
Addressing Weaknesses in the Domain Name

System Protocol

Christoph L. Schuba

COAST Laboratory

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907-1398

schuba@cs.purdue.edu

ii

ABSTRACT

Schuba, Christoph. M.S., Purdue University, August 1993. Addressing Weaknesses
in the Domain Name System Protocol. Major Professor: Eugene H. Spa�ord.

The Domain Name System (DNS) is a widely implemented distributed database

system used throughout the Internet, providing name resolution between host names

and Internet Protocol addresses.

This thesis describes problems with the DNS and one of its implementations that

allow the abuse of name based authentication. This leads to situations where the

name resolution process cannot be trusted, and security may be compromised.

This thesis outlines the current design and implementation of the DNS. It states

the main problem both on a high level and as applied to the DNS in a more concrete

fashion. We examine the weaknesses in the DNS and exploit a method to abuse the

DNS for system break{ins.

We demonstrate these weaknesses by describing the necessary modi�cations in

authoritative DNS data and Domain Name System code. We list experiences gained

during experiments with several setups of name servers and trusting hosts in a local

area network.

Too weak assumptions during the authentication processes cause many security

breaches. We state the security considerations in the o�cial design documents and

analyze the algorithms used in the DNS protocol looking for weak assumptions. Using

a wide variety of criteria, we discuss several approaches to solve the main problem

in the Domain Name System protocol. Two of these solutions, hardening the name

server and using cryptographic methods for strong authentication, receive more at-

tention than the other solutions.

DISCARD THIS PAGE

iii

TABLE OF CONTENTS

Page

ABSTRACT : ii

LIST OF TABLES : vi

LIST OF FIGURES : vii

1. INTRODUCTION : 1

2. THE DOMAIN NAME SYSTEM : 5

2.1 Introduction : 5
2.1.1 The TCP/IP Protocol Suite : : : : : : : : : : : : : : : : : : : 6
2.1.2 Internet Services : 6
2.1.3 Packet Routing : 7
2.1.4 Name Resolution : 7

2.2 Historical Development : 8
2.3 Design Goals : 9

2.3.1 Data Consistency : 10
2.3.2 E�ciency : 10
2.3.3 Distributed Character : 11
2.3.4 Generality : 11
2.3.5 Independence : 11

2.4 DNS Entities : 12
2.4.1 Domain Name Space : 12
2.4.2 DNS Messages : 14
2.4.3 Resource Records : 17
2.4.4 Name Servers : 18
2.4.5 Resolvers : 19

2.5 Forward and Inverse Mapping Tree : : : : : : : : : : : : : : : : : : : 20
2.6 Recursion and Iteration : 22
2.7 Filling in the Blanks : 22

iv

Page

2.7.1 Role of Caches : 23
2.7.2 Role of Authorities : 23
2.7.3 Occurrence of Errors : 24

2.8 Example: Name Resolution : 24
2.9 The Domain Name System Protocol : : : : : : : : : : : : : : : : : : : 26

2.9.1 Data Structures : 26
2.9.2 Name Server Algorithm : 27
2.9.3 Resolver Algorithm : 30

2.10 Interaction of Name Server and Resolver : : : : : : : : : : : : : : : : 31
2.10.1 Data Flow : 32
2.10.2 Shared Information : 33

3. DESCRIPTION AND DEMONSTRATION OF WEAKNESSES : : : : : : 35

3.1 Statement of the Problem : 35
3.2 The Problem in the DNS : 36
3.3 Weaknesses : 38

3.3.1 Assumptions to Facilitate Break{ins : : : : : : : : : : : : : : : 38
3.3.2 Authentication via Host Names : : : : : : : : : : : : : : : : : 39
3.3.3 Trusting a Not Trustworthy Source : : : : : : : : : : : : : : : 40
3.3.4 Believing Additional, Not Authoritative Information : : : : : 40

3.4 Exploiting the Flaws : 41
3.4.1 Regular Access : 41
3.4.2 The \Database Modi�cation" Approach : : : : : : : : : : : : 42
3.4.3 The \Cache Poisoning" Approach : : : : : : : : : : : : : : : : 42
3.4.4 The \Ask Me!" Approach : 43

3.5 Implementation and Experiments : 45
3.5.1 Domain and Zone Setup : 45
3.5.2 Name Server and Resolver Setup : : : : : : : : : : : : : : : : 45
3.5.3 Trusting Hosts : 46
3.5.4 Authentication in Berkeley \r{Commands" : : : : : : : : : : : 47
3.5.5 Reverse Lookup Tree Manipulation : : : : : : : : : : : : : : : 48
3.5.6 Cache Corruption : 48

3.6 Experiences Gained : 50
3.6.1 Acquiring Information : 51
3.6.2 Complexity of Modi�cations : : : : : : : : : : : : : : : : : : : 52
3.6.3 Detecting a DNS based Break{in : : : : : : : : : : : : : : : : 53

4. SECURITY ANALYSIS AND SOLUTIONS : : : : : : : : : : : : : : : : : 55

4.1 Security Considerations in the RFC 1035 : : : : : : : : : : : : : : : : 55
4.2 Analysis of the Name Server Algorithm : : : : : : : : : : : : : : : : : 57

v

Page

4.3 Analysis of the Resolver Algorithm : : : : : : : : : : : : : : : : : : : 58
4.4 Evaluation Criteria : 60
4.5 The Berkeley Patch : 61
4.6 Examining Berkeley \r{Commands" : : : : : : : : : : : : : : : : : : : 62
4.7 Restricting Public Information Access : : : : : : : : : : : : : : : : : : 64
4.8 Adjusting DNS Update Intervals : 66
4.9 Abandoning the Domain Name System : : : : : : : : : : : : : : : : : 67
4.10 Hardening Name Servers : 68

4.10.1 Problems Not Exploiting Cache Poisoning : : : : : : : : : : : 68
4.10.2 Problems Exploiting Cache Poisoning : : : : : : : : : : : : : : 69
4.10.3 Keeping Additional Information : : : : : : : : : : : : : : : : : 70
4.10.4 Prevention of Cache Poisoning : : : : : : : : : : : : : : : : : : 70
4.10.5 Context Cache : 71
4.10.6 Authority Cache : 72
4.10.7 Conditional Cache Use : 72
4.10.8 Discussion : 73

4.11 Cryptographic Methods for Strong Authentication : : : : : : : : : : : 73
4.11.1 Data Integrity : 74
4.11.2 Originator Authentication : 75
4.11.3 Passing Credentials to Prove Authority : : : : : : : : : : : : : 77
4.11.4 Example : 78
4.11.5 Discussion : 81

5. CONCLUSIONS AND OUTLOOK : 83

BIBLIOGRAPHY : 85

vi

LIST OF TABLES

Table Page

2.1 Subset of QTYPEs : 19

2.2 Example steps in name resolution : 26

3.1 Regular access : 41

3.2 The \Database Modi�cation" approach : : : : : : : : : : : : : : : : : : 42

3.3 The \Cache Poisoning" approach : 43

4.1 Example: certi�cate validation : 79

4.2 Example: legend of abbreviations : 79

vii

LIST OF FIGURES

Figure Page

2.1 Domain purdue.edu : 12

2.2 Domain vs. zone : 13

2.3 DNS message : 14

2.4 The in-addr.arpa domain : 21

2.5 Degree of speci�cation : 21

2.6 Example name resolution : 25

2.7 Name server algorithm : 28

2.8 Resolver algorithm : 30

2.9 Data ow between DNS entities : 32

3.1 Experimental setup : 36

3.2 Algorithm of the Berkeley patch : 49

3.3 Additional false resource record : 50

3.4 Modi�cations in name server code : 51

4.1 Application of a message digest algorithm : : : : : : : : : : : : : : : : : 74

4.2 Digital signature generation and validation : : : : : : : : : : : : : : : : 76

4.3 Example: certi�cate validation : 80

viii

ACKNOWLEDGMENTS

We would like to thank the German-American Fulbright Commission for a schol-

arship that made this work possible. Thanks to Steven Bellovin whose valuable

comments are most appreciated and Dan Trinkle who showed us how to master some

of the subtle di�culties of the DNS.

1

1. INTRODUCTION

The Internet is a widespread conglomeration of hundreds of thousands of inter-

connected heterogeneous networks and hosts. The design of the Internet is based on

a protocol hierarchy. There exist multiple implementations of these protocols.

Computers communicate with each other on the basis of di�erent types of ad-

dresses; on the physical layer using low{level physical addresses like Ethernet1 card

addresses, on the data link to presentation layer using host addresses such as IP

addresses2, and on the application layer using high{level, pronounceable host names.

One of the management tasks in the Internet is the mapping of lower level ad-

dresses to host names. A �rst naive approach is to collect all name{to{address map-

pings in a single �le. That was also the �rst approach taken in the Internet. The �le

\HOSTS.TXT" contained the name{to{address mapping for every host connected to

the ARPANET.

The task of naming hosts and network domains is addressed by creating a hier-

archical relation between domains, with hosts as the furthest descendants from an

arti�cial root domain. By appending the domain labels one after the other to the

host labels on the path up to the root in the hierarchical tree, a unique, memorizable,

and usually pronounceable identi�er is created: the host name.

The mapping, or binding, of IP addresses to host names became a major problem

in the rapidly growing Internet. This thesis does not deal with the mapping between

addresses on the physical layer and transport layer, which is solved by ARP3 in the

UNIX4 protocol suite, but with the mapping between host names and IP addresses.

1Ethernet is a registered trademark of Xerox Corporation
2\32-bit addresses assigned to hosts that want to participate in a TCP/IP internet" [Com91]
3\Address Resolution Protocol { used to dynamically bind a high level IP address to a low level

physical hardware address" [Com91]
4UNIX is a trademark of AT&T Bell Laboratories

2

This higher level binding e�ort went through di�erent stages of development up to

the currently used Domain Name System. The Domain Name System, with its Berke-

ley UNIX implementation called BIND5, is a distributed naming resolution system

used by most network services available throughout the Internet. It works transpar-

ently for the user who sends email, accesses another host via \telnet" or \rlogin,"

or transfers some �les via \ftp" from another site to his own machine. The Domain

Name System provides name binding in both directions: given a host name, it returns

the appropriate IP addresses, and vice versa.

Before hosts grant network services to users, an authentication process takes place,

where the users' access rights, and the identity of connecting hosts get scrutinized,

according to provider policies. These examinations are usually based upon identi�ca-

tion by login name, password and host name. In some cases it is su�cient to provide

the right names, and access is granted without specifying any password at all.

Some Berkeley \r{commands" o�er network services for which it is su�cient to

verify user name and host name to grant complete access. As the remote user name

is speci�ed by the connecting site, the authentication is based upon the name of the

connecting machine. A machine that o�ers services can acquire information about

the socket that is used by the connecting site. A socket is a tuple consisting of IP

address, port, and protocol used by the remote site. To verify the host name, it is

the task of the Domain Name System to map the IP address on the host name. We

examine this case more closely later in this thesis.

Because the Domain Name System is distributed among many thousands of hosts,

it can be a critical mistake to blindly trust the resolved binding. This thesis shows that

under some assumptions it is no major e�ort to falsify the host name and authorization

for a system.

Although this problem has been known for some years now, not many publica-

tions deal with it. [Bel90b] is the main paper we can mention as related work. It

demonstrates the subversion of system security using the Domain Name System and

5Berkeley Internet Name Domain

3

discusses possible defenses against the attack and limitations on their applicability.

An earlier paper by Steven Bellovin ([Bel89]) has already mentioned the possibility

of abuse of the Domain Name System. That paper follows suggestions from Paul V.

Mockapetris, the designer of the Domain Name System.

The main body of this thesis consists of three chapters followed by a �nal chapter

drawing conclusions and giving suggestions for future work.

The �rst of these three chapters, Chapter 2, describes the position and role of the

Domain Name System in its frame, the Internet. It gives a short historical sketch of

the Internet and describes the Domain Name System on a high level. In that section

we go into as much detail as necessary to build up the necessary background for the

succeeding chapters. We introduce the technical terms and explain the mechanisms

central to the understanding of the Domain Name System and the exploitation of its

weaknesses. We give an example of a name resolution and the description of the data

structures and algorithms used by name servers and resolvers.

Chapter 3 states precisely the main problem we are addressing. We explain the

main problem in several stages, giving more details from section to section. First we

describe the problem at a high level. Then we show the existence of the problem with

the Domain Name System. We express the assumptions and examine the weaknesses

in the Domain Name System that lead to the possibility of gaining unauthorized access

to a certain type of remote host. In Chapter 3 we demonstrate the exploitation of

the security aws by giving details of an arti�cial setup that leads stepwise to an

unauthorized login on another host. We close the chapter with experiences gained

during our experiments.

Concluding the main body of this thesis, Chapter 4 analyzes the current security

features in the Domain Name System and presents solutions to the given problem.

The �rst part contains the security considerations in the RFC and a security analysis

of the name server and resolver algorithms. Some of the solutions in the second part

are already implemented and running in patched versions of system software, or are

followed by organizational policies; others are still in an early stage of development.

4

Each of the solutions presented is discussed in this chapter and evaluated using a

wide variety of criteria.

The approach, and its discussion, of combining partial solutions to a dense net-

work, are part of the concluding chapter. Even if these interwoven solutions do not

guarantee the security of a system, at least they increase the con�dence in it.

5

2. THE DOMAIN NAME SYSTEM

This chapter describes the position and role of the Domain Name System in its

frame, the Internet. We start o� by talking about the Internet, the TCP/IP protocol

suite, Internet services, routing, and �nally the need for name resolution. It follows

an outline of the historical development of the Domain Name System that led to

the current system. We describe the design goals of the current system for name

resolution in the Internet and its interacting entities. We also talk about forward and

reverse mapping trees, and recursive and iterative resolving techniques. The following

section contains some additional remarks about topics that were already mentioned

but deserve a more detailed treatment.

Before describing the concrete data structures and algorithms used by name

servers and resolvers we give an example of a name resolution. This example should

provide a good understanding of the algorithms and the interaction of all participating

entities in the distributed Domain Name System.

Wherever it is necessary to provide more speci�c descriptions of concepts or the

implementation of the Domain Name System, we cover the respective topics in greater

detail.

2.1 Introduction

To understand the role that the DNS plays, we start by introducing the Internet

in general (see [Com91, Preface and chapter 1]).

Data communication has become a fundamental part of computing. Hosts gather

information worldwide and their users want to exchange data and use remote ser-

vices for di�erent purposes. Common interests, shared by people that live and work

thousands of miles away from each other, created the need for e�cient and reliable

6

data communication. What started before 1960 with the development of informa-

tion theory, the sampling theorem, and the �eld of signal processing, became around

the mid 1960s the question of how to transmit data packets in local area networks.

The Internet contains and provides even more: internetwork technologies, protocol

layering models, and datagram and stream transport services between hosts on pos-

sibly di�erent networks, that together constitute an interconnected architecture that

functions as a single uni�ed communication system.

2.1.1 The TCP/IP Protocol Suite

The need and importance of internet technology was recognized by government

agencies, which resulted in its development by DARPA1. The DARPA technology

includes network standards that specify details and conventions of computer commu-

nication, network interconnection, and tra�c routing. \TCP/IP2," an abbreviation

of the o�cial name \TCP/IP Internet Protocol Suite," can be used to set up com-

munication between any set of interconnected hosts or networks. It is noteworthy

that TCP/IP is one of many possible technologies that could be used to compose

interconnected networks; one that has demonstrated its viability on a large scale.

2.1.2 Internet Services

Users are usually not interested in the underlying technologies of the Internet {

their interest is the utilization of network services. The layered design of TCP/IP

provides the necessary means for transparency in communication and hiding details

from the high level applications. Services can be partitioned into application level

internet services and network level internet services. Examples of application level

services are electronic mail, �le transfer, and remote login. The network level services

\connectionless packet delivery service" and \reliable stream transport service" are

used by the network application programmer and remain hidden from the application

1Defense Advanced Research Projects Agency
2named after its major standards TCP (Transmission Control Protocol) and IP (Internet

Protocol)

7

end user. These two services are based on the transmission of data packets, units of

data sent across a packet switching network. The collection of packets that belongs

to one connection composes the data communication.

2.1.3 Packet Routing

Packets that are sent from one host to another usually have to traverse more than

one physical link between these hosts. In a complex network with many thousands of

machines it is not a trivial task to direct a packet from its source to its destination.

In an internet3 there are specially dedicated machines that attach two or more

networks and transmit packets from one to the other. These machines are called

\gateways." While traversing the network from source to destination host, a message

is likely to pass through one or more gateways. If the topology of the network allows

several paths for the message to reach its destination, these gateways have to make

decisions about which route to choose for the packet.

In a TCP/IP internet the basic unit of data transmission is the IP datagram. The

process of choosing a path over which to send a datagram from source to destination

is referred to as routing; any computer making such a decision is called a router.

Gateways in the function of routers compose a cooperative, interconnected struc-

ture. Datagrams originated at the source are passed from router to router until they

reach a gateway that can deliver the datagram directly to its destination.

2.1.4 Name Resolution

Early systems supported point{to{point connections between computers and used

low level hardware addresses to specify machines. Internetworking introduced univer-

sal addressing as well as protocol software to map universal addresses into low-level

hardware addresses. There is also the notion of a host name | a high level address

3\Physically, a collection of packet switching networks interconnected by gateways along with
protocols that allow them to function logically as a single, large, virtual network. When written
in upper case, Internet refers speci�cally to the connected Internet and the TCP/IP protocols it
uses."[Com91]

8

| a pronounceable identi�er for hosts. The universal addresses can be mapped into

host names.

Mapping processes can also be called \name binding" or \name resolution." This

thesis is based on the name resolution process between high level addresses, the host

names, and universally assigned lower level IP addresses.

Name resolution is a general concept. The current protocol in the TCP/IP proto-

col suite dealing with this concept and solving the problems that arise from it is the

Domain Name System.

2.2 Historical Development

Around 1970, the ARPANET and the TYMNET were introduced. They were

the �rst large{scale, general{purpose data networks that connected geographically

distributed computer systems.

As the community contained only a few hundred hosts, name resolution was man-

aged using a single text �le: HOSTS.TXT. This �le contained name{to{address map-

ping for every connected host. The administration, maintenance, and distribution was

done by the SRI4{ NIC5.

Whenever some application had to resolve a host name and get the corresponding

IP address, or vice versa, the resolver function called simply looked up the name (or

IP address) in a local copy of the master HOSTS.TXT �le and returned the associated

value.

The enormous growth rate of the Internet was by no means predictable. Therefore

it took several years until serious problems became apparent:

� System administrators used to e{mail changes to the NIC and periodically con-

tact the SRI-NIC to obtain the latest copy of HOSTS.TXT. Network tra�c and

processor load became unacceptably high for the NIC.

4Stanford Research Institute in Menlo Park, California
5Network Information Center

9

� Names assigned to hosts have to be unique. As the NIC had no authority over

host name assignments, name collisions became a problem.

� With the growth of the Internet and the irregularity of database updates the

consistency of the name space was no longer guaranteed.

All of these problems arose because the original approach scaled poorly.

In 1984 the network community switched to the Domain Name System. Paul

Mockapetris was responsible for the design of the architecture of the new system.

The original RFCs6 describing the Domain Name System are [Moc83a] and [Moc83b].

They have been obsolete since the release of the current speci�cations [Moc87a] and

[Moc87b] in November 1987 ([LR93] and [BG92]).

2.3 Design Goals

The e�ort of designing the Domain Name System was directed towards several

goals, which had the main inuence on determining the current structure. The aim

was to create a system with the following objectives in mind:

� Data Consistency

� E�ciency

� Distributed Character

� Generality

� Independence

P. Mockapetris states in [Moc87a] the design objectives that led to the current system:

6RFCs are a series of technical reports called Requests for Comments

10

2.3.1 Data Consistency

The primary goal was to provide a consistent name space to be used to refer to

resources. In particular, the name space should not depend on any network identi�ers,

and therefore be totally independent of routing information or network topology.

2.3.2 E�ciency

The growth of the Internet in number of machines and subnetworks called for the

introduction of a naming resolution system that could handle not only the immense

volume of machines and resolution requests, but could also respond e�ciently. To

obtain these desired e�ects, the system was built in a hierarchical, distributed manner

using the technology of caching.

In an internet, access to machines in local networks is more likely than remote

access via many links. Therefore, far more name resolution requests are made locally.

The knowledge about the requested bindings in the local network is available in the

form of the local database. These facts suggests the use of the hierarchical organi-

zational format in which local resolution requests are resolved e�ciently by a local

entity, and infrequent resolution requests about remote mappings are dealt with by

an interaction of local and remote entities. The clear and clean structure that results

in seeing the name space as a tree also favors this approach.

The creation of host names by appending node labels from the leaves to the root of

this tree served the need for pronounceable, easily rememberable names for machines.

The distributed arrangement of the system contributes to cutting the huge name

space into pieces that can be managed e�ciently. Caching information locally that

was received from remote sites is another mechanism to obtain e�ciency. Because of

the dynamics of the system, the cached information is quali�ed with an additional

time to live (TTL) parameter to ensure the goal of data consistency.

11

2.3.3 Distributed Character

The choice of implementing this large scale client{server paradigm in a geograph-

ically distributed set of machines was supported by the need for increased reliability

through the existence of redundant data bases in secondary name servers. In the case

of any kind of failure in one of the name servers for a zone, the redundant backup

servers will still be able to provide the mapping service. Therefore the occurrence of

a failure at a single site cannot lead to the denial of the resolution service.

Local authorities could administer their own domains and zones, keeping the data

base consistent, providing autonomous control of name assignment, and taking away

the load from central authorities. Authority passes down the edges of the tree, whereas

information ows across the hierarchies from one host to another. The conceptual

arrangement of domain name servers in a tree resembling the name structure is in

fact a more realistic arrangement, namely a shallow tree.

2.3.4 Generality

Pragmatic reasons called for generality. Implementation costs and the amount of

administrative e�ort in supporting the system dictated a general usefulness. Therefore

the system does not contain any unnecessary restrictions regarding its purpose or

applications. This goal can be reformulated as the desire to allow augmentation of

the data basis by new data structures.

2.3.5 Independence

The system was designed to be independent of underlying hardware, be it of the

local machine or the network interface. Furthermore, the transactions should be

independent of the communication system that carries them. Therefore, all possible

kinds of packet switching are suitable, such as store{and{forward switching using

datagrams, virtual circuits, or possibly hybrid approaches.

12

2.4 DNS Entities

The Domain Name System consists of several entities: resolvers, name servers, and

resource records (RR). We �rst describe the domain name space and resource records

that are sections in DNS messages. They serve for the exchange of data between the

interacting name servers and resolvers. We then describe purposes and features of

name servers and resolvers.

2.4.1 Domain Name Space

The Domain Name Space is the speci�cation of a tree{structured name space. The

root of the tree is the root domain followed by its children, the top{level domains,

which can contain several levels of subdomains. Figure 2.1 shows the structure of

such a tree. Host names consist of a concatenation of the labels of each node on the

path from the leaf that represents the actual host up to the root. Adjacent labels are

separated by a dot. Domains are simply subtrees of the Domain Name Space. In our

example \purdue.edu" is a domain name.

edu com org

" "

purdue

cs cc ecn

Figure 2.1 Domain purdue.edu

13

A part of the Domain Name Space that is controlled completely by a name server

is called a zone. The delicate di�erence between a domain and a zone is that a

zone contains all the domain names and data that a domain contains, except for the

domain names and data that are delegated elsewhere (see Figure 2.2). Viewing the

domains (nodes) and hosts (leaves) as the conceptual arrangement yields a tree with

greater height than viewing the zones as nodes. The latter is a more realistic layout

of the tree in terms of e�ciency.

An example for the di�erence between domain and zone is the following scenario.

A local authority manages the domain \alpha.dom". \alpha.dom" has three subdo-

mains \phi," \chi," and \psi" that contain several hosts, but no further subdomains.

If the authority for subdomain \psi" is transferred to \psi.alpha.dom," two zones are

the result. The authority for \alpha.dom" could additionally transfer the authority

for \chi" to the same authority that administers \psi". This example shows that

zones do not have to be connected by edges in the tree structured domain tree.

domain

zone

Figure 2.2 Domain vs. zone

14

2.4.2 DNS Messages

DNS messages are the data units that are transmitted between name servers and

resolvers. A DNS message consists of the header and up to four sections (see Figure

2.3). The header contains the following �elds:

QNAME

HEADER

QUESTION

ANSWER

AUTHORITY

ADDITIONAL

ID

QR/OPCODE/AA/TC/RD/RA/Z/RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

QTYPE

QCLASS

NAME

TYPE

CLASS

TTL

RDLENGTH

RDATA

Figure 2.3 DNS message

15

� a 16 bit identi�er is assigned by the program that generates any kind of query

� the \QR" bit speci�es whether the message is a query (value 0) or a response

(value 1)

� the \OPCODE" is a four bit �eld that speci�es the kind of query in the message.

It can contain the following values:

{ 0 for a standard query (QUERY)

{ 1 for an inverse query (IQUERY)

{ 2 for a server status request (STATUS)

{ 3 - 15 reserved for future use

� the next bit \AA" is only valid in a response and speci�es that the responding

name server is an authority for the domain name in the question section

� the \TC" bit speci�es if a message was truncated

� the \RD" bit speci�es if recursion is desired by a query

� the \RA" bit speci�es if recursion is available

� the following three bits in the \Z" �eld are reserved for future use

� the last four bits determine the response code \RCODE". Possible values for

the response code are:

{ 0 for \No Error Condition"

{ 1 to indicate a \Format Error"

{ 2 to indicate a \Server Failure"

{ 3 to indicate a \Name Error"

{ 4 to indicate that the requested feature is \Not Implemented"

16

{ 5 to indicate that the name server \Refused" to perform the speci�ed

operation

{ 6 - 15 are reserved for future use

� The following four unsigned 16 bit integer values specify the number of entries

in the following question, answer, authority, and additional sections.

The contents of these four sections serve di�erent purposes. The order of these

section is always the same. Some of the sections can be empty in a DNS message.

The format of the answer, authority and additional section is the same.

The question section carries query name, query type and query class. Valid query

types are all the codes for resource record types, which we will explain in the following

Section 2.4.3, and some more general ones for zone transfer, mail handling tasks, and

wild{carding.

The following class mnemonics and values are currently de�ned:

� 1 for \IN" { Internet

� 2 for \CS" { CSNET

� 3 for \CH" { CHAOS

� 4 for \HS" { Hesiod

� 255 for wild{carding

The answer section carries resource records that directly answer the query, the

authority section carries resource records that describe other authoritative servers,

and the additional section carries resource records that are not explicitly requested

but might be helpful in using the resource records in the other sections.

The authoritative section contains name server data in the following case: if a

name server tries to resolve a name and he knows of an authoritative name server for

the domain in which the name lies that has to be resolved, he puts the name server's

17

name into the authority section of the reply. This is the approach in the DNS to refer

clients to others servers in the not recursive mode.

The additional section plays an important role in the same case. If a name server

refers a resolver to another name server, he better also provides the address of the

other name server, because that is the next information the resolver needs in order

to proceed with his queries. Another reason to have the additional section is to have

space for extra, not requested information. If a resolver receives additional records,

and caches them, he might be able to use them later. That would result in an

increased performance of the system, because the resolution of data that is already in

the local cache is considerably more e�cient than a remote resolution that requires

network tra�c.

These three types of DNS message sections share the same format. They have:

� a name

� a type as in a query

� a class as in a query

� a 32 bit time to live �eld given in seconds (TTL)

� an unsigned 16 bit integer that speci�es the length of the RDATA �eld in bytes

� a variable length string of bytes that describes the resource.

2.4.3 Resource Records

Data that is associated with the nodes and leaves of this tree is exchanged in the

RDATA portion of the last three sections in a DNS message. These resource records

are tagged according to the type of data they contain. We mention only those types

that provide necessary information for understanding this thesis. A complete list of

types and classes can be found in RFC 1035 ([Moc87b]).

� an \A" record contains a host address; a 32-bit Internet address when the class

is \IN"

18

� an \NS" record speci�es a host which should be authoritative for the speci�ed

class and domain

� an \SOA" record is the �rst entry in each of the database �les and speci�es a

server to be the authoritative source of information within the domain

� a \PTR" record provides a pointer to another location in the domain name

space

� an \HINFO" record identi�es the CPU type and operating system type used

by a host

� a \CNAME" record speci�es the canonical or primary name for the owner { the

owner is an alias

� a \MX" record speci�es a host willing to act as a mail exchange for the owner

name and a preference given among other resource records at the same owner

� an \X25" record contains a character string which identi�es a public switched

data network address

� an \ISDN" record contains a character string which identi�es an ISDN7 number

of the owner and the DDI (Direct Dial In), if any

2.4.4 Name Servers

The whole database is divided into zones that are distributed among the name

servers. The essential task of a name server is to answer queries using data in its

zone. To ensure a higher degree of reliability of the system, the de�nition of the

Domain Name System requires that at least two name servers contain authoritative

data for a given zone. Some sites run more than two name servers: one of them

usually outside of the a�ected network to guarantee name service if the network is

unreachable for some reason. The main name server is called the primary name server,

7Integrated Services Digital Network

19

Table 2.1 Subset of QTYPEs

QTYPE value meaning

A 1 a host address

NS 2 an authoritative name server

SOA 6 start of authority

PTR 12 a domain name pointer

HINFO 13 host information CPU and OS

CNAME 14 canonical name (alias)

MX 15 mail exchange

X25 19 public switched data network address

ISDN 20 integrated services digital network

and the backup servers are called secondary name servers. Secondary authoritative

name servers update the data base for their zone periodically with data polled from

their primary servers. Primary name servers load the database �les provided by the

zone administrator and maintain a cache of data that was acquired through resource

records. Servers want to adapt dynamically to changes in the setup of the name

space of other authorities. Therefore, each resource record contains a time to live

�eld which ensures that name servers do not cache data without time bound.

The actual algorithm name servers use depends on the local operating system

and data structures used to store resource records. A basic outline can be found in

[Moc87a, section 4.3.2] and in section 2.9.2 of this thesis.

2.4.5 Resolvers

The interface between the Domain Name System and user programs is the name

resolver. In the simplest case, a resolver receives a request from a user program in

the form of a system call or subroutine call and returns the desired information. The

20

resolver is located on the same machine as the user program, but contacts one or more

name servers on (usually) remote machines if the requested data is not obtainable

from the local cache.

The typical resolver{client interface has a triple functionality: host name to IP

address translation, IP address to host name translation, and a lookup of general

information specifying query name, type, and class. The following results can be

obtained after the resolver performed the indicated function: the data requested, a

name error in case the referenced name does not exist, or a data not found error.

To obtain higher e�ciency, it is reasonable to have all resolvers on one machine

share their cache. An algorithm outline for the resolver can be found in [Moc87a,

section 5.3.3] and in section 2.9.3 of this thesis.

2.5 Forward and Inverse Mapping Tree

The Domain Name Space consists of a hierarchy of domain names. As the decimal

numbers in the dotted quad notation for IP addresses can be viewed as names, it is

only one step to construct a tree that consists of these numbers as domain names.

This inverse mapping tree is mounted on the domain in-addr.arpa. The IP address

128.46.152.78 for zoo.ecn.purdue.edu has the corresponding name 78.152.46.128.in-

addr.arpa which maps back to zoo.ecn.purdue.edu (see Figure 2.4).

The reason for the numbers of the IP address appearing in reverse order in the

reverse mapping tree is the following: Domain names read from left to right get less

speci�c, whereas IP addresses get more speci�c from left to right (see Figure 2.5). The

task of delegating authority for in-addr.arpa domains to zone administrators would

be impossible if the entries appeared in the original order.

In case someone wanted to index an arbitrary piece of data in the domain space

(something aside from IP addresses or host names), an additional subdomain such

as the in-addr.arpa domain is necessary. A so called inverse lookup (an exhaustive

search of the whole domain name space), is also possible, but not feasible for regular

usage. Any one name server only knows about part of the overall domain name space.

21

128

152

78

46

zoo.ecn.purdue.edu

edu in-addr.arpaca

IP address 128.46.152.78

Figure 2.4 The in-addr.arpa domain

uther.cs.purdue.edu
128.10.4.20

more specific

more specific

Figure 2.5 Degree of speci�cation

Therefore, an inverse query is never guaranteed to return an answer. If a name server

receives an inverse query for an IP address it knows nothing about, it cannot return

an answer; but it also does not know if the IP address does not exist, because it has

only its part of the DNS database to work with. Additionally, the implementation of

inverse queries is optional according to the DNS speci�cation.

22

2.6 Recursion and Iteration

When there is the need for resolving a name in the Domain Name System, the

following steps are taken. Whoever wants to resolve a name invokes a local client

program, the resolver. The resolver formulates a query according to the DNS protocol

and contacts its local name server.

These queries can come in two di�erent avors: \recursive" and \iterative".

In recursive resolution, a resolver sends a recursive query to a name server. The

queried name server then has the obligation to respond with the answer to that query

or with an error code. The name server cannot refer the resolver to another name

server. In case the queried name server is not authoritative for the requested data,

it has to resolve the query again; recursive or iterative. Current implementations

resolve the query iterative and do not pass the work to another server.

Iterative resolution does not require nearly as muchwork on the part of the queried

name server. In iterative resolution a name server simply returns the best answer it

is capable of giving. No additional querying of other name servers is required. The

queried name server only consults its local data looking for the data requested. If the

data is not there, it makes its best attempt to give the querier data that will help it

continue the resolution process. This data usually contains names and addresses of

name servers that are \closer" to the data its seeking.

After possibly many referrals, the local name server queries the authoritative name

server, which returns an answer or an error code.

2.7 Filling in the Blanks

This section contains features that were briey touched in the previous sections,

but that need further explanations: the central role of caches for system performance

enhancement, the role of administrative authorities, and the types of errors that can

occur during name server operation.

23

2.7.1 Role of Caches

The whole resolution process may seem convoluted and cumbersome compared to

simple seeks through a host table database. However, it is fast, speeded up consider-

ably by caching.

As our example in Section 2.8 shows, name servers may need several DNS messages

to �nd the answer to a query. During successive resolution attempts name servers

discover information about the Domain Name Space. This information can be used

for future resolutions. If a name server caches the data, it builds up a data base that

helps speed up the processing of further querying. The next time a resolver queries

the name server for data about a domain name the name server knows something

about, the process is shortened considerably. Even if a name server does not have the

answer to the query in its cache it might have learned the identities of the authoritative

name servers for the zone the domain name is in, and it might be able to resolve them

directly.

It is di�cult to determine the optimal time to live value for data that is to be

cached. There is a trade-o� between enhanced performance once data is cached and

the possibility that the cached data might be out of date by the time it is used.

2.7.2 Role of Authorities

Manageability of the administration of the Domain Name Space is an important

issue because of the large number of hosts in the Internet. The key concept to solve

this problem is the delegation of authority along the edges of the Domain Name

Space tree. Local authorities administer their own zones. They keep the data base

consistent and have autonomous control of name assignments. This delegation scheme

takes away the load from central authorities.

It is important to understand that the organizational tool of delegation of author-

ity includes the responsibility for the delegated entity. There is no delegation without

responsibility.

24

2.7.3 Occurrence of Errors

Several error situations can occur during name server and resolver operation. The

header section of every DNS message contains the �eld \RCODE," a 4 bit �eld that is

part of a response (see section 2.4.2). The contents of the \RCODE" �eld determines

which error has occurred while processing the query:

� if a name server is unable to interpret a query, it ags a \Format Error"

� if a name server is unable to process a query because of a problem with that

server, it ags a \Server Failure"

� if an authoritative name server for a zone determines that the referenced name

does not exist, a \Name Error" is agged.

� if a server does not support the requested kind of query, it returns a \Not

Implemented" error

� if a name server does not want to provide the information a resolver asked for

in a query, it returns the \Refused" code. This is one example of the server

refusing to perform a speci�ed operation for policy reasons

2.8 Example: Name Resolution

This section contains a simple example for a name resolution using a mechanism

based on the client{server paradigm. A generic resolution example is shown in Figure

2.6 with a short explanation of the steps in table 2.2.

A resolver forms a query of some kind and wants to retrieve the response containing

the answer to its query from the name server A. This name server A could be running

on the same host with the resolver software, on a host in the local network of the

resolver, on a host somewhere in the net, or on one of the hosts serving the root

domains. Assuming that A does not know the requested information, it tries to

retrieve it from other name servers. The selection of which name servers to contact

25

A

C

DB

server
name

server
name

server
name

server
name

resolver

query answer

referral

query

query

referral

query answer2

3

4

6

8

5

7

1

Figure 2.6 Example name resolution

depends on the name to be resolved. The decision process about this choice is given

in sections 2.9.2 and 2.9.3 where we explain the algorithms used by name servers and

resolvers.

The contacted name servers return an answer to the query to the requesting name

server, or they return a referral to another name server that is more likely to know the

answer. We neither consider the occurrence of exceptions or errors in this example,

nor caching issues. Possible return codes in responses are given in section 2.4.2 and

are further explained in section 2.7.3.

As soon as one of the contacted name servers returns an answer to A, A responds

to the original query of the resolver with the retrieved answer.

26

Table 2.2 Example steps in name resolution

Step Action

1 Name server A receives a query from the resolver

2 A queries B

3 B refers A to other name servers, incl. C

4 A queries C

5 C refers A to other name servers, incl. D

6 A queries D

7 D answers

8 D returns the answer to the resolver

2.9 The Domain Name System Protocol

The o�cial design documents [Moc87a] and [Moc87b] state and describe concepts

and facilities, implementation and speci�cation. In the following sections, we will

discuss topics related to the data structures and data organization, and present the

name server and the resolver algorithm on a fairly high level. We get into more detail

where it is necessary to examine the weak points of the protocol.

The data structures and the algorithms are the basis for the analysis of the protocol

later in this thesis.

2.9.1 Data Structures

Two principal kinds of data appear in the Domain Name System: zone data and

cache data.

A zone contains a complete database for a particular pruned subtree of the domain

name space. This data can be authoritative if it is the original database managed

for this particular zone by a primary or secondary name server. Otherwise it is non{

authoritative data. Secondary servers maintain zone data as copies from the master

27

�les. Name servers check periodically for changes (for a changed serial number in the

SOA records) and update their data by reading the master �les, or via zone transfer

operations.

As we will describe in Section 2.3.2, the technology of caching is a key concept in

the Domain Name System. The cached data usually represents only an incomplete

view of zone information. It improves the performance of the retrieval process when

non{local data is repeatedly accessed. Zone data is eventually discarded by a timeout

mechanism.

The implementation of the Domain Name System is not limited to a certain data

structure, but is free to choose any internal data structure. However, it is suggested

by the standard that a separate instance of the data structure be used for each zone,

a data structure for the catalog, and one for the cached data. It is important that

resolver and name server can concurrently access the same cache when they are on

the same machine. In Section 2.10.1 we go into more detail on this point.

2.9.2 Name Server Algorithm

The implementation of the name server algorithm, which is given in Figure 2.7

depends on the local operating system and data structures used to store RRs. The

algorithms of the name server and the resolver assume an organization of the data as

described in the previous section: several tree structures, one for each zone.

In the following presentation of the algorithm we stay close to the outline speci�ed

in [Moc87a].

1. Set or clear the RA bit in the response depending on whether the name server is

willing to provide recursive service. If recursive service is available and requested

via the RD bit in the query, branch to step 5, otherwise step 2.

2. Search the available zones for the zone which is the nearest ancestor to the

queried name. If such a zone is found, branch to step 3, otherwise step 4.

28

1.) set or clear recursion available flag

If recursive service available and requested, then

2.)

If no such zone found, then

3.) match down, label by label, in the zone. Termination of process:

whole QNAME is matched node is found.

If data in node is CNAME (!= QTYPE), expand QNAME and

match takes us out of authoritative data referral

copy RR of NS-record in authority section, and put available

match is impossible. look for wildcard "*". If no "*" exists

then: If name is original QNAME, set authoritative name error

in the response and exit, otherwise just exit.

else: match RRs at that node against QTYPE, copy matches

into answer section and

4.) match down in the cache. If CNAME is found, copy all RRs into

answer section. If there was no delegation from auth. data, put

best one from the cache into the authoritative section.

5.) use local resolver, or copy of the algorithm to answer query.

Store the results (incl. interm. CNAMEs) in the answer section.

6.) use local data only, attempt to add other RRs which may be useful

to the additional section of the query. Exit.

1

5

4

4

6

6

 a)

 b)

 c)

0.) incoming query

search available zones for zone that is nearest answer to QNAME

copy all RRs that match QTYPE into answer section and

6

addresses in the additional section, and

Figure 2.7 Name server algorithm

3. Start matching the name in the zone, label by label. The matching process can

terminate several ways:

29

(a) If the whole queried name is matched, we have found the node.

If the data at the node is a canonical name, and the queried type was

not CNAME, copy the canonical name resource records into the answer

section of the response, change the queried name to the canonical name in

the CNAME RR and go back to step 1.

Otherwise copy all resource records which match the queried type into the

answer section and go to step 6.

(b) If a match would take us out of the authoritative data, we have a referral.

This happens when we encounter a node with name server resource records

marking cuts along the bottom of a zone.

Copy the name server resource records for the subzone into the authority

section of the reply. Put whatever addresses are available into the addi-

tional section, using glue resource records if the addresses are not available

from authoritative data or the cache. Go to step 4.

(c) If at some label, a match is impossible, look to see if a \�" label exists.

If the \�" label does not exist, check whether the name we are looking for

is the original name in the query, or a name we have followed because of

a CNAME. If the name is original, set an authoritative name error in the

response and exit. Otherwise just exit.

If the \�" label does exist, match resource records at that node against

the queried type. If any match, copy them into the answer section, but

set the owner of the resource record to be the queried name, and not the

node with the \�" label. Go to step 6.

4. Start matching down in the cache. If the name is found in the cache, copy

all resource records attached to it that match the query type into the answer

section. If there was no delegation from authoritative data, look for the best

one from the cache, and put it into the authoritative section. Branch to step 6.

30

5. Use the local resolver or a copy of its algorithm to answer the query. Store the

results, including any intermediate canonical names, in the answer section of

the response.

6. Use local data only, attempt to add other resource records which may be useful

to the additional section of the query. Exit.

2.9.3 Resolver Algorithm

0.)

1.) If the answer is in the local information, return it to the client

2.)

3.) Send them queries until one returns a response.

4.) Analyze the response:

if the response contains an answer or a name error, cache it

and return it to the client.

if the response contains a better delegation to other servers,

cache the delegation, and

if the response shows a CNAME and that is not the answer

itself, cache it, change SNAME to canonical name and

if the response shows a servers failure or bizarre results,

delete the server from SLIST and

1

2

3

 a)

 b)

 c)

 d)

incoming query

Find the best servers to ask

Figure 2.8 Resolver algorithm

The resolver acts as the interface between a user program and the name server

described in Figure 2.9 and performs three main actions to map the query to an

answer. The algorithm (see Figure 2.8 and the following list for details) tries to �nd

31

the information locally �rst. If that does not succeed, it sends the query to the best

server to ask. As soon as a reply returns, it checks for answer, name error, delegation,

canonical name expansion, or failure of the server and reacts properly. The following

steps describe the algorithm in more detail. They are derived from [Moc87a]:

1. See if the answer to the query is in the local information, and if so, return it to

the client.

2. Find the best servers to ask.

3. Send them queries until one returns a response.

4. Analyze the response:

(a) if the response answers the question or contains a name error, cache the

data as well as return it to the client.

(b) if the response contains a better delegation to other servers, cache the

delegation information, and go to step 2.

(c) if the response shows a CNAME which is not the answer itself, cache the

CNAME, change the queried name to the canonical name in the CNAME

RR and go to step 1.

(d) if the response shows a server failure or other bizarre contents, delete the

server from the server list and go back to step 3.

2.10 Interaction of Name Server and Resolver

Name server and resolver interact mainly by passing data back and forth. There

is at most indirect control ow at step �ve in the name server algorithm (see Section

2.9.2). In the case that a resolver requests recursive name resolution and the name

server provides this service, the name server passes the query to the local resolver.

This can be seen as pure data ow, but because the execution of the whole query is

passed to the resolver, we interpret it as control ow.

32

2.10.1 Data Flow

Local Host

resolver

master

database

server
foreign
resolver

name

name

Foreign

user responses

referencescache additions

user queries

maintenance responses

references

server

server

foreign

foreign

name

shared

prg.
user

files

responses

queries

responses

queries

maintenance

queries

refreshes

Figure 2.9 Data ow between DNS entities

33

The data ow between Domain Name System entities is not limited to simple

queries and responses, illustrated in Figure 2.9. We distinguish among four parts

that interact with each other: the user program, the resolver, the name server, and

an unknown subnet that can contain foreign name servers and resolvers.

User program and resolver exchange user queries and user responses. In the BIND

implementation of the Domain Name System, this exchange is done by calling the

system calls \gethostbyaddr()" and \gethostbyname()". As can be seen here, the

usage of the Domain Name System is completely transparent to the user who requests

name resolution. The same system call interface can be used when the Domain Name

System is replaced by another mapping mechanism (for example static mapping).

Local resolvers communicate with foreign name servers via the exchange of queries

and responses, as does a local name server with foreign name servers or resolvers.

Queries are always sent to a name server and responses go the reverse direction.

When name servers communicate, they exchange zone data or maintenance queries

and responses. Under the assumption that the local name server is a primary server,

it gets its primary zone data from the master �les.

Both name server and resolver usually maintain a cache. It is not unusual for a

name server and a resolver that run on a single host to share this database.

2.10.2 Shared Information

A shared cache can be accessed by resolver and name server. Resolvers provide as

cache additions whatever they learn from the responses to their queries. They also

consult the cache and retrieve data from it. Name servers also reference the cache to

answer queries and provide refreshes from local authoritative data.

A database that is shared concurrently by many processes must be protected by

synchronization mechanisms. The additional complexity in dealing with the problems

a shared database brings with it is amortized by the gain in performance and e�ciency

of the system in total. It is obvious that successful lookups in the local cache are

preferred over sending queries to remote machines with no bounds on how long it will

34

take them to reply. Maintaining a larger cache shared between two entities increases

the probability of �nding a match in the cache.

35

3. DESCRIPTION AND DEMONSTRATION OF WEAKNESSES

This chapter concentrates on the description and demonstration of the central

problem of this thesis.

We �rst give an abstract statement of the problem. We state it again in the

following section, but in a more concrete fashion directly related to the Domain

Name System. We talk about the general features in the Domain Name System that

facilitate the exploitation of the problem.

The following section gives details of regular remote machine access and several

approaches of how to exploit the problem to gain unauthorized access. We then

talk about our implementation test environment and describe the experiments we

performed to support the claim that this security aw is exploitable. The concluding

section of this chapter presents the experiences we gained from our experiments.

Figure 3.1 shows the setup of machines and their names. It serves as a running

example in this chapter. A detailed description of this setup is given in Section 3.5.1.

3.1 Statement of the Problem

Authenticity is based on the identity of some entity. This entity has to prove that

it is genuine. In many network applications the identity of participating entities is

simply determined by their names or addresses. High level applications use mainly

names for authentication purposes, because address lists are much harder to create,

understand, and maintain than name lists.

Assuming an entity wants to spoof the identity of some other entity, it is in some

cases enough to change the mapping between its low level address and its high level

name. That means that an attacker can fake the name of someone by modifying the

association of his address from his own name to the name he wants to impersonate.

36

NSA H

HNS

A

B B

Ethernet

attacked side

attacking side

name server host

name server host

exchange of DNS packets

Hi! I am Bob from H

Alice trusts Bobuser: Alice user: Bob

A

Figure 3.1 Experimental setup

Once an attacker has done that, an authenticator can no longer distinguish be-

tween the true and the faked entity.

This describes the fundamental problem on which this thesis is based. If the

binding process between names and addresses cannot be trusted fully, no one can

rely on an authentication process on a high level.

3.2 The Problem in the DNS

Many security problems of the TCP/IP protocol suite rely on the ability of the

attacker to spoof the IP address of a trusted machine, as described in [Bel89]. As

hosts trust each other, usually on the basis of host names, an attacker can take the

easier approach and spoof a host's name instead of its IP address.

37

If a host named HA accesses another host named NSA, host NSA accepts the

connection and retrieves address information about the connecting host HA. Host

NSA reads host HA's IP address and converts it into a regular host name. To bind

the right name to the IP address, host NSA starts a Domain Name System query in

the reverse lookup tree.

For a pair of machines NSB and HB under the power of an attacker, with NSB

running a primary name server for a certain zone, and HB trying to fake HA's identity,

it is easy to make NSA believe HB was HA. HB connects to NSA and claims to be

HA, NSA retrieves HB's IP address 111.22.33.4 and queries the name 4.33.22.111.in-

addr.arpa from the Domain Name System. One single entry in the authoritative

data for the reverse lookup tree for NSB's zone speci�es the IP address{to{name

mapping between 4.33.22.111.in-addr.arpa and HB. If the attacker replaces this line

by a mapping between 4.33.22.111.in-addr.arpa and HA, NSA's resolution attempt

will �nally grant HB access to NSA.

This shows the simplicity of an attack that is based upon trust placed in the data

provided by DNS. It is based on a weakness in the DNS, not an easily �xable bug in

the implementation of a particular network service.

One widely accepted way of dealing with this problem is the Berkeley software

patch described in section 4.5. However, adding an additional Domain Name System

query of the determined host name to the server code and comparing the returned

IP addresses against the original IP address for a match only adds to the quality of

security; it does not provide complete security. An attacker can piggyback additional

resource records to the answer packet to the �rst query. Doing so, the attacker poisons

the victim's cache with false information, such that the forward lookup would not

disclose the attack. In Section 3.5.6 we go into more detail on this issue when we

describe our concrete approach of cache corruption.

38

3.3 Weaknesses

In this section we describe the conditions that must hold to facilitate a break{in.

The Domain Name System is weak in several places. We examine the problems of

name{based authentication processes, trusting information that comes from an un-

trustworthy authority, and accepting additional, possibly incorrect information that

was not requested, but that seems to provide advantages for runtime performance.

3.3.1 Assumptions to Facilitate Break{ins

In our setup we assume that the attacker has complete control over machine NSB

running a legitimate primary name server for a DNS zone. This strong assumption

does not always need to be satis�ed. It is simply the easiest way for an attacker if

he controls a primary name server, because of its capabilities and the fact that other

machines believe name servers.

Depending on the topology of a real network it is su�cient if an attacker controls

one of the authoritative name servers for the particular zone; the one that is queried

�rst by the remote resolver. It is not much easier for an attacker to satisfy this second

assumption than the �rst one.

The control must include the associated inverse mapping tree. The attacker might

have successfully subverted such a machine or simply be a renegade system adminis-

trator. Both have happened in the past (i.e. [Sto89, Mad92]).

We can relax this assumption further. If an attacking machine manages to some-

how obtain the ID number of a current DNS query to a legitimate name server, it

could run some code (e.g. a tool that constructs the response packet and uses the

source route option to send it to the originator of a query) to answer the query and

supply additional records to poison the cache. The ID number prediction could be

based on previously received queries and knowledge on how a resolver modi�es the

identi�er. An attack based on TCP sequence number prediction to construct a TCP

packet sequence that allows an attacker to spoof a trusted host's identity on a local

39

network was described in [Mor85]. This example shows the feasibility of ID number

prediction.

In the following discussion we will assume that the attacker has indeed superuser

access to a primary name server. With that assumption in place we decrease the

complexity of the following discussions.

3.3.2 Authentication via Host Names

We explained in the introduction that users have to be authorized by network ser-

vice providers before they can use the service. This authentication is usually based

on the veri�cation of the user's login name along with the associated password and

the host name of the machine on which the user starts his requests. Networks may

be classi�ed into di�erent partitions1: Closed Networks, Open Networks, and Trusted

Networks [PL91]. Closed Networks can be accessed only within certain boundaries.

Sessions are controlled and secured in accordance with the rules implied by an orga-

nization's business goals. In a Closed Network, the location of all resources is well

known and speci�ed.

Open Networks are regions separated by boundaries from their surroundings, but

the transfer of information across these boundaries is admitted. They are augmented

by publicly accessible parts or connections to networks owned by other companies or

organizations. These two extensions make this type of network vulnerable to external

threats.

Trusted Networks introduce the concept that network access is controlled at the

entry node. In the case of large international networks, maintainability and con-

trollability are important issues. Adopting the Trusted Network concept allows the

decomposition of a large network, growing towards an unmanageable complexity, into

relatively small national or regional networks, each supported by local sta�, and each

provided with its own network access control. The advantages are increased control-

lability, maintainability, manageability, and simpli�cation of change management. A

1A very similar classi�cation is applicable to systems in general.

40

Trusted Network can be regarded globally as a single Closed Network, but from a local

point of view, the interconnected networks stand widely open with all the applicable

security threats.

The Internet is a system of Trusted Networks within Open Networks. This allows

the danger that once someone has falsely gained access to one machine, it is much

simpler to subvert others. Within Trusted Networks users are authenticated solely by

their login name and connecting host name. The login name is speci�ed by the con-

necting site, and therefore can be falsi�ed, such that the only \reliable" information

left for the addressed machine is the connecting machine's IP address that is provided

by an operating system call. The addressed machine then maps the IP address into

a host name using the Domain Name System. If an attacker manages to subvert this

name binding call, he can falsify the name of a machine within the Trusted Network

and therefore succeed in his attack.

3.3.3 Trusting a Not Trustworthy Source

Using the Domain Name System to map the IP address provided by lower level

protocol layers into the applicable host name, the addressed host blindly trusts the

information that is provided by the Domain Name System. Information that comes

from sources outside of the trusted area is trusted. That is a severe violation of the

partitioning concept. Only truly authoritative information should be trusted.

3.3.4 Believing Additional, Not Authoritative Information

E�ciency is one of the stated goals of the Domain Name System, as we saw in

Section 2.3.2. The DNS packet contains an additional answer section (see Figure 2.3),

where name servers can provide resource records containing information that could

come in handy in future requests, but that were not explicitly requested. There are

situations where these additional records yield in system e�ciency, for example after

the lookup of \NS" records when \A" records specifying the addresses of the queried

name servers are found in the additional answer section. That saves the lookup of

41

the IP addresses, once the name of the applicable name server is found. Additional

resource records are cached for future use.

As we rely on the correctness of these additional records once we use them, we

trust information that comes from a source possibly outside of the trusted scope.

That is another violation of the partitioning concept.

3.4 Exploiting the Flaws

The following sections are the most concrete description of how to exploit the

security aw in the Domain Name System. In this chapter we concentrate on the

\rlogin" command of Berkeley UNIX. We do not explain the whole \rlogin" protocol

in detail, but only state the parts and commands that are related to our interest.

3.4.1 Regular Access

Table 3.1 Regular access

host NSA (rlogind) Bob@HA

rlogin NSA -l Alice

getpeername()! IPHA

gethostbyaddr(IPHA
) ! HA

�nd entry HA Bob in ~Alice/.rhosts

grant access

Table 3.1 gives the procedure followed during a regular remote login. Time pro-

ceeds from top to bottom of the table. User Bob on machine HA wants to log into

machine NSA. The underlying protocols create a connection between the \rlogin"

program and the \rlogind" daemon. During the authentication process the daemon

retrieves the IP address of the connecting machine: IPHA
. It then uses the Domain

42

Name System to map this address to a host name. The call of \gethostbyaddr(IPHA
)"

does that and returns HA.

The daemon then checks whether the user from the machine with name HA is

allowed access by scanning the entries in the \.rhosts" �le of user Alice. If the

appropriate entry is found, access is granted. If the system administrator of system

NSA has installed the \/etc/hosts.equiv" �le and entered the name of host HA, then

access is granted even without a user maintained entry in �le \.rhosts."

3.4.2 The \Database Modi�cation" Approach

Table 3.2 The \Database Modi�cation" approach

host NSA (rlogind) Bob@HB

rlogin NSA -l Alice

getpeername()! IPHB

gethostbyaddr(IPHB
) ! HA

�nd entry HA Bob in ~Alice/.rhosts

grant access

This is the �rst example of how an attacker can spoof someone else's host name.

Host HB behaves as if it were host HA. The access pattern is very similar to the

previous, regular one, except that the call of \getpeername()" now returns the IP

address of host HB. If the DNS database is modi�ed by the attacker, the call of

\gethostbyaddr()" does not return the name HB as it would with a database in an

unimpaired state, but the name HA. Bob@HB �nally gets access to NSA.

3.4.3 The \Cache Poisoning" Approach

In this approach the \rlogind" daemon tries to enhance security by calling the

function \gethostbyname()" to verify the mapping from IPHB
to HA. The attacker

43

Table 3.3 The \Cache Poisoning" approach

host NSA (rlogind) Bob@HB

rlogin NSA -l Alice

getpeername()! IPHB

gethostbyaddr(IPHB
) ! HA

and HA ! IPHB
mapping

gethostbyname(HA) ! IPHB

�nd entry HA Bob in ~Alice/.rhosts

grant access

however has a way of subverting this additional security feature. He can send the

additional mapping of HA to IPHB
along with the answer to the query for IPHB

. By

the time the daemon calls \gethostbyname()," it already has the necessary mapping

information in its cache. The daemon believes the cached data and again grants the

attacker access.

3.4.4 The \Ask Me!" Approach

In the previous sections we exploited the security weakness of the Domain Name

System according to S. Bellovin's suggestions.

We thought of another way to exploit the weakness. If some entity sent a source

routed datagram, containing a DNS message with false additional resource records to

a name server, would that name server accept the data? The idea here is to poison a

name server's cache with all necessary information (for reverse and forward lookup)

before the \rlogin" attack is launched.

We will explain in Section 4.1 why this cannot work using source routed DNS

messages directly. This deprives us of the chance of eliminating the basic assumption

of the attacker having superuser priority on a primary name server in order to launch

an attack.

44

Nevertheless, the idea can be exploited in another way, on a higher level, and far

more elegantly than creating and sending datagrams manually. Imagine the following

scenario:

The attacker on name server NSB whishes to give NSA wrong information about

the mappings

� IPHB
! HB.sub.domain.dom

and

� HB.sub.domain.dom! IPHB
.

NSB wants NSA to believe the mappings

� IPHB
! HA.domain.dom

and

� HA.domain.dom! IPHB
.

As NSB cannot simply send the false information to NSA it could ask NSA to

resolve a mapping that only NSB can resolve. NSB would then append the additional

incorrect information to the response to NSA's query. Doing so, NSA's cache would

be poisoned with the necessary information to allow HB to impersonate HA and log

into NSA.

We call this the \Ask Me!" approach, because name server NSB implicitly tells

name server NSA to send a query to NSB. NSB therefore tells NSA to ask him a

question.

We did not implement this attack. Using the standard tool \nslookup," NSB can

force NSA to create a query, and using the name server modi�cations described in

3.5.6, NSB can append the two false resource records to the additional section of the

response to the query.

45

3.5 Implementation and Experiments

This section describes our main experiment step by step. We start with the

description of the setup of our test zones and the machines used. We continue with the

name server and resolver setups. The UNIX concept of trusted hosts is fundamental

in exploiting this aw. We explain this particular instance of the Trusted Network

concept followed by the authentication process using the Berkeley \r{commands."

Then we describe the manipulation in the authoritative data of the name server's

reverse lookup tree. We also describe the �nal step, the cache corruption, in the case

that the Berkeley patch is already installed.

3.5.1 Domain and Zone Setup

The setup of our experimental �eld consisted of two zones (see Figure 3.1). All

machines, the attacked machine NSA, the imitated machine HA, and the attacker

machines NSB and HB, were part of the domain sub.domain.dom. However, NSA and

HA contacted another name server (NSA) than NSB and HB (NSB).

In reality the attacker and attacked hosts would not reside in the same domain,

but because we are solely observing the Domain Name System protocol between

name servers, it did not make a di�erence as long as the authoritative data that had

to be corrupted remained in the attacking name server's zone, outside the attacked

machine's zone.

3.5.2 Name Server and Resolver Setup

Name server NSA was set up to contain primary information about the domain

domain.dom, whereas name server NSB contained primary information about the

domain sub.domain.dom. The resolvers of NSA and NSB were set up to contact

the name servers running on the local hosts exclusively. This kept the information

requests on controllable, well{known paths.

46

3.5.3 Trusting Hosts

In Berkeley UNIX and derivatives, system administrators and users have the op-

tion to trust other systems, or to trust certain user accounts on remote systems by

providing a \remote authentication" database. We introduced \trust" in section 3.3.2.

The \/etc/hosts.equiv" �le applies to the entire system, while individual users can

maintain their own \.rhosts" �les in their home directories.

The �le \/etc/hosts.equiv" is maintainable only by the superuser. It can contain

host names from which users can remotely access local accounts without having to

provide a password for authentication. The user has to have the same login id on

both machines. Access is granted on basis of the login name and the host name of

the connecting machine.

Each user can create a �le named \.rhosts" in his home directory. In this �le he

can specify trusted users on other machines. It is also possible to force remote users

to always supply a password when using the \r{commands," by pre�xing entries in

\.rhosts" by a dash.

These �les bypass the standard password-based user authentication mech-

anism. To maintain system security, care must be taken in creating and

maintaining these �les. [Sun91, HOSTS.EQUIV(5)]

These features have caused many security breaches in the past, but still most

system administrators do not disable them. Trust in networks is a transitive relation,

in the sense that if A trusts B, and B trusts C, then A trusts C. This relationship

can do great harm. Once an intruder has successfully subverted one machine, he

can hop to other machines, exploiting trust. Examining the trade{o� between conve-

nience and possibly unauthorized access, most system administrators decide in favor

of convenience.

In our setup, host NSA trusts host HA via the �le \/etc/hosts.equiv" containing

host HA's host name.

47

3.5.4 Authentication in Berkeley \r{Commands"

The main two \r{command" applications we deal with are \rlogin" and \rsh,"

both of which consist of a client and a server side. [Ste90, Chapter 14] gives an

overview of remote command execution under UNIX and [Ste90, Chapter 15] gives

many details about the remote login procedure.

Examining the source code for the client \rlogin" and the server \rlogind" yields

the following security check procedure:

1. Check if the client uses a reserved TCP port. Abort if not.

2. Check for a password �le entry on the server for the speci�ed server{user{name.

Abort if not.

3. If not root login: Check the \/etc/hosts.equiv" �le for the client's system.

4. If not root login: Check the \.rhosts" �le in the home directory of server{user{

name for the client's system.

5. If root login: Check the \/.rhosts" �le for the client's system.

6. Prompt user for his password if none of the tests 3-5 passed.

It may seem that a system is much safer if only \.rhosts" �les exist with no

\/etc/hosts.equiv" �le, because \.rhosts" �les create the additional constraint that

user login names have to match: the user name on the attacking host and the one

on the attacked host. That is not the case. In Section 3.6.1 we will discuss how

to acquire information about which host name and which user name to impersonate.

Once we have that information, it makes no di�erence at all. In the \rlogin" protocol,

the client connects to port IPPORT LOGINSERVER2 of the remote host and sends a

packet consisting of <local{user{name>, <remote{user{name>, and <command> to

the server. Because the client is under full control of the attacker, it is not di�cult for

2in \netinet/in.h" currently speci�ed as TCP port 513

48

the attacker to modify the \rlogin" code, such that local{user{name and remote{user{

name contain the appropriate values. The attacker can then recompile the \rlogin"

code and use the modi�ed version instead of the original one.

3.5.5 Reverse Lookup Tree Manipulation

Because the attacker controls the primary domain sub.domain.dom, he can mod-

ify the data of the reverse lookup tree of his domain. In the \rlogin" protocol, the

server retrieves the IP address of the connecting site with the system call \getpeer-

name()". The server then maps the IP address into the host name with the system

call \gethostbyaddr()". In Section 2.5 we explained that the IP address 111.22.33.4

gets converted into the name 4.33.22.111.in-addr.arpa, which is then queried in the

reverse lookup tree via the Domain Name System protocol. In an unimpaired state

of the database, the lookup returns the name of the attacker HB. But if one single

record in the reverse lookup tree is changed from

4.33.22.111.in-addr.arpa IN PTR HB.sub.domain.dom

to

4.33.22.111.in-addr.arpa IN PTR HA.sub.domain.dom

the query yields the name of HA after the zones are reloaded into the name server.

3.5.6 Cache Corruption

Section 3.1 already mentioned the Berkeley software patch that adds a higher

degree of security to the remote login procedure. The patch works as follows: the

system call \gethostbyaddr()" in \rlogind" and \rshd" is implemented by a DNS

request for a PTR record. The server that supplies the PTR record is under control

of the attacker and can return a falsi�ed record. The system call \gethostbyname()"

requests A records from the name, server which is not controlled by the attacker. If

the comparison of the retrieved IP addresses and the original IP address fails, the

patch has succeeded in detecting an attempted impersonation. Figure 3.2 shows an

overview of the algorithm used in the patch.

49

call gethostbyaddr() with IP addr, get host name

call gethostbyname() with host name, get list of IP addresses

for each A of these IP addresses do

if (IP addr == A)

then host ok. and break

if (no A has matched IP addr)

syslog impersonation attempt

Y N

Y N

. /.

. /.

Figure 3.2 Algorithm of the Berkeley patch

In the case that the attacked site has the patch in place, the attacker has to use a

more sophisticated approach to succeed with his intrusion attempt. The second query

goes to the local machine's name server �rst. This name server has a cache which

can be poisoned by the attacker by adding a false \A" record to the DNS message

containing the PTR record. This additional \A" record makes the remote site believe

the reverse lookup was correct.

In our setup, we modi�ed the name server code of the attacking machine. We

added statements to determine when the reverse lookup query for the mapping of

4.33.22.111.in-addr.arpa was issued. To the response to that query we added an

additional record providing a faked forward mapping from 111.22.33.4 to HA { not

HB. Figure 3.3 shows the contents of the additional record. It was important to

piggyback the unrequested record on an otherwise valid packet, because a name server

examines received packets for their id number and other criteria before it accepts the

packets at all (we will examine these criteria in Section 4.1. For now it is enough to

know that although a name server does not blindly accept anything, it is nevertheless

easy to fool). To camouage the attack, we supplied a short time to live value in the

resource record. However, the BIND code contains a hard{coded constant that limits

50

ANSWER

HEADER

QUESTION

AUTHORITY

ADDