListenR*”, and so on.
We represent the above observation as the following two inheritance rules:

*-Right Inheritance Rule 1: The imply relationships among non-*-rights are
mapped to the *-rights, i.e., imply(R1, R2) — imply(R1%, R2x) where R1 and R2 are
non-*-rights.

*-Right Inheritance Rule 2: The include relationships among non-*-rights are
mapped to the *-rights, i.e., include( R1, R2) — include( R1*, R2x) where R1 and R2

are non-*-rights.

>Currently, the * right is used to indicate the privilege to modify an access matrix entry. By
incorporating additional *-rights, it is possible to extend the protection so that other operations such
as read on the access matrix can be also controlled. For simplicity, we only discuss the modification
*_rights in the rest of the chapter.
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3.7.2 The Authorizer

The above discussion raises the question of “who should possess the *-rights?”
This is called the authorizer problem. Although it is a policy issue specific to individ-
ual applications, we would like to provide system-level mechanisms to support these
policies to meet the requirement of automation.

As surveyed in chapter 2, there are currently several approaches to defining the
authorizer in conventional systems. The first approach uses the concept of ownership.
The creator of an object becomes its owner and has all the rights to the object,
including the right to grant these rights to other subjects. This is the approach
defined by the classical matrix model. In another approach, a central administrator
is responsible for specifying the access definitions, but does not have direct rights
himself. This approach is used by some database systems such as INGRES in which
the database administrator assumes the role of a security administrator. To meet
the requirement of flexibility, we would like to provide mechanisms that are able
to support all of the above authorizer policies. One possible approach is to follow
Hydra’s design philosophy. That is, we can discard the concept of ownership and
let individual applications decide who are the authorizers. This approach, though
flexible, does not provide any built-in mechanisms to assist application developers in
constructing their protection subsystems.

Our solution to the authorizer problem is to support the concept of ownership,
while at the same time providing mechanisms that allow applications to tailor their
needs individually. This is in the spirit of the classical matrix model. However, as
will be described in more detail below, the two works are different in that we support
flexible definition of ownership semantics, and support dynamic change of ownership
and multiple ownership.

In the rest of the section, we first define the semantics of ownership. We then dis-

cuss definition of owners of objects and support of dynamic change of ownership and
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multiple ownership. Finally, we discuss simulation of various authorizer approaches

by using the rules we devised.

Semantics of Ownership

To define the exact semantics of ownership, we observe that ownership of an
object usually denotes a set of special privileges. Therefore, instead of treating the
ownership as a concept totally alienated from other elements of the model, we treat
the ownership as a special right. The exact meaning of the right is defined by a set of
“imply” relationships reconfigurable by individual applications. We use the following
rule to define the semantics of ownership:

Ownership Semantic Rule: Quwnership is a special right defined by associating
a set of imply relationships with the right.

As will be discussed shortly, this rule combined with other ownership rules will

enable us to simulate existing authorizer schemes.

Owner Specification

We have devised a set of rules to define owners of protected objects. We use the
following rule to define the initial owner of an active variable:

Ownership Initialization Rule: A subject who creates an application owns all
the initial variables defined within the application unless they have predefined owners.
A subject who dynamically creates a new variable owns that variable.

To illustrate, consider the software development tool. User hhs, who created the
application, owns all the initial functions displayed by the tool since none of them
have pre-designated owners. On the other hand, user rxc, who inserts new function
minit into the program becomes the owner of the function.

The above rule associates a single owner with a variable since an operation such
as insert that creates a variable dynamically is an atomic operation executed by
a single user. To meet the requirements of dynamic change of ownership and joint-
ownership, we associate an owner list with each object, whose contents can be changed

dynamically. We use the following rule to define the semantics of an owner list:
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Multiple Ownership Rule: An initial owner of an object can add roles into or
remove roles from its owner list. The owners of an object are users who take a role
in the owner list.

The above rule specifies that an initial owner as defined by the initialization rule
can dynamically change the owner list. In particular, the initial owner can add more
subjects into the owner list and therefore allow joint-ownership by multiple users. For
example, user hhs can create a function common on behalf of the suite group. After
creating the function and becoming the initial owner, he can add suite to the owner
list associated with the function common. As a result, user pd also becomes an owner
due to his membership in the suite group.

Because the owner list introduced above is defined over a shared object, it is a
shared object itself and therefore should be a protected object according to the total
mediation requirement. Therefore, we introduce a new right called 01istR, which is
used to protect the owner list. A subject is allowed to change an owner list only if it
possesses corresponding 01istR. In addition, we define a corresponding 01istR*. A
subject is allowed to give the 01istR only if it possesses the 01istR*. We define the
following rule to allow owners to change owner list dynamically:

Ownership Default Rule: By default, ownership implies OlistR and OlistR*.

Allowing dynamic change of ownership and joint-ownership aggravates the speci-
fication problem. To illustrate, suppose hhs owns the function Getvalue, and every
line of it. Later, hhs would like to add pd as a co-owner of the function. If every line
of the function is associated with an owner list consisting of hhs, it would be tedious
and time-consuming for hhs to add pd to all these owner lists one by one. In such
cases, we observe that although the ownership initialization rule specifies that the
creator of a variable should own the variable, it is unnecessary to actually store the
owner into the owner list of the variable if the creator also owns the variable’s parent,
such as its structure parent. Instead, inheritance mechanisms can be used to infer
the ownership of the child from its parent. For the above scenario, the owner lists of

all lines created by hhs will be set to empty, and their owner lists, being empty, will
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be inherited from their structure parents, i.e., the function Getvalue. The advan-
tage of using the above inheritance is the following: First, it makes it easy to change
ownership and maintain consistency. For instance, it would only be necessary for hhs
to change the owner list associated with the function Getvalue. Second, like other
forms of inheritances we have seen before, it saves space by eliminating information
redundancy. It is possible that the creator of a parent may also create many of its
children, in which case the saving of space for the owner lists of the children could be
substantial.

The above discussion shows the usefulness of supporting inheritance of ownership
list from the structure parents. To ease the specification task, it is also useful to
support inheritance from other value groups. For instance, we can define the owner
list associated with the generic group of an application to contain only the creator of
the application. Therefore by default, the creator owns all the initial variables defined
within the application by the generic inheritance. Without inheritance, it would be
necessary to define the owner list for each initial variables. Therefore, we support
inheritance from all the value groups defined in section 3.3. That is, an owner list
can be associated with any value group, and children of a value group can inherit its
owner list from its parents, including structure parents.

Because an object can belong to multiple value groups, conflicts can arise from
inheriting owner list from multiple value groups. To resolve the conflict, we adopt the
same approach as used in section 3.3. That is, we use the notion of inheritance direc-
tives introduced by Dewan ([32]) to resolve the conflicts because of its generality and
flexibility. In addition, for the same reason as discussed in section 3.3, we have chosen
structure-first as the default inheritance directive for the owner list because we
expect this default setting to be frequently used by applications. Nevertheless, this
default setting can be changed by individual applications.

To summarize, we define the following ownership inheritance rule:

Ownership Inheritance Rule: The owner list of an object o, if unspecified,

is inherited from the value groups containing o that are chosen by the inheritance
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directive. In case of conflicts, the ownership list defined in the first value group chosen
by the inheritance directive is used. By default, inheritance starts from structure value

groups.

Supporting Existing Ownership Policies

The set of ownership rules defined above provides a flexible way to support existing
ownership policies in addition to the new multiple ownership policy. We discuss below
how these policies can be simulated.

To simulate the conventional usage of ownership such as Unix, we define “owner-
ship implies DataR*” ¢. Therefore, the owner is entitled to change the access rights
of the file he owns because of the privileges gained through the *-rights. In addition,
depending on the value of the umask, we can set the corresponding access mode in
the access list for the owner.

To simulate the INGRES-like centralized administration approach, the application
can grant the administrator role a positive A11R* over the generic group. In this way,
the central administrator is responsible for specifying all the *-rights over all the
objects.

To simulate the classical matrix definition of ownership, we define “ownership
implies AIIR*”.

To simulate the other extreme of the authorizer solution, i.e., the Hydra approach,
we define no imply relationship for the ownership right. In this way, even though an
owner is defined for each object, there is no semantics associated with the ownership
and it entitles him no more and no less rights as the owner.

Supporting group ownership and letting the owner of an object change the owner
list arbitrarily could be risky if an owner changes the owner list wantonly without
considering its security consequences. Therefore, some applications may not want

such feature. This can be realized in our model by disabling the rule “ownership

5Note that here we define the imply relationship on right group DataR*. However, it is to be
interpreted strictly as a macro definition. That is, it is identical to the following specification:
“ownership implies WriteR*, ownership implies InsertR*, ownership implies ReadR*”, ..., and so
on. Therefore, the discussion on the inheritance order of imply and include are still valid.
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implies OlistR and OlistR*” using the programming primitives the system provided,
which prohibits the owner from changing the owner list or granting the right to do

the operation.

3.7.3  Delegation and Revocation

In the previous section, we described an approach of using flexible ownership
for access administration. It allows owners of an object to act as authorizers and
dynamically change access definitions depending on ownership semantics. In this
section, we discuss how owners can distribute the above privileges to others. In our
model, this capability is supported by a flexible access delegation and revocation
mechanism.

