
SUPPORT FOR SECURITY IN DISTRIBUTED

SYSTEMS USING MESSIAHS

Steve J. Chapin Eugene H. Spa�ord

Department of Mathematics COAST Laboratory

and Computer Science Department of Computer Sciences

Kent State University Purdue University

Kent, OH 44242-0001 West Lafayette, IN 47907{1398

sjc@cs.kent.edu spaf@cs.purdue.edu

Abstract

The messiahs project is investigating the construction of a set of mech-

anisms to support task placement in autonomous, heterogeneous, distributed

systems. In this paper we explore aspects of the messiahs system that support

security in distributed systems.

In particular, we will concentrate on aspects of messiahs that defeat denial

of service attacks, provide �rewalls, protect private system description infor-

mation, and support matching of tasks and systems based on security ratings.

Development of these features will allow tasks to be scheduled in a heteroge-

neous distributed system, while protecting data and system integrity.

messiahs is a set of mechanisms that ties together disparate computing

resources to achieve distributed processing without sacri�cing local control.

messiahs is novel in that it includes support for autonomous systems while

providing exible, scalable mechanisms to implement scheduling algorithms for

heterogeneous distributed systems.

Keywords: distributed systems, scheduling, security, autonomy, availabil-
ity, visibility

1 Introduction

We are investigating scheduling support mechanisms for autonomous, heterogeneous,
distributed systems. Our goal is to develop mechanisms that allow scheduling al-
gorithms to be implemented for large-scale distributed systems using heterogeneous
hardware and software, across administrative boundaries. Such large-scale distributed
systems can achieve performance surpassing that of the largest parallel supercomput-
ers [11], and increase utilization of underutilized computing power [8]. As part of

this work, we have developed a set of mechanisms and a prototype implementa-
tion called messiahs: Mechanisms E�ecting Scheduling Support In Autonomous,
Heterogeneous Systems [5, 4].

Our research is motivated by three factors. First, decentralization of computing
systems has introduced administrative domains as a barrier to distributed computing.
To overcome this, some method must be found to unite systems from incompatible
administrative domains while respecting the autonomy of the individual systems.
Second, many researchers have concentrated on scheduling and load-balancing algo-
rithms while assuming the existence of the mechanisms necessary to support them
(see, for example, Sarkar and Hennessy [13], Lo [12], or Blake [1]). They have ei-
ther designed ad-hoc mechanisms to support particular algorithms, or limited their
research to theoretical analysis of the scheduling algorithms. Third, users of com-
puter systems may require resources that are not available locally, such as specialized
processors or remote databases.

This paper concentrates on security aspects of the messiahs mechanisms, which
ties in with the �rst factor listed above. As part of the support for distributed
computing across administrative domains, messiahs provides mechanisms that

1. thwart denial of service attacks,

2. can act as a �rewall to limit access by outside systems,

3. can restrict the ow of sensitive system description information outside an ad-
ministrative domain,

4. and allows systems and tasks to be labeled in support of partitioning based on
security requirements.

Section 2 gives background information describing the messiahs system. Sections
3, 4, 5, and 6 describe the messiahs mechanisms that support the four points listed
above. Section 7 contains concluding remarks and proposes future directions for our
investigation of security in distributed task placement.

2 MESSIAHS Background

Our systems are structured in a hierarchical fashion based on virtual systems repre-
senting administrative domains. A virtual system is composed of a set of subordinate
virtual systems. Within each of these sets there can be many machines, which could
be further grouped into virtual systems. At the lowest level, each machine is the sole
member of a virtual system. We call an encapsulating virtual system a parent, and a
subordinate system a child. Children with the same parent are called siblings.

For example, �gure 1 displays part of the administrative structure of the Kent
State University Mathematics and Computer Science Department. Within the de-
partment, there are several generally accessible machines such as Chaos and Nimitz,
as well as machines supporting specialized research projects. One of these projects is

Kent MCS

NimitzChaos OSR

JasperOgionVetch

Figure 1: A subset of the machines in the Kent State Math/CS Dept.

the Operating Systems Research (OSR) project, which has administrative authority
over a set of machines including Ogion, Vetch, and Jasper.

Inmessiahs, each virtual system in the hierarchy has a scheduling support module
that is responsible for maintaining the set of information required by the scheduling
policy. Scheduling algorithms take a set of tasks and a description of the underly-
ing multicomputer and devise an assignment of tasks to processors according to an
optimizing criterion.

Our method for supporting scheduling decisions has three main parts: the sys-

tem description vector, the task description vector, and the update protocol used
to communicate between systems. The description vectors contain state description
information, including system processing load, memory statistics, processing capabil-
ities, and storage capacities. The update protocol sends system description vectors
between modules.

The model for update ow is that a module collects several description vectors,
adds information describing the local system, and condenses the resulting set of de-
scription vectors into one vector to facilitate scalability. This vector will be advertised
to its parents and children. The module can also decide not to include data in the
outgoing vector based on security constraints.

When a task is submitted for execution, a task description vector is sent to a
scheduling module.1 The scheduling module compares the task description to its
own system description and the system description vectors it has received from other
systems. Based on the scheduling policy, the module chooses one of the systems and
attempts to schedule the task there.

messiahs attempts to sacri�ce the least autonomy for participating systems.
There are four types of autonomy in distributed systems, as de�ned in [9, 6, 7],
and re�ned in [4]: execution autonomy, communication autonomy, design autonomy,
and administrative autonomy. Execution autonomy means that each system decides
whether it will honor a request to execute a task; each system also has the right to
revoke a task that it had previously accepted. Communication autonomy means that
each system decides the content and frequency of state advertisements, and what
other messages it sends. A system is not required to advertise all its capabilities, nor
is it required to respond to messages from other systems. Design autonomy gives the
architects of a system freedom to design and construct it without regard to existing

1These requests are called scheduling requests.

systems, yielding heterogeneous systems.
Administrative autonomy means that each system can have its own usage policies

and behavioral characteristics, independent of any others. In particular, a local sys-
tem can run in a manner counterproductive to a global optimum. In the usual case,
scheduling modules will cooperate, but administrators must be free to set their local
policies or they are unlikely to participate in the distributed system [2, 8].

The next four sections examine the behavior of the module and show how the
autonomy support within messiahs facilitates security in distributed systems.

3 Denial of Service Attacks

Communication, administrative, and execution autonomy form a basis to thwart de-
nial of service attacks. Each system can autonomously decide whether or not to
accept any task. Thus, policies can be written to use current load or the identity of
a requesting system as criteria to screen incoming requests.

messiahs implements two interface layers that scheduler-writers can use to im-
plement their algorithms. The �rst, called the MESSIAHS toolkit, is a library of
function calls that can be used with a high-level language such as C [3]. The sec-
ond, the MESSIAHS Interface Language, or MIL, is an interpreted language that is
especially tailored to the task of scheduling [5].

Either of these interface layers can be used to implement scheduling �lters. A
�lter takes two description vectors and returns a numerical result indicating how well
they match. A task �lter compares an incoming task description vector to a system
description vector and returns an integer. A negative number indicates an error during
the evaluation of the �lter, while zero indicates that there is no match. In either case,
the task is not accepted for input. Positive integers indicate a match. In general,
larger values imply a better match, although a boolean �lter can be implementing by
returning the same value for all matches, e.g. the integer one.

For example, the local policy could decline scheduling requests when the local
load average exceeds a threshold. This would limit the impact of outside tasks on the
system, although it would not discriminate between legitimate and malicious requests
for resources. A policy based on the source of the request could ensure that the task
comes from a trusted source. A mixture of these policies could limit the number of
tasks from untrusted sources while also limiting the total load on the system. In this
way, an attempted denial of service will consume at most a small percentage of the
resources of the machine.

Communication autonomy can also help to defeat denial of service attacks. Be-
cause a system is not required to respond to a message, it can simply ignore suspicious
scheduling requests. This diminishes the possibility of saturating the scheduling mod-
ule with requests from outlaw systems. It also eliminates a possible covert channel,
wherein an attacker could study the behavior of the system in response to spurious
scheduling requests.

In addition, execution autonomy allows the scheduling policy to revoke or migrate
running jobs. This facility can be used to remove tasks consuming excess resources,

or to respond to a surge in load caused by an attempted denial of service attack.

4 Firewalls

It is sometimes desirable to mask the details of a resource, while still allowing outside
access. This is commonly done for electronicmail systems, and is usually implemented
through the use of a �rewall [10]. All attempts to access a resource pass through the
�rewall, and the outside agent accessing the resource cannot tell the exact location
of the resource.

For example, in �gure 1, the OSR node can act as a �rewall to hide the presence
of Vetch, Ogion, and Jasper. It can still advertise some of their capabilities to the
other nodes in the system, but it appears as if all their resources are located at the
OSR node.

messiahs incorporates two mechanisms to accomplish this: information conden-
sation and proxy acceptance. Information condensation takes place when two or more
update vectors are combined to form a single vector for advertisement. For example,
OSR combines the capabilities of OSR, Vetch, Ogion, and Jasper into a single vector
that can be sent to nodes outside the virtual system rooted at OSR. In the process,
all identifying information, such as location information of individual resources, is
removed.

For example, suppose Ogion were an SGI Indy running IRIX 5.1 2, Vetch were a
SPARC IPC running SunOS 4.13, and Jasper were a 486 clone running FreeBSD. The
information advertised by OSR would indicate the presence of MIPS, 486, and SPARC
processors, as well as the presence of the IRIX, BSD, SunOS operating systems.
There is no indication which processor is running which operating system. The OSR

node knows this, but does not advertise it to the outside world. This might cause
another node to send a spurious request to OSR, e.g. a request to run a task on
a SPARC processor running the BSD operating system. However, OSR will have
enough information to discard the request, and no tasks will be misscheduled as a
result.

This leaves open the question, \If a task is scheduled on a system, how is it moved
to the system without the originator knowing where the system is?" The solution
used in messiahs is the proxy accept. When passing a scheduling request to an
interior node, the �rewall logs the request, replaces the originator's address with its
own address, and waits for the response from the interior node. If the node accepts
the request, it sends an acceptance message back to the �rewall.

Upon receipt of the accept message, the �rewall replaces the address of the ac-
ceptor with its address, and forwards the acceptance to the originator of the request.
The originator then treats the �rewall as the acceptor, and forwards the task for
execution. The �rewall then forwards the task to the real acceptor, and continues to
act as an intermediary between the acceptor and the outside world.

2Indy and IRIX are trademarks of Silicon Graphics, Incorporated.
3SPARC and SunOS are trademarks of Sun Microsystems, Inc.

struct statvec {

float min, max, mean, stddev, total;

};

typedef struct statvec Statvec;

struct procclass {

bit32 nsys; /* number of machines in this class */

Statvec qlen; /* run queue statistics */

Statvec busy; /* load on cpu (percentage) */

Statvec physmem; /* total physical memory */

Statvec freemem; /* available memory */

Statvec specint92; /* ratings for specint 92 */

Statvec specfp92; /* ratings for specfp 92 */

Statvec freedisk; /* public disk space statistics */

};

Figure 2: Statistics vectors and processor classes in messiahs

5 Control of Advertised Information

To be secure, systems must not advertise sensitive information to untrusted systems.
The communication autonomy support in messiahs allows scheduling policies to omit
data from their outgoing vectors. This feature can be used to �lter outgoing data to
be consistent with a security policy.

To facilitate scalability, messiahs uses a statistical representation of the capa-
bilities of a virtual system. That is, instead of listing speci�c ratings of individual
machines, the minimum, maximum, mean and standard deviation for a capability are
kept, as well as the number of systems represented in a vector (see �gure 2).

To partition the possible space of attributes, machines are divided into classes
based on logarithmic scale of their processor speed, with a structure containing sta-
tistical information regarding the available resources for machines in each class (see
�gure 2). In this way, information can be condensed while still providing enough
information for scheduling algorithms to make intelligent choices.

messiahs provides routines to automatically combine multiple statistical vectors
into one. This is the mechanism used by the module to coalesce multiple system
descriptions into the description of a single virtual system. The autonomy support
within the mechanisms allows �elds to be omitted from the combination. For example,
if the OSR project administrator does not want the capabilities of Jasper advertised
to nodes outside the project, he can specify that Jasper's resources not be included in
OSR's advertised vector. Both MIL and the scheduling toolkit allow the administrator
to restrict information advertisement in this fashion.

begin combining

string $out.tier not match($out.tier, "preferred"):

set $out.tier + ":preferred";

string $out.department not match($out.department, "research"):

set $out.department + ":research";

end

Figure 3: A code fragment from MIL using labels

The obvious tradeo� is this scheme is the size of the advertised vectors versus
the degree of detail present in the vectors. The approach taken allows the vectors
to be kept to a reasonable size4 while still providing su�cient visibility of individual
machines so that scheduling algorithms can function well.

6 Extension and Labeling Support

In addition to the �xed data represented by statistical vectors, messiahs also allows
administrators to extend the system description vector. This a�ords the mechanisms
exibility in supporting scheduling algorithms, and can be used to support secure
processing based on security classi�cations.

Systems can insert labels in their extension vectors to indicate the security clas-
si�cation required to run a task on that system. Tasks can include a security label
listing their security classi�cation. The scheduling algorithm can match the levels to
ensure that the task's security rating is equal to or higher than that of the system.

The messiahs mechanisms can improve the e�ciency of a distributed computa-
tion. Large jobs can be partitioned into smaller tasks based on their security require-
ments, and then only those tasks that require secure processing will be run on secure
sites. Tasks that do not require secure processing can be run on any general-purpose
processor within the distributed system. This not only reduces the load on the se-
cure installations, it increases the security of these systems by ensuring that only
computations that require secure resources are run there.

This labeling mechanism could also be used in commercial systems. Within a
single organization, tasks could be labeled with their department of origin, e.g. sales
or research. Systems could protect private data by only executing certain classes
of jobs. This mechanism could also be used by an institution that sells processing
time to outside customers. The institution could o�er di�erent tiers of service, and
jobs from customers would be labeled based on the tier they had purchased. Jobs
from more expensive tiers might receive preferential treatment by being given higher
priority, or being assigned to faster computers.

Figure 3 shows an example usage of labeling written in MIL. Assume that the

4The update vectors in the prototype implementation are approximately two kilobytes in size.

intent is to advertise that the virtual system will run tasks for preferred customers
within the research department. This code fragment makes sure that the service tier
preferred appears in the outgoing description vector, and ensures that the research de-
partment label also appears. Again, outside systems cannot determine if the preferred
tier applies to the research department, but this will not cause a breach of security.

Two factors complicate the use of messiahs for this type of service. First, there
must be some method of ensuring that machines and tasks cannot spoof higher secu-
rity classi�cations or service tiers. Second, there must be guarantees that the data in
the extension area remains private and uncorrupted, because communication auton-
omy allows intervening systems to read or alter the contents of an advertisement. In
the absence of a distributed secure network, we are left to devise software solutions
to these problems.

We can use well-known authentication techniques such as those found in Kerboros
[14] to ensure the validity of labels. A possible solution to the second problem is to
encrypt private data within the extended portion of the task description vector so
that only trusted hosts can view the secret data. However, this scheme presents the
di�culty that intermediate nodes have no semantic knowledge of the encrypted infor-
mation, and therefore cannot apply any combining rules to condense the information.
Finding a clean solution to this dilemma is an open problem.

7 Concluding Remarks

We have described the messiahs system for scheduling support. messiahs includes
generous support for autonomy in distributed systems, and this autonomy support
can form the basis for security measures.

We have shown how the scheduling support mechanisms can support four aspects
of security: thwarting denial of service attacks, acting as a �rewall, restricting the
ow of information outside an administrative domain, and allowing systems and tasks
to be matched based on their security requirements.

The messiahs system has several potential applications for distributed systems
in a trusted environment. The mechanisms can support process migration and load
balancing. Because the update protocols track which machines are available, fault
tolerance can be layered over the mechanisms. The revocation facility can support
transaction management in a nested-transaction environment.

Our plans for the future are to study the issue of cryptographic techniques to
handle end-to-end security issues. However, there are signi�cant barriers to be over-
come to prevent nodes from advertising encrypted, sensitive information outside an
administrative domain.

References

[1] B. A. Blake. Assignment of Independent Tasks to Minimize Completion Time.
Software{Practice and Experience, 22(9):723{734, September 1992.

[2] A. Bricker,M. Litzkow, and M. Livny. Condor Technical Summary. Technical Re-
port 1069, Department of Computer Science, University of Wisconsin-Madison,
January 1992.

[3] S. Chapin and E. Spa�ord. Implementing Scheduling Algorithms Using MESSI-
AHS. Scienti�c Programming, 1994. to appear in a special issue on Operating
System Support for Massively Parallel Computer Architectures.

[4] S. J. Chapin. Scheduling Support Mechanisms for Autonomous, Heterogeneous,
Distributed Systems. Ph.D. Dissertation, Purdue University, 1993.

[5] S. J. Chapin and E. H. Spa�ord. Constructing Distributed Schedulers with the
MESSIAHS Interface Language. In 27th Hawaii International Conference on

Systems Sciences, volume 2, pages 425{434, Maui, Hawaii, January 1994.

[6] W. Du, A. K. Elmagarmid, Y. Leu, and S. D. Ostermann. E�ects of Local Au-
tonomy on Global Concurrency Control in Heterogeneous Distributed Database
Systems. In Second International Conference on Data and Knowledge Systems

for Manufacturing and Engineering, pages 113{120. IEEE, 1989.

[7] F. Eliassen and J. Veijalainen. Language Support for Multidatabase Transactions
in a Cooperative, Autonomous Environment. In TENCON '87, pages 277{281,
Seoul, 1987. IEEE Regional Conference.

[8] C. A. Gantz, R. D. Silverman, and S. J. Stuart. A Distributed Batching System
for Parallel Processing. Software{Practice and Experience, 19, 1989.

[9] H. Garcia-Molina and B. Kogan. Node Autonomy in Distributed Systems. In
ACM International Symposium on Databases in Parallel and Distributed Sys-

tems, pages 158{166, Austin, TX, December 1988.

[10] S. Gar�nkel and E. Spa�ord. Practical UNIX Security. O'Reilly and Associates,
1991. ISBN 0-937175-72-2.

[11] A. H. Karp, K. Miura, and H. Simon. 1992 Gordon Bell Prize Winners. IEEE
Computer, 26(1):77{82, January 1993.

[12] V. M. Lo. Task Assignment to Minimize Completion Time. In Distributed

Computing Systems, pages 329{336. IEEE, 1985.

[13] V. Sarkar and J. Hennessy. Partitioning Parallel Programs for Macro-Dataow.
In ACM Conference on Lisp and Functional Programming, pages 202{211, Au-
gust 1986.

[14] A J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An Authentication
Service for Open Network Systems. In Usenix Conference Proceedings, pages
191{202, Dallas, TX, February 1988.