As mentioned in chapter 1, delegation [1] is the ability of a user to distribute his
privileges, including both *-rights and regular rights, to others. In the simplest form,
a user A delegates all of his rights to another user B. To realize the above semantics
in our model, we define a single-member role for each user. For every user X, its
associated role(X) bears the same id as the user name, and by default has a member
list containing only the user itself, that is, a user must take his own role. We further
interpret the user id in the access matrix as its role id. To realize delegation, user
A can add user B to the member list of Role(A), which initially contains only A
itself. In this way, B will be able to inherit A’s rights from the “take” inheritance
rule. This kind of delegation, though simple, is not flexible. It does not allow users
to give part of their rights to others. To meet the requirement of flexible delegation,
we allow a user A to delegate selected parts of his access rights to trusted parties and
the authority to further distribute these privileges on behalf of A. In our model, we
support flexible access delegation in two ways. A simple way is for A to distribute
his *-rights to others by changing the associated access lists. Another approach is to
use the notion of indirect roles, which we will discuss shortly.

Related to access delegation is the concept of revocation, which is an operation

that undoes the effects of delegation. It is important because it provides a way to
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contain the spread of access rights. As mentioned in chapter 1, two possible semantics
of revocation can be defined, namely shallow revocation and deep revocation, and
both semantics might be useful depending on individual application needs.

Below, we first define the two semantics of revocation formally:

e Shallow Revocation:

If X grants r™ or r to Y, then shallow revocation just removes r* or r from Y. If
Y has granted r* or r to Y1, Y1 to Y2, ..., and so on, then the r* and r rights
of Y1, Y2, ... are not affected. This semantics is simple to understand, easy to

implement, and is used by most existing systems.

e Deep Revocation:

Deep revocation, on the other hand, tries to completely undo the effects of right
delegation by revoking the r and r* rights of Y1, Y2, ... in the above case. That
is, a system supporting it must recursively revoke authorization from those to
whom the grantee granted the right. It has been defined by Griffiths and Wade
[60] formally as follows: Let (G1, G2, ..., Gi-1, Gi, Gi+1, ..., Gn) be the sequence
of grants of a specific privilege on a given object by any user, where each Gj is
the grant of a single privilege. It i < j, then Gi occurred earlier than Gj. If Ri
denotes the revocation of Gi, then the authorization state of the system after
(G1, G2, ..., Gi-1, Gi, Gi+1, ..., Gn, Ri) should be identical to (G1, G2, ...,
Gi-1, Gi+1, ..., Gn).

The implementation for supporting the total revocation semantics is non-trivial.
Capability-based systems have used the notion of indirect keys to realize the seman-
tics. Under this approach, subjects are given keys to the capabilities instead of the
capabilities directly. Therefore, revocations can be realized by simply disconnect-
ing the relationship between keys and capabilities. ACL-based protection systems
usually do not support total revocation because of the complexity and expenses of

the algorithm involved. The only exception known to us is System R, which records
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each delegation with time-stamps and uses these stamps to realize the revocation.
Although the above two approaches all support the deep revocation semantics, they
are implementation dependent, that is, they depend on the particular data structures
used to implement the access matrix. We describe below an approach to support the
deep revocation semantics that is independent of the implementation of the access

matrix.

Simulating Multiple Revocation Semantics

As a generic model, our model supports both semantics and lets the application
decide which semantics it will use. By default, we expect applications to use shallow
revocation since it is the simplest and most widely used one. Supporting the seman-
tics of shallow revocation is simple and straight-forward in our model. The grantor
can just remove the corresponding *-right or regular right from the revokee, or alter-
natively, grant a negative *-right or regular right to the revokee. On the other hand,
supporting total revocation is more complicated. As described below, the approach
we take requires users to use the notion of indirect roles to delegate rights rather than
grant the rights directly.

Here is a brief description of the algorithm. Suppose X wants to give Y0 the R
right on object Obj, and allow Y0 to distribute the right to other subjects, say Y1,
Y2, ...Yn. Instead of giving YO the R and R* right directly, X first creates a role S,
and grants S a positive R right to Obj. To give YO the R right, X can add Y0 to
the member list of S, thereby allowing YO to inherit the R right from S. To grant Y0
the right to distribute the R right, X can give Y0 the AddMemberRoleR right of S,
thereby allowing Y0 to add into S more members who can inherit the R right from
S. Furthermore, if X wants to allow Y0 to distribute the right to distribute the R
right, X can grant YO the AddMemberRoleR* right of S, so that Y0 can grant the
AddMemberRoleR to other subjects.

Now, X can realize complete revocation by simply removing the R right from S.

Because the R rights of Y0, Y1, Y2, ..., Yn all depend on the access rights of role S,
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the above operation deprives Y1, ..., Yn’s R rights too. In addition, it is also easy to
realize shallow revocation by simply removing Y0 from the member list of S, and its
AddMemberRoleR and AddMemberRoleR* rights of S. In this way, Y0's R right will be
revoked, but Y1, Y2, ..., Yn’s rights will not be affected.

To illustrate, let us return to the classroom examination application described
in chapter 1. We mentioned that the teacher pd delegated his coupling rights to
teaching assistant rxc, and later wants to revoke the delegation according to different
revocation semantics depending on two possible scenarios. Instead of giving rxc
the CouplingR and CouplingR# directly, pd can use the following process to realize
the delegation of coupling rights. First, he creates a role trustedPd and grants
trustedPd a positive coupling right. To give rxc the coupling right, he adds rxc to
the member list of trustedPd, thereby allowing him to inherit the positive coupling
right. Furthermore, to give rxc the right to transfer the coupling right to other parties,
pd can grant rxc the right to add members into the role trustedPd. Consequently,
rxc can further grant the coupling right to another user hhs by adding hhs to the
member list of trustedPd. To realize the deep revocation semantics, pd can simply
deny trustedPd the positive coupling right he previously issued, thereby denying
both rxc and hhs’s coupling rights. On the other hand, pd can realize the shallow
revocation semantics by simply removing rxc from the trustedPd member list.

We observe that although it is not necessary to realize our model using a capability
list approach, the above indirect role approach is conceptually similar to the indirect
capability approach in that they both use one level of indirection to grant a privilege
rather than grant the privilege directly. Therefore, in both approaches it is easy to
realize deep revocation by simply removing the link of indirection. With the indirect
capability approach, a grantor gives users keys to a lock that guards some privileges.
When the locks are changed, the original keys are rendered useless. Similarly, with
the indirect role approach, a grantor gives users membership (analogue of key) to a

trusted role that has the the privileges he wants to delegate. When the trusted role is
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Figure 3.16

Comparison of indirect capabilities and indirect roles. Both support deep revocation

by removing the indirection links.
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deprived of the privilege, all the users that hold its membership also lose the privilege.
The above discussion is illustrated in figure 3.16.

In our current implementation of the revocation mechanism, an authorizer has
to follow the above process manually in order to realize the total revocation. It is
possible to automate the above process to a single operation so that authorizers can

have a simple and easy to use interface.

3.8 Programming Interface

In previous sections, we have discussed the semantics and specification of access
control from the end-user’s point of view. In this section, we discuss the specification
from the programmer’s point of view by describing how programmers can specify
various aspects of access control for a particular application.

We have provided the following language constructs for programmers to specify
access control. These language constructs are needed to meet the requirement of

automation and extensibility.
e Dm_AddRight and DmDelRight, which add a new right, or delete an existing

right.

e Dm_AddInclude and Dm_DellInclude, which add or delete a particular include

relationship among rights.

e Dm_AddImply and Dm_DelImply, which add or delete a particular imply relation-

ship among rights.

e Dm_SetDirective, which sets an inheritance directive associated with a partic-

ular right of a particular object.

e Gm MakeGroup, Gm_GetGroup and Gm DeleteGroup, which create a new role, get

the definition of a role, or delete an existing role.

e Gm_AddUser and Gm_RemoveUser, which add or remove role members, i.e., change

a take relationship.
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e Gm_AddHave and Gm_DelHave, which add or remove a particular have relation-

ship.
e Dm _GetACL and Dm_SetACL, which get or set the ACL of an object.

e Dm GetOwnerList and Dm_SetOwnerList, which get or set the owner list of an

object.

e Dm _GrantRight and Dm_RemoveRight, which grant an explicit right (either pos-
itive or negative) of an object to a subject, or remove an explicit right of an

object from a subject.

e Dm_CheckRight, which registers a callback that checks the right a subject has

over an object.

By providing the above primitives, we allow application programmers to tailor
the access control model according to the access needs of individual applications. To
illustrate, consider the software development application. Assume that we want to
add a new right CheckSpellingR into the software development application. The
right is checked by the spelling-check callback. The application can use Dm_AddRight
to add the new right CheckSpellingR and CheckSpellingR*, use Dm_AddInclude to
add the rule “DataR includes CheckSpellingR”, use Dm_AddImply to add the rules
“WriteR tmplies CheckSpellingR” and “CheckSpellingR implies ReadR”, and use
Dm_CheckRight to register the spelling-check callback that checks the right. The
CheckSpellingR right then becomes an integral part of the right inheritance space.
Therefore, when the right is checked at the beginning of the spelling-check callback,
the system will automatically use the inheritance model to infer the CheckSpellingR
right.

However, there are still situations when the access needs of applications cannot
be met by the mechanism described above. To illustrate, let us add the following
additional access requirements to the software development application: The code

reviewing process cannot begin until the chairman and the author put their signatures
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in the signature fields. Moreover, the author can sign only after the chairman has
signed. This requirement cannot be represented by our model directly since the input
parameters deciding the access rights contains temporal elements besides the subject,
object and access right. As another example, consider situations in which controlling
of access is related to the real time. Assume that users can access an object only during
a certain time period, say working hours in weekdays. This requirement cannot be
directly specified by the specification model we have described.

To support the above access needs, we use the notion of access callbacks. If the
access requirement of a right R of an object O cannot be represented by the access
model directly, the programmer can use the Dm_SetCallback primitive to define that
an access callback is associated with the right R of the object. The callback, written
in some conventional programming languages such as C, is a procedure that defines
the access requirements of right R of object O. When the access right R for object
O is checked, its associated callback is invoked and the return value is used as the
access rights.

To illustrate, again consider the software development application discussed above.
Assume that Signaturel and Signature2 are the objects on which the chairman and
author put their signatures respectively, and the chairman is granted a positive WriteR
right on Signaturel. To represent the requirement that the author can sign only
after the chairman signs, the programmer associates a callback check_signature2
with the WriteR right of the Signature?2 field, which is called whenever the WriteR
of the object is checked. The callback returns a positive right only if the Signaturel
object is signed and the caller takes the role of “author”.

We have defined access callbacks as attributes of protected objects. Therefore, it is
inherently embedded in our inheritance and coupling scheme. Consequently callbacks
themselves can be inherited and shared (coupled). If corresponding objects of users
are access coupled, their associated callbacks are also shared. In addition, a callback
will be invoked whenever the associated value is needed by the inheritance algorithm.

Consider the software development tool again. Although the callback is defined only
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for the write right, it will be invoked whenever an imply relationship needs to access
its value. As a result, the performance of the model will be affected. Moreover, if
distributed workstations have to request the invocation of a callback remotely to get
its value, the degradation of performance will be more obvious 7.

To solve the above performance problem, we use the following “cache and hint”
approach. A cache is associated with every access callback. The Dm_SetHint and
Dm_ResetHint primitives are provided to allow applications to specify whether a spe-
cific value associated with (Subj, Obj, Right) evaluated from the callback needs to be
cached in the local workstation, and whether the cached value needs to be discarded.
If the value is cached in the local workstation, the callback does not need to be in-
voked when the object is accessed in the corresponding mode. The Dm ResetHint
also allows an application to turn off the caching mechanism, in which case the cache
is refreshed, and all the subsequently evaluated values are not stored in the cache.
This is the default setting by the system, since by default the system does not know

a priori when the cached value will be obsolete. To ensure correctness, the cache is

not used by default.

“As will be shown in next chapter, in our implementation of the model, distributed workstations
have to request the invocation of callbacks in a remote application object.
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4. IMPLEMENTATION AND PRELIMINARY EXPERIENCE

We have described the semantics of a general access control model in the previous
chapters. In this chapter, we discuss a particular implementation of the model in
the Suite multi-user infrastructure and how we support the automation requirement.
We also describe some experiments that measures the performance of this implemen-
tation, and some initial experience in using the model to support several diversified

access policies.

4.1 Implementation

Realization of the Access Matrix

As described in chapter 2, there are traditionally two popular approaches to repre-
sent the access matrix: access control lists and capability lists. Both approaches have
their advantages and disadvantages. From the perspective of search efficiency, if the
number of protected objects is large, it will be inefficient to search a long capability
list associated with a subject in the capability systems. Similarly, if the number of
subjects is large, it will be costly to search a long access control list associated with
an object in the access control list systems. From the perspective of access adminis-
tration, it is often desirable to offer an authorizer a global view of those users that
can access a specific object, and a global view of all the capabilities that a specific
user has. In capability systems, it is easy to present all the capabilities that a specific
user has, but it is expensive to construct a view of those users that can access a
specific object, since the C-list of all users have to be searched to find those holding a
capability to the object. Similarly, in access control list systems, it is straight-forward

to present a view of those users that can access a specific object, but it is expensive to
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construct a view of all the capabilities that a specific user has since doing so requires
a search of all the access control lists associated with all the objects.

Because it is currently not clear to us as to which mechanism is the best for re-
alizing access matrix for collaborative systems, we leave it to the implementator of
our model to decide the implementation mechanisms. In our particular implemen-
tation of the access model in Suite, we use an extended access control list (XACL)
as the underlying data structure to store the explicitly specified access rights. An
XACL consists of a list of access blocks, which specify, for each right, the kind of
access mode (positive or negative) a role has. Depending on the rights, an access
block can take two different forms. For those rights that involve only one subject,
such as the conventional read and write right, an access block is in the form of (R:
(w1.51wW255...w;S;)), where R is a right defined over the object, w; is either + or -, de-
noting positive right or negative right respectively, and 5; is a role. For those rights
that involve complex objects consisting of one object O and one passive subject, such
as the coupling rights, the access block is in the form of (R: S;(w1S1weSs...w;:5;) ),
where 51, 5, ..., 5; are passive subjects. It indicates the kind of R right (positive or
negative as defined by w;) S, has on the complex object (O, S;).

Figure 4.1 XACL of two objects.
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Figure 4.1 illustrates the XACL of two protected objects in the software devel-
opment tool: a comment line L1 and a function F1 containing L.1. The XACL of
L1 has only one access block specifying that user hhs can write the line. F1, the
structure parent of L1, has an XACL consisting of two access blocks. The first access
block specifies that the serc role has a positive read right and the student role has a
negative read right over F'1. The second access block of the XACL involves a coupling
right. It specifies that the student role cannot couple with the student role but can
couple with the teacher role.

In our implementation, we choose the object dimension as the prime dimension
as described in section 3.6. That is, we view multi-dimensional inheritance within
the framework of object dimension by attaching other dimensions to each node in the
object dimension. To decide the value of (s,o,r), we first find o and check whether
the information associated with o is enough to infer the value of (s,o,r), by using
inheritance in subject and right dimensions if necessary. If not, we proceed by using
inheritance in the object dimension. This is also in the spirit of the implementation
of Unix. Unix uses the ACL approach and therefore chooses object dimension as the
prime dimension. In addition, we choose the right dimension as the sub-dimension,
and the subject dimension as the sub-sub-dimension. That is, we start the search first
from object dimension, then from right dimension, and finally from subject dimension.
The detailed search algorithm is presented in section 3.6.

We use the example of figure 4.1 to illustrate the search process. To check whether
user rxc has the ReadR right to L1, the system first finds L1 and tries to decide the
right from its associated XACL. Because there is no access block associated with the
ReadR right, the system uses the access block of WriteR right because of the right
implication rule “WriteR implies ReadR”. It then uses subject dimension inheritances
to infer whether user rxc can inherit the positive right from the role hhs. Since no
definite right can be inferred, the system starts over from the structure parent of L1,
namely F1, and tries to decide the right from XACL of F1. It accesses the access

block of ReadR right first, and then uses subject inheritance rules to decide whether



100

rxc can inherit the positive ReadR right the serc role has. This time it succeeds
because rxc takes the serc role and inherits all the rights of serc. Therefore, the

algorithm returns a positive right.

Extensions to the Suite Framework and Automation

We have implemented the access control model by extending the Suite framework
[38]. The original implementation of the framework consists of a dialogue compiler,
which builds a symbol table from the type declarations of active variables; dialogue
managers, each of which manages the interaction objects created for a particular
user, including interaction variables, attributes, value groups, and object windows; a
group manager, which manages all groups defined by users and programs; and a set
of library routines used by applications to communicate with dialogue managers and
group managers.

We have embedded the access control mechanism within the dialogue managers
to control all editing commands entered by end-users. We have also built a session
manager, which manages the activation of applications, connection and disconnection
of dialogue managers to and from applications, and other session related activities
discussed in chapter 3. In addition, we have built a new role manager based on the
original group manager. It manages roles and notifies all the other objects, including
dialogue managers and session managers, about changes to user roles. Finally, we
have implemented the access control language interface described in chapter 3, which
is used by application programmers.

Because all of the above mechanisms are provided by the system, application
programmers are relieved from implementing the details of access control for each

application and therefore automation is provided by the framework.

4.2  Performance

As discussed in chapter 1, one of the requirement we want to meet is efficient

storage and evaluation. By using the inheritance mechanism, it is clear that the
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storage of explicit rights can be reduced. However, the advantage is not gained for
free. The tradeoff is the possible loss of time in evaluating the rights not explicitly
specified. In this section, we discuss some experiments we conducted to analyze the
performance of the model.

The purpose of the experiments was to determine how performance is degraded
when inheritance is used to evaluate access rights. We compared the time spent
when an access right is evaluated using the inheritance algorithm with the time spent
when it is fetched directly from the access matrix.! The following factors affect the

performance of the inheritance-based evaluation:

o the speed of the workstation that evaluates the access rights.

The speed of the workstation decides how fast an access value can be evaluated.
In our experiments, we used two popular modern workstations (Sun Sparc 4

and IBM RS6000) to conduct the experiments.

e the complexity of access requests.

The complexity of an access request determines how many inheritance rules have
to be used to evaluate the rights. In simple cases, single dimension inheritance
may be sufficient to get the result, while in complex cases, three dimensional
inheritance may have to be used, which would increase system overhead. In
the experiments, we varied the complexity of the access request so that var-
ious inheritance schemes can be combined. We first specified a set of access
definitions and access rules to the system. We then issued access requests that
required no inheritance, i.e., when the access definition was directly accessible
from the XACL of the object. We then added more complexity to the requests
by requiring inheritance searches of more dimensions. We added simple in-

heritance in each of the three dimensions, then two dimensional inheritance in

Tt is unfair to compare the two approaches in this way from a human factors perspective. Qur ap-
proach reduces the number of specifications an end-user would have to enter interactively otherwise.
In this perspective, the gain of specification time in our model is better than the latter approach.
Nevertheless, we use the experiments to demonstrate that even if we compare the performance using
the above criteria, the loss can still be kept low.
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all combinations of two of the three dimensions, and finally three dimensional

inheritance.

o the implementation of the access algorithm.

The implementation of the model on a specific system has impact on the evalu-
ation. For example, the performance of the model would have been better if we
had used the hashed table or binary bit storage method instead of the linked
list approach to store the access matrix. In the experiments, however, we only

used the particular implementation in Suite to assess the model.

Table 4.1 gives the performance data when we varied the above factors to evaluate
the model. The time is measured in milliseconds. To offset the network noise, we
repeat each part of the experiments five times, and each time we executed a loop that
repeated the computation 1000 times. The data given in the table is therefore the

mean time of evaluating the rights 5000 times.

Table 4.1 The time needed to evaluate an access right. The time is measured in

milliseconds.
AIX/IBM-RS6000 | SunOS/Sun-Sparc4
Without inheritance 0.6 1.0
simple right inheritance 0.6 1.0
simple object inheritance | 0.7 1.4
simple subject inheritance | 0.9 1.7
right/subject inheritance | 1.5 1.8
subject /object inheritance | 1.1 2.1
right /object inheritance 4.1 5.6
3 dimensional inheritance | 5.1 6.3
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From the table, we see that computing access definitions from multiple inheri-
tances is not a CPU-bound operation. The increase of time in the worst case, in our

experiments, is about 6 milliseconds. This performance penalty is not considered to

be high [81, 82].2

4.3  Experience

Throughout this thesis, we have used the software development application to
motivate and illustrate our design. In this section, we describe several additional
examples to show how our access control model can be used to support the access
policies of different classes of multi-user applications. Specifically, we will use a simple
text editor, an outline editor, a two-person talk program, a simple mail program, and
a multi-user command interpreter [38], and enhance the code of these applications
using our access control primitives. We will also use a code inspection tool, a file
protection program similar to Unix, an AFS simulation program, a programming
contest tool, and the multi-level model to illustrate how our model can be used to
support more complex application needs.

Figure 4.2 shows the code of a simple text editor allowing users to concurrently
edit a text string. The first line of the program is a special C comment telling Suite the
types of the active variables of the program. The Load procedure defines the callback
invoked by a dialogue manager when the user starts a session with the application.
It invokes Dm_Submit to create the interaction variable Text in the dialogue manager.
The arguments of Dm_Submit specify the location, name, and type, respectively, of the
associated active variable. It then uses Dm_GrantRight to specify the access policy
of the application, which is simple and straight-forward: the string is treated as the
protected object, and all users are granted every right of the string. This is supported
by giving the role all a positive AL1R right to the variable. Finally, the load callback

invokes the Dm_Engage call to ask Suite to display Text in the object window.

2The studies show that for interactive systems, response time for intermediate steps in a process
should not exceed 2 seconds (2000 ms). Furthermore, any delay between input action and output
response under 8.3 ms is undetectable by human eyes.
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/*dmc Editable String */

String text = "";

Load () {
Dm_Submit(&text, "Text", "String");
Dm_GrantRight ("Value: Text'", AttrAllR, "all", ’+’);
Dm_Engage("Text") ;

Figure 4.2 A string editor.

Figure 4.3 shows a more complex example of a multi-user data-structure editor,
namely an outline editor. Similar to GROVE described in section 2.3.8.1, it allows
multiple users to edit outline items synchronously. The protected objects of the
application are fine-grained outline items and their children. Each outline item is
associated with an access control list. The owner of an item can change its access list,
and decides whether the item is accessible to the owner only, to an enumerated set of
users, or to all users. By default, the owner of an outline item has all its data rights
(read, write, etc.), while others have only the read right. In addition, the access
definition of any child of an outline item is by default inherited from its structure
parent. Since most of the above access needs are supported in our model by default,
we need to add only one access specification for the application by granting all users
a positive ReadR right over the generic group.

Figure 4.4 shows the code of a two-person talk program. The program allows
two users to talk with each other using different windows. In the program, the Load
callback keeps a count of the number of times it was called and allows only two users
to connect to the program. It creates separate text buffers for each user. In addition,
it prevents one user from doing incorrect operations, such as typing, in the wrong
window. It does so by granting the user all the rights to his own talk window, but

only the read right over the other window.
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typedef char *String;
typedef struct {unsigned num; struct section *sec_arr; } SubSection;
typedef struct section {
String Name; String Contents; SubSection Subsections;
} Section;

typedef struct {unsigned num; Section *sec_arr; } Outline;
Outline outline;

Load ()

{
/* All users can read any item by default */
Dm_GrantRight ("Type: Default", AttrReadR, "all", ’+’);
Dm_Submit( &outline, "Outline'", "Outline" );
Dm_Engage ("Outline") ;

Figure 4.3 An outline editor.
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typedef char *String;

String UserA = "", UserB = "";
int talkers = 0;

char *uid;

Load ()
{
if (talkers < 2) { /* only two users are allowed to talk */
talkers++; /* keep count of the users */
Dm_Submit (&UserA, "UserA", "String");
Dm_Submit (&UserB, "UserB", "String");

uid = strdup(Dm_GetUserId());

if (talkers == 1) { /* user A connects */
Dm_GrantRight("Value: UserB", AttrReadR, uid, ’+’);
Dm_GrantRight("Value: UserA", AttrAllR, uid, ’+’); }

else { /* user B connects */
Dm_GrantRight("Value: UserA", AttrReadR, uid, ’+’);
Dm_GrantRight("Value: UserB", AttrAllR, uid, ’+’); }

Dm_Engage_Specific("UserA", "UserA", "Text");

Dm_Engage_Specific("UserB", "UserB", "Text");
}

Figure 4.4 Two-Person Talk.
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Figure 4.5 shows portions of code of a simple mail program that are related to
access specification. The program has two active variables that are used for outgoing
and incoming messages, respectively. While users are allowed all the operations over
the outgoing messages, they can only read the incoming messages. This policy is
supported by granting users all the rights over the outgoing message, but only the

read right over the incoming messages.

/* dmc Editable Msgs */

typedef struct {String From, To, Text; } Msg;
typedef struct { unsigned num; Msg *msg_arr; } Msgs;
Msg Outgoing; Msgs Incoming; struct passwd *pwd;

Load ()

Dm_Submit (&0utgoing, "Outgoing", "Msg");
Dm_Submit (&Incoming, "Incoming", "Msgs");

Dm_GrantRight("Value: Outgoing", AttrAllR, Dm_GetUserId(), ’+’);
Dm_GrantRight("Value: Incoming", AttrReadR, Dm_GetUserId(), ’+’);
Dm_GrantRight("Value: Incoming", AttrDataR, Dm_GetUserId(), ’-’);
Dm_Engage (""Outgoing");
Dm_Engage (" Incoming");

Figure 4.5 Mail Program.

Figure 4.6 shows portions of code of a multi-user command interpreter that is
related to access control. It allows users to enter new commands, and displays the

output of these commands. Users cannot change the output of the commands, nor any
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commands already executed. The application supports this access policy by granting
users a negative WriteR right over the output type CmdRec.Result, and a positive
A11R right over its parent CmdRec. Furthermore, after a new command is executed
by the Execute procedure, it is given a negative WriteR right so that it is no longer
editable.

Figure 4.7 shows portions of code in the software inspection tool that is related
to access control. The access control policy of the application is the following:

1. The creator of an object becomes its owner and has the data rights (read,
insert, delete, and modify) over the object, and the rights to further transfer these
rights. Multiple ownership is supported so that a group of users can jointly-own
portions of a program. This requirement is supported by defining a new implication
rule: “ownership implies DataR and DataR*”, and by using the default ownership
rules of the model.

2. Only the chairman can change the name of the program to be inspected. Others
can only read it. This is supported by giving the chairman the owner right of the
program name, and others the ReadR right.

3. Only the formatter can change the color, font, or title of the data in the
program. Other participants can do so only under the permission of the formatter.
This is supported by giving the formatter role the positive FormatR and FormatR*
rights.

4. By default, users can read the whole program, which is supported by giving
the ReadR right to all participants over the generic group.

Figure 4.8 shows how Unix file protection policy is supported using our model.
As described in section 2.3.2, in Unix, users are grouped into owner, group, and
others, objects are grouped into files, and operations are grouped into read, write and
execute. To simulate the Unix model, we create Unix files as textual active variables.
In addition, we remove the default implication rule “write implies read”, which is not

*99

supported in Unix. We define “OwnerR implies DataR™” to simulate its ownership

semantics. We also set the default XACL for the file according to the umask value.
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/* dmc Editable CmdSeq */

typedef struct {String Cmd, Result; } CmdRec;

typedef struct { unsigned num; CmdRec *msg_arr; } CmdSeq;
CmdRec Init = {"", ""}; CmdSeq CmdList = {1, &Init };

void Execute (cmd_name, val)
char *cmd_name; String *val;
{ char cmd_path[1024];

/* execute the command and display output to object windows */

/* previous cmd cannot be changed */
sprintf (cmd_path, "Value: %s", cmd_name);

Dm_GrantRight(cmd_path, AttrWriteR, "all", ’-’);

}

Load ()

{
Dm_Submit (&CmdList, "CmdList", "CmdSeq");
Dm_GrantRight ("Type: CmdRec.Result", AttrWriteR, "all", ’-’);
Dm_GrantRight("Type: CmdRec", AttrAllR, "all", ’+’);
Dm_Engage (""CmdList") ;

}

Figure 4.6 Command Interpreter.
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String program_name;

Dm_AddImply(AttrOwnerR, AttrDataR); /* OwnerR implies DataR */
Dm_AddImply(AttrOwnerR, AttrAttrDataR); /* OwnerR implies DataR* */

Dm_SetOwnerList("Value: program_name", "+chairman');
Dm_GrantRight("Value: program_name", ReadR, "all", ’+’);

Dm_GrantRight ("Type: Default", AttrFormatR, "formatter", ’+’);
Dm_GrantRight ("Type: Default", AttrAttrFormatR, "formatter", ’+’);

Dm_GrantRight ("Type: Default", AttrReadR, "all", ’+’);

Figure 4.7 Access code of the Software Inspection Tool.
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String f;
char subj[3];
int right[3] = {AttrReadR, AttrWriteR, AttrExecR};

Dm_Dellmply(AttrOwnerR, Attr0listR); /* disable multiple ownership */
Dm_Dellmply(AttrWriteR, AttrReadR); /* disable ‘‘write implies read’’ */
Dm_AddImply(AttrOwnerR, AttrAttrDataR); /* owner can change ACL */

/* assume that f is the active variable corresponding to file f */
subj [0] = Dm_GetOwnerList(f); /* get owner */

subj[1] = Gm_Getgroup(0); /* get group */

subj[2] = "all";

for (s = 0; s <= 2; s++) {

for (r = 0; r <= 2; r++) {
/* set +/- right depending on umask value */
if (UmaskSet(subjls], right[r]))

Dm_GrantRight ("Value: f", right[r], subjls]l, ’+’);

else Dm_GrantRight ("Value: f", right[r], subjls], ’-’);

t
t

Figure 4.8 Supporting Unix file protection.
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Figure 4.9 shows how the AFS protection policy is supported using our model. In
the simulation, we define a directory to be a structure consisting of a sequence of files
and a sequence of directories. The ‘a’, ‘1’, ‘i’ and ‘d’ rights of AFS defined over
a directory is equivalent to the A11R*, ReadR, InsertR, and DeleteR of our model.
The ‘17, ‘w’, and ‘I’ rights, though associated with a directory, actually apply only to
the files within the directory. Therefore in our simulation, when users specify these
rights, they should associate them with the file sequence of the directory. The ‘r’
right corresponds to the ReadR right of our model. The ‘w’ right is not equivalent to
the WriteR right of our model because according to its semantics in AFS, it is used
for both the WriteR and A11R* rights. Therefore, we define a new ‘w’ right and add
a new include relationship: “w includes WriteR and A11R*”. In addition, we disable
the rule “WriteR implies InsertR and DeleteR” according to the AFS semantics.
Moreover, when a new directory is created in AFS, its ACL is copied from its parent
directory. This feature is implemented in the callback associated with the directory
insert operation. Similarly, when a new file is created, its ACL is defined according
to the protection bits decided by the umask value of the process. To support the
AFS semantics, we grant the all role a negative right if the file protection bit is off
and do nothing if the bit is on. In this way, if the file protection bit is off, then the
access will be rejected because of the negative right in the ACL. On the other hand,
if the file protection bit is on, then by inheritance, the access is determined by the
rights associated with the directory. In addition, to support the AFS semantics of
disallowing positive rights on a file, we associated a callback with files that is invoked
before any update to the ACL of a file. If the ACL contains a positive right, then the
update is disallowed.

Figure 4.10 shows how the software development tool can be changed to support
the programming contest application. In the application, participants form several
teams to compete each other. Assume that at the startup, the proctor creates, for
each team Ti, a function Fi as the workspace for the team. The competition has two

stages. In the first stage, each team is required to work out its solution to the contest
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typedef char *String; typedef char *File;

typedef struct {unsigned num; File *arr; } FileList;

typedef struct {unsigned num; struct dir *arr; } SubDir;

typedef struct dir { String Name; FileList Files; SubDir Subd; } Directory;
Directory directory;

int right[3] = {AttrReadR, AttrWriteR, AttrExecR}, w, 1;

void InsertDirCbk(parent, child, index) /* called when new dir is created */
char *parent, *child; int index;
{ char vpath[1024], pvpath[1024], *acl; int r;
sprintf (vpath, "Value: (¥%s.Subd)", child);
sprintf (pvpath, "Value: %s'", parent);
/* copy ACL from parent directory */
for (r = AttrFirstRight; r <= AttrLastRight; r++)
if ((acl = Dm_GetACL(pvpath, r)) '= 0) Dm_SetACL(vpath, r, acl);
t
void InsertFileCbk(parent, child, index) /* called when new file is created */
char *parent, *child; int index;
{ char vpath[1024]; int r;
sprintf (vpath, "Value: %s", child);
for (r = 0; r <= 2; r++) /* set right depending on Unix umask value */
if (!'UmaskSet("owner", right[r]))
Dm_GrantRight(vpath, right[r], "all", ’-’);
t
/* called before acl is updated, a non-zero return value will disallow update */
char *FileAclVerifyCbk(path, acl)
char *path, *acl;
{ return (strchr(*acl, ’+’));
t
Load ()
{ Dm_Submit( &directory, "Directory", "Directory" );
w = Dm_AddRight ("w");
1 Dm_AddRight(”l”);
Dm_AddInclude(w, AttrWriteR);
Dm_AddInclude(w, AttrAttrAllR);
Dm_Dellmply(AttrWriteR, AttrInsertR);
Dm_Dellmply(AttrWriteR, AttrDeleteR);
Dm_SetAttr ("Type: SubDir", AttrSequencelnsertUpdateProc, InsertDirCbk);
Dm_SetAttr ("Type: File", AttrSequencelnsertUpdateProc, InsertFileCbk);
Dm_SetAttr ("Type: File", AttrAclVerifyProc, FileAclVerifyCbk);
Dm_Engage(""Directory") ;

Figure 4.9 Supporting AFS protection.
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problem without any collaboration outside of the team. In the second stage after all
the teams have submitted their programs, all the participants collaborate together to
inspect and evaluate the solution of each team.

Specifically, the following access policy needs to be supported for the application.

In the first stage:

1.1. Each team member can read, insert, delete, and modify the contents of their
program. This is supported by granting a positive DataR right to the team.

1.2. Each team member can change the format of their program such as the font,
color, etc. This is supported by granting a positive FormatR right to the team.

1.3. Members within the same team Ti can couple with each other and with the
proctor, but may not couple with other team members. This is supported by giving
Ti a positive coupling right with respect to Ti, but a negative coupling right with
respect to others.

1.4. The proctor can read the programs of each team. In addition, the proctor is
in charge of the access administration. This is supported by giving the proctor role
a positive ReadR and A11R#* right over the generic group, and by removing the A11R
and A11R# right from the owners.

In the second stage, after all the teams have submitted their solutions:

2.1. All the participants can read the programs of other teams. This is supported
by giving all users a positive ReadR right over the generic group.

2.2. All the participants can couple with each other, which is supported by giving
all users a positive CoupleR right over the generic group.

2.3. All the participants can insert comments into others’ program, which is
supported by giving all users a positive InsertR right.

2.4. A participant who inserts a comment line becomes its owner and is responsible
for specitying the access definitions of the comment line. This is supported by adding
a new rule "Ownership implies AlIR and AIIR*”.

Finally, we discuss how the mandatory access control policy of Bell-LaPadula

Model can be supported in our model. As described in section 2.3.5, mandatory access
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/* 1.1 %/

Dm_GrantRight (F[i], AttrDataR, Team[i], ’+’);
/* 1.2 x/

Dm_GrantRight(F[i], AttrFormatR, Team[i], ’+’);
/* 1.3 x/

/* CoupleR: Team[i] (+Team[i]+proctor-all) */

sprintf (acl, "%s(+/s+proctor-all)", Team[i], Team[i]);
Dm_SetACL(F[i], AttrCoupleR, acl);

/*x 1.4 %/

Dm_GrantRight ("Type: Default", AttrReadR, proctor, ’+’);
Dm_GrantRight ("Type: Default", AttrAttrAllR, proctor, ’+’);
Dm_DelImply(Ownership, AttrAllR);

Dm_DelImply(Ownership, AttrAttrAllR);

/*x 2.1 %/

Dm_GrantRight("Type: Generic", AttrReadR, "all", ’+’);
/*x 2.2 */

Dm_SetACL(F[i], AttrCoupleR, "all(+all)");

/*x 2.3 */

Dm_GrantRight ("Type: Text", AttrInsertR, "all", ’+’);

/*x 2.4 */

Dm_AddImply(Ownership, AttrDataR);
Dm_AddImply(Ownership, AttrAttrDataR);

Figure 4.10 Access specification for the programming competition application.
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control decides accessibility of subjects to objects according to the security labels
associated with subjects and objects. Recall from section 2.3.5 that the mandatory
part of BLM has two components: 1) the no read-up property, which specifies that a
subject can read only objects with equal or lower security levels; and 2) the no write
down property, which specifies that a subject can append information only to objects
with equal or higher security levels, and a subject can write only object with the same
security level. To simulate these two components, we need to set up rules such that
for the read, append, and write rights, the above two properties can be satisfied. The
approach we take is to specify as few explicit rights as possible, and use the “take”,
“have”, and “imply” relationships to derive the unspecified rights according to these
two properties. To be more specific, we explicitly specify that a subject can write
only objects with the same security level. By defining “imply” relationships between
read, append, and write, the subject can also read and append the objects of the same
level. In addition, we define a set of rules using the “have” relationship that specify
that a subject inherits the read right only from the subjects with lower security levels
(read-down-only) and the append right only from the subjects with higher security
levels (append-down-only), thereby satisfying the two properties.

Formally, let [, (5, ..., 1, be the security levels as defined in BLM, with a smaller
number indicating higher security (I; > Iy > ... > [,). Let O1,04,...,0, be sets of
objects with O; denoting the set of objects with security label being [;. The simulation
consists of the following steps:

1). For each security level [;, we define a role /;.

2). We explicitly grant [; a positive write right to object set O; (i =1, 2, ..., n).

3). We define the following “imply” relationships: “WriteR implies AppendR”
and “WriteR implies ReadR”. Therefore, role [; has the read and append rights to
0.

4). We define the “have” relationship for i = 1, 2, ..., n-1: have(l;, ReadR, ;1))
= true, which specifies that role /; inherits the positive read right of role /;11). In

this way, we allow subjects to read objects with lower security labels.
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5). We define the “have” relationship for i =1, 2, ..., n-1: have(/(4+1), AppendR,
l;) = true, which specifies that role [(;;1) inherits the positive append right of role /;.
In this way, we allow subjects to append information to objects with higher security
labels.

6). To give user U; a security level /;, we define the following “take” relationship:
“U; takes role [;”.

From the above specification, users taking the [; role can inherit the read right
only from /(i41), ..., {,. Therefore, the “no read up” property of BLM is satisfied.
Similarly, users taking the /; role can inherit the append right only from l;_yy, ..., 1.
Therefore, the “no append down” property is satisfied. As for the write right, the
only way a user taking the [; role can get it is through the take relationship on ;.
Therefore the simple property and *-property of BLM can both be satisfied.

The code to simulate the BLM mandatory access policy is shown in figure 4.11.

Table 4.2 gives the number of lines of code that are related to access control in
each of these applications. These numbers measure how much effort an application
programmer has to put in specifying the access needs of an application. As indicated
by the table, the high-level mechanisms in our model make it easy for programmers

to specify access control.
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/* step 1 and 2 */
for (i = 1; i <= n; i++) {
Gm_MakeGroup(1[i]);
Dm_GrantRight (0[i], AttrWriteR, 1[i], ’+’);

/* step 3 */

/* Dm_AddImply(AttrWriteR, AttrAppendR) is a system default rule */
/* Dm_AddImply (AttrWriteR, AttrReadR) is a system default rule */

/* step 4 and 5 */
for (1 =1; 1 < n; i++) {
Dm_AddHave(1[i], AttrReadR, 1[i+1]); /* read down only */
Dm_AddHave(1[i+1], AttrAppendR, 1[i]); /* append up only */
/* step 6 */
/* to give user U[j] a security level of level(U[j]) */

for (J =1; j <= MAX_USERS; j++)
Gm_AddUser(U[j], level(U[j1));

Figure 4.11 Simulating mandatory access control policy.



Table 4.2 Lines of access control code (comments excluded).

# of access code

String editor 1
Outline editor 1
Two-person talk 7
Mail 3
Command interpreter 4
Software inspection tool | 7
Unix 15
AFS 30
Programming contest 13
Mandatory control 10

119
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5. COMPARISON WITH OTHER WORK

In this chapter, we compare our work with previous work. We discuss the similar-
ities between our model and other models, point out the features our model supports
that others do not, and wherever possible, show how other models can be easily

simulated using our model.

5.1 Matrix Model

Since our model is an extension of the classical matrix model described in sec-
tion 2.3.1, it shares much with the matrix model. Like the classical matrix model,
our model is a general, application-independent abstract model. Both models support
flexible specification of access rights and use the notion of *-rights and ownership to
support flexible access administration. In its most primitive form with inheritance
rules and negative rights disabled, our model is the matrix model. Therefore, it can
be as flexible as the matrix model and support arbitrary access control policies.

The matrix model, however, does not address high-level specification and automa-
tion. Our work extends the basic matrix model by using exception based, multiple
inheritance mechanisms to ease the specification task. In addition, our model defines
and supports a generic set of collaboration rights besides the traditional read, delete,
insert, write, and execute rights of the matrix model, and supports deep revocation
and automation. We also allow dynamic change of ownership semantics depending

on application needs and support the notion of joint-ownership.
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5.2  Bell-LaPadula Model

BLM addresses the issue of flexibility by containing a basic access matrix in its
discretionary access control component. Like BLM, our model can simulate the basic
matrix model as discussed in the previous section. BLM also supports easy specifica-
tion of mandatory access policy by assigning ordered security labels to subjects and
objects, and determining access rights through the labels. This multi-layered model
is a special case of our model and can be simulated using the inheritance paradigm
of our model, as shown in section 4.3.

A major difference between our work and BLM is that we have addressed issues
related to the collaborative domain. We support a set of generic collaboration rights,
role-based specification and a flexible administration scheme to meet the requirements

we have identified, for which there are no analogues in BLM.

5.3 Unix

As discussed in chapter 2, Unix supports easy specification by making some sim-
plifying assumptions about the protection domain. Like Unix, our model also makes
use of the knowledge of the underlying protection domain to simplify the specification
task. However, unlike Unix, our model does not sacrifice flexibility for easy specifi-
cation. By using exception-based inheritance mechanisms, our model achieves both
flexibility and easy specification at the same time.

Compared with the Unix protection model which supports only the read, write
and execute rights, our model defines and supports an additional set of collaboration
rights. Moreover, unlike Unix, our model supports access control based on multiple,
dynamic roles. In addition, Unix uses the single ownership approach to address
the authorizer problem, while our model supports the multiple ownership paradigm
and allows flexible semantic definitions of the ownership, thereby providing more
flexibility.

As discussed in section 4.3, the Unix model can be easily simulated by our model.
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5.4  AFS

Like Unix, AFS trades flexibility for easy specification. Unlike our model that
supports fine-grained object protection, it does not allow protection of objects at
a finer-grained level than directories and files. A similarity between AFS and our
model is that both use inheritance to support high-level specification. Nevertheless,
they have several important differences. AFS supports inheritance only in the object
and subject dimension, while our work also supports right dimensional inheritance to
further ease the specification task. In the object dimension, though AFS allows a file
to inherit the access definitions from its parent directory, it does not allow a file to have
its own fine-grained access control list. Specifically, the access definitions associated
with individual files apply to all users and cannot be tailored for specific users. When
a directory is created, it copies its ACL from its parent directory instead of inheriting
it dynamically. Therefore the inheritance mechanism of AFS in the object dimension
is not as flexible as our model. In the subject dimension, AFS does not allow groups to
contain subgroups, and makes a user’s rights the union of the rights that his groups
have. Compared with our role-based schema, it is less-flexible because our model
allows groups to be defined over existing groups and users, and allows inheritance of
selected positive rights through the have relationship, and inheritance of both positive
and negative rights through the take relationship. In addition, AFS addresses only
the traditional rights such as the read, write, insert, and delete, while our work also
includes a set of collaboration rights. Finally, our model supports flexible access
administration, which AFS does not address.

As discussed in section 4.3, the AFS model can be easily simulated by our model.

5.5 Hydra

As discussed in chapter 2, the Hydra model emphasizes on flexibility. It protects
objects of arbitrary type, and allows users to define their own access rights. Like

Hydra, our model also allows programmer-defined objects and types. On the other
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hand, because we have designed our model specifically for the collaborative domain,
we are able to use the underlying domain knowledge to facilitate the specification
process. In particular, we predefine a set of collaboration rights and a set of rela-
tionships among subjects, objects and rights that are useful in collaborative domains,
and use them to provide a higher-level specification model.

Unlike our model, Hydra does not have the notion of negative authorization and
therefore does not support exception based specification. Moreover, in order to con-
struct a universal access control model, Hydra does not support the notion of own-
ership. Instead, it leaves it to individual applications to decide and implement their
own authorization scheme. In contrast, we support the notion of multiple ownership
and allow flexible definition of the semantics of ownership.

Hydra supports automation. However, because it does not have any domain
knowledge to use, the facilities it provides are low-level. Since our model is based
upon a high-level collaboration model, it is able to provide high-level automation.

To simulate the Hydra approach, we disable the support for negative rights and all
the default rules. In particular, we do not define any imply relationship on ownership

so that ownership does not have any semantics.

5.6 Database Systems

5.6.1 System R

Like System R, our model supports both flexible and high-level specification by us-
ing the underlying semantics of protected objects. Our three-dimensional inheritance
scheme, however, is more powerful than the single relational inheritance paradigm
supported by System R. Furthermore, unlike System R, our model supports excep-
tion to ease the specification task. On the other hand, System R provides a powertul
query mechanism for users to define the protected objects, which allows, for instance,
content-specific objects to be identified and protected. This feature is not supported

in our model.
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Like System R, our model supports fine-grained access administration by using
*rights. In addition, our model supports flexible access administration by allowing
flexible definition of ownership semantics and joint-ownership. We also support a
set of collaboration rights in addition to the the read, insert, delete and write rights
supported by System R.

To provide fine-grained protection similar to System R, we can map a relational
structure to a record type in our model, a relation to a sequence variable, and a rela-
tional tuple to a member of the sequence. Consequently, we can apply the protection
model we defined on the active variables to relations and provide both flexible and

high-level protection.

5.6.2 O0ODB

Like our model, the OODB approach proposed by Rabitti et al [95] addresses the
problem of how to provide both flexible and high-level specification. Both work use
the notion of implicit rights to ease the specification task and use negative rights
to support exception. Although both models allow inheritance in all the three di-
mensions of access control, they have several important differences. Rabitti’s work
only allows object dimension inheritance in the class hierarchy, subject dimension
inheritance in the role hierarchy, and right inheritance in the imply hierarchy. More
specifically, in the subject dimension, Rabitti’s model specifies that users be granted
a right if any of the roles they take have the positive right, and thereby supporting
the inheritance of only positive rights. Our model, on the other hand, allows inheri-
tance of selected positive rights through the have relationship, and inheritance of both
positive and negative rights through the take relationship in the subject dimension.
In this way, the “least privilege” principle is obeyed more faithfully. In the right
dimension, Rabitti’s model does not allow the grouping of access rights through the
“include” relationship, which our model supports. Moreover, our work has taken the
approach of allowing certain conflicts to exist, and has devised a set of rules to resolve

these conflicts. Rabitti’s work, on the other hand, partitions access rights into two



125

categories: a strong right set, and a weak right set. Conflicts of access rights within
the same set are strictly disallowed. As mentioned in chapter 3, this approach may
not apply to an environment where the set of access objects is very large and dynamic,
and a user may take dynamic, multiple roles. Whenever a new role is assigned, a take
or have relationship is changed, or there is a change of explicit access rights of a role
to an object, potential conflicts could arise. Checking all these conflicts is costly and
sometimes even unnecessary when a particular user may need to access only a small
portion of a large set of objects. Moreover, as discussed in chapter 3, devising rules
to resolve the conflicts instead of detecting and disallowing all the conflicts allows
flexibility of specification. Thus, it is not only too rigid, but also computationally
expensive to adopt the approach of simply disallowing conflicts *. In addition, Ra-
bitti’s model addresses only the traditional rights such as the read, write and append
rights, while our work also includes a set of collaboration rights. Finally, our model
presents a solution to support flexible access administration, which Rabitti’s model

does not address.

5.7 Other Collaborative Systems

As discussed in chapter 2, several existing collaborative systems also address the
issue of access control. Among them are the GROVE outline editor, the DCS dis-
tributed conference system, the UCSD multimedia conference system, and the UNC
Jointly-Owned Object System.

GROVE

Like the GROVE outline editor, our model also supports fine-grained protected
objects. Moreover, both works provide high-level specification by exploiting the un-
derlying domain knowledge and both use inheritance as the major mechanism for

achieving the above goal. Unlike GROVE, however, our model supports rights other

1n fact, Rabitti’s work does not give solutions to the detection of all the conflicts in their model.
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than the read and write rights supported by GROVE. We also support multiple, dy-
namic roles to allow dynamic change of user rights. GROVE addresses protection
over application-specific objects, namely outlines, while our model addresses pro-
tection over general, application-independent objects. GROVE uses only structural
inheritance in the object dimension, while our model uses multiple inheritance in all
three dimensions of access control to ease specification. Finally, unlike GROVE, we
support exception-based specification, and flexible access delegation and revocation.

We can simulate GROVE by treating outline items as active variables and dis-
abling all the inheritance rules of our model except structure inheritances. In this
way, we can provide a protection model similar to GROVE, as was shown in the

previous chapter.

DCS

A major difference between our model and DCS is that our model addresses the
issue of protection over fine-grained protected objects, while DCS limits its application
domain to coarse grained objects such as files and conferences. In addition, DCS
supports only a set of predefined roles and rights specific to conferences, while our
model allows dynamic roles, a set of application-independent collaboration rights, and
programmer-defined rights. Finally, unlike DCS, our model also addresses the issue

of flexible access administration.

UCSD Multimedia Conference System

Like our system, UCSD multimedia conference system also supports the rights to
exchange information among users. In addition, it includes temporal logic into its
specification model so that time-related requirements can be specified. In this respect,
it provides a higher-level mechanism for specifying time-related access definitions than
our model because in our model, temporal dependencies have to be programmed
into callbacks using conventional programming languages rather than using system-
provided high-level temporal primitives. The shortcoming of the UCSD approach is
that the representation power of the model is limited by the temporal logic the model
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uses. There are situations when it is impossible to represent the access needs using
temporal logic. For instance, if the access right of a particular object depends on the
existence of a signature file, then the model will not be able to meet this requirement
directly. Our model, on the other hand, provides extensibility through callbacks and
is able to handle the above access needs.

In addition, our model addresses several important issues that the UCSD system
ignores. We address the the issue of how to provide high-level specification if the
number of protected objects is large by providing an exception-based, multiple inher-
itance specification model. We also address the issue of flexible access administration

by supporting joint ownership and flexible ownership semantics.

UNC Jointly-Owned Object System

Like the work of Guan et al [63] described in section 2.3.8.4, our work also supports
joint ownership of protected objects by a group of users. Both models are application-
independent and both address the issue of providing support at system level so that
automation can be achieved. Compared to their work, our work does not directly
associate quorum-based or authority-based conditions with objects. Instead, users
have to program these conditions manually into corresponding callbacks in our model.
On the other hand, Guan et al do not address ownership and other access specification
when the number of objects is large. As a result, they do not support inheritance
of access specification. Finally, unlike our model, their work does not allow flexible
definition of ownership semantics and does not address the issue of collaboration

rights.

5.8 Summary of Comparison

The following table summarizes the comparison of our work with other work. In
the table, a blank entry stands for “not meeting the requirement” and N/A stands

for “not available”.
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Figure 5.1 Summary of comparison.
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6. CONCLUSIONS AND FUTURE WORK

Access control is important for collaborative systems. Because of its complexity,
however, it is missing in many current systems. It has been observed in [44] that
“Groupware’s requirements can lead to complex access models, a complexity that
must be managed ..., there must be lightweight access control mechanisms that allow
end-users to easily specify changes. User interfaces should smoothly mesh the access
model with the user’s conceptual model of the system. Changing an object’s access
permissions should, for example, be as easy as dragging the object from one container
to another”.

Based on the above observation and other general requirements for conventional
access control, we identified several new requirements in the context of collaborative
environments. Some of the important issues we addressed to meet these requirements
include: What are the basic protection elements for the environments? How can we
provide a flexible and high-level specification model for collaborative access control?
How can we support flexible access administration? And how can we support au-
tomation? As shown in this dissertation, existing work does not address all these
problems completely.

We have addressed these issues by providing a new framework for designing and
implementing collaborative access control. The main components of the framework

are:
e a generic set of collaboration rights;
e multi-grained specification of access rights;
e inheritance in the subject dimension based on the have and take relationships;

e inheritance in the right dimension based on the include and imply relationships;
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e inheritance in the object dimension based on both type and structural informa-

tion;

e methods of inheriting definitions along multiple dimensions and resolving con-

flicts among definitions;
o flexible ownership semantics through the imply relationship:;

e dynamic, multiple ownerships and inheritance of ownerships based on type and

structural information.
o flexible delegation and revocation mechanisms based on indirect roles;

o a set of language constructs that allow application programmers to develop their

own protection subsystems;

e generic support for implementing collaborative access control.

We believe that any flexible model for collaborative systems will be complex, as
is our model. Therefore we have provided several methods for using and learning it
incrementally. In particular, we have provided multiple dimensions of inheritance,
which can be learned and used independently as illustrated by our examples.

Our inheritance rules and conflict resolution rules are defined by considering var-
ious scenarios in which they might be used. These rules are by no means the only
suitable rules for various applications, since the access needs vary widely depending
on applications and it is difficult to devise rules for these cases. By studying more
applications, more general rules can be devised to enhance the model.

In this dissertation, several collaborative applications, including software develop-
ment application and classroom examination application have been used to motivate
and illustrate our design. Further applications need to be developed to test the us-
ability of the model.

Distributed software architectures for access control is another area that needs

further research. Because collaborators are distributed, there can be at least two
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ways to realize the access model: centralized and distributed, in which each access
to the protected objects is checked centrally or distributedly. Each approach has its
advantages and disadvantages. The issue is related to the overall system architecture
for collaboration, which can be centralized, distributed, or hybrid [35, 78]. Further
research is needed to find out which access control architecture works better for various
situations.

Access verification [64, 110, 80, 17] is another area for extending our work. It
would be useful if the security of our model were proved formally.

As stated in chapter 2, access control addresses only one aspect of a secure system.
It would be useful to combine our work with advances in other related areas, including
cryptographic control, information flow control, inference control, user authentication,
secure communication channel establishment, and concurrency control. It is not until
then that we can provide a general solution for a secure collaborative computing

environment.
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Appendix A: Glossary

Computer Supported Cooperative Work (CSCW, groupware, collabo-
rative systems): Computer based systems that support groups of people engaged
in a common task and that provide an interface to a shared environment.

Access Control: a mechanism for protection of data objects against unautho-
rized access. It ensures that all direct accesses to objects are authorized.

Subject: an entity that initiates an access request.

Object: an entity of the system over which a set of protected operations is defined.

Access right (access type): the privilege to do certain operation(s) over objects.

Access matrix: a matrix with rows representing subjects and columns repre-
senting objects, and Afs,0] denoting the access rights s has over o.

Access list: a representation of access matrix by columns, i.e., a list of pairs
(subject, rights) associated with each object.

Capability list: a representation of access matrix by rows, i.e. a list of pairs
(object, rights) associated with each subject.

Access policy: a configuration of an access matrix.

Access mechanism: a set of facilities used to implement access policies.

Negative right: explicit denial of an access right.

Authorizer: a subject who specifies the access rights.

Role: an abstraction that bears a unique name, and is associated with a member
list and a set of access rights.

Authentication: Verification of the identity of a subject that makes an access
request.

Coupling: sharing of data and its properties (including interactive properties
such as views and formats), perhaps simultaneously, among multiple users.

Flexible coupling: applications can decide which properties of objects are shared

and how they are shared.
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WYSIWIS coupling: all properties of the objects are shared so that “What
You See Is What I See”.

Dialogue manager: a structure editor that manages all interactions between a
user and an application.

Inheritance: the acquisition of certain properties from parents if the child does
not have them.

Multi-inheritance: inheritance from multiple sources. It may cause conflicts.



Appendix B: Access Rights and Groupings

A11R includes
A11R includes
A11R includes
A11R includes
A11R includes
A11R includes
A11R includes
A11R includes

DataR includes
DataR includes
DataR includes
DataR includes
DataR includes

ViewR includes
ViewR includes
ViewR includes

DataR

ViewR
FormatR
CoupleR
WindowR
UserDefinedR
RoleR
SessionR

UpdateR
WriteR
InsertR
DeleteR
ReadR

ElideR
HideR
SelectR

FormatR
FormatR
FormatR
FormatR

WindowR
WindowR
WindowR
WindowR

CoupleR
CoupleR
CoupleR
CoupleR
CoupleR

includes
includes
includes
includes

includes
includes
includes
includes

includes
includes
includes
includes
includes

TitleR
FontR

IdentR
ColorR

CursorR
ScrollR
ResizeR
MoveR

TransmitR
ListenR
ValueCoupleR
ViewCoupleR
FmtCoupleR

TransmitR includes TransmitEventR

TransmitR includes TransmitCorrectR

TransmitR includes TransmitPeriodR

TransmitR includes TransmitTimeR

TransmitEventR includes TransmitIncrementR
TransmitEventR includes TransmitCompleteR
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TransmitEventR includes TransmitPeriodR

TransmitEventR includes TransmitTimeR

TransmitEventR includes TransmitTransmitR

TransmitCorrectR includes TransmitRawR

TransmitCorrectR
TransmitCorrectR
TransmitCorrectR
ListenR includes
ListenR includes
ListenR includes
ListenR includes

includes TransmitParsedR
includes TransmitValidatedR
includes TransmitCommittedR
ListenEventR
ListenCorrectR
ListenPeriodR

ListenTimeR

ListenEventR includes ListenIncrementR

ListenEventR includes
ListenEventR includes
ListenEventR includes
ListenEventR includes

ListenCompleteR
ListenPeriodR
ListenTimeR
ListenTransmitR

ListenCorrectR
ListenCorrectR
ListenCorrectR
ListenCorrectR

RoleR includes
RoleR includes
RoleR includes
RoleR includes
RoleR includes
RoleR includes
RoleR includes
RoleR includes

SessionR includes
SessionR includes
SessionR includes
SessionR includes
SessionR includes
SessionR includes

includes
includes
includes
includes

ListenRawR
ListenParsedR
ListenValidatedR
ListenCommittedR

ReadRoleR
ModifyRoleR
CreateRoleR
DeleteRoleR
InsertMemberR

RemoveMemberR
TakeRoleR
LeaveRoleR

ReadSessionR
CreateSessionR
DeleteSessionR
ModifySessionR
RemoveParticipantR
JoinSessionR
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Appendix C: Imply Relationships

UpdateR implies WriteR
WriteR implies InsertR
WriteR implies DeleteR
InsertR implies ReadR
DeleteR implies ReadR

ElideR implies SelectR
HideR implies SelectR

TransmitIncrementR implies TransmitCompleteR
TransmitCompleteR implies TransmitPeriodR
TransmitPeriodR implies TransmitTimeR
TransmitTimeR implies TransmitTransmitR
TransmitRawR implies TransmitParsedR
TransmitParsedR implies TransmitValidatedR
TransmitValidatedR implies TransmitCommittedR
ListenIncrementR implies ListenCompleteR
ListenCompleteR implies ListenPeriodR
ListenPeriodR implies ListenTimeR
ListenTimeR implies ListenTransmitR
ListenRawR implies ListenParsedR
ListenParsedR implies ListenValidatedR
ListenValidatedR implies ListenCommittedR

OwnerR implies OListR
OwnerR implies OListRx*
OwnerR implies AllR
OwnerR implies Al11Rx

AddMemberR implies TakeRoleR
RemoveMemberR implies LeaveRoleR
ModifyRoleR implies AddMemberR
ModifyRoleR implies RemoveMemberR
InsertMemberR implies ReadRoleR
RemoveMemberR implies ReadRoleR

ModifySessionR implies CreateSessionR
ModifySessionR implies DeleteSessionR
ModifySessionR implies RemoveParticipantR
JoinSessionR implies ReadSessionR
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CreateSessionR implies ReadSessionR
DeleteSessionR implies ReadSessionR
RemoveParticipantR implies ReadSessionR
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Appendix D: Access Rules

Access Checking Rule: A subject s has access privilege v over object o if and
only if

a). Als,o] contains a positive right r.

or

b). Als,0] does not contain a negative right r, and F(s,0,r,A) evaluates to true.

Object Inheritance and Conflict Resolution Rule: A right r of subject s
on object o is inherited from the value groups containing o that are chosen by the in-
heritance directive, i.e., F(s,V(o,r),r,A) — F(s,o,r, A) and F(s,V(o,r),—r, A) —
F(s,0,—r, A) where V(o,r) is the set of value groups specified by the inheritance direc-
tive associated with o and r, r is either a positive or a negative right, and — denotes
“imply”. In case of conflicts, the access definition in the first value group chosen by
the inheritance directive is used.

Right Inheritance Rule: A positive or negative right r of subject s on object
0 is inherited from the right groups it belongs, i.e. F(s,o, R, A) — F(s,0,r,A) and
F(s,0,—R,A) — F(s,0,—r, A) where R includes r.

Right Inference Rule: A right r of subject s on object o, if undecided, is inferred
from the rights that imply r, i.e., F(s,o,rx,A) — F(s,o0,r, A) and
F(s,0,—r, A) — F(s,0,—ra, A) where re implies r.

Right Conflict Resolution Rule: The imply relationship is used in preference
to the include relationship in case of conflicts.

Subject Inheritance Rule 1: Subjects inherit both positive and negative rights
from the take relationship, i.e., if s takes the role of S, then F(S,0,r,A) — F(s,0,1r, A)
and F(S,0,—r, A) — F(s,0,—r, A).

Subject Inheritance Rule 2: If r is a coupling right involving passive subjects
s and s2, and s2 takes the role of s, then F(sl,(o,s),r,A) — F(sl,(0,s2),r,A) and
F(sl,(0,8),—r, A) — F(sl,(o,s2),—r, A).
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Subject Inheritance Rule 3: If subject sl has right r of subject s2, i.e.,
have(sl,r,s2) = true, then F(s2,r,0,A) — F(sl,r, 0, A) where r is a positive right.

Subject Conflict Resolution Rule 1: A more specific role defined by the take
relationship should be used first.

Subject Conflict Resolution Rule 2: In case of conflicts, a hint specified by
users is used to determine which role should be used first. In particular, we choose
the access definition that appears earliest in the access list.

Subject Conflict Resolution Rule 3: The take relationship is used in prefer-
ence to the have relationship in case of conflicts.

*-Right Inheritance Rule 1: The imply relationships among non-*-rights are
mapped to the *-rights, i.e., imply(R1, R2) — imply(R1%, R2x) where R1 and R2 are
non-*-rights.

*-Right Inheritance Rule 2: The include relationships among non-*-rights are
mapped to the *-rights, i.e., include( R1, R2) — include( R1*, R2x) where R1 and R2
are non-*-rights.

Ownership Semantic Rule: Quwnership is a special right defined by associating
a set of imply relationships with the right.

Ownership Initialization Rule: A subject who creates an application owns all
the initial variables defined within the application unless they have predefined owners.
A subject who dynamically creates a new variable owns that variable.

Multiple Ownership Rule: An initial owner of an object can add roles into or
remove roles from its owner list. The owners of an object are the set of users that
take a role in the owner list.

Ownership Default Rule: By default, ownership implies OlistR and OlistR*.

Ownership Inheritance Rule: The owner list of an object o, if unspecified,
is inherited from the value groups containing o that are chosen by the inheritance
directive. In case of conflicts, the ownership list defined in the first value group chosen
by the inheritance directive is used. By default, inheritance starts from structure value

groups.
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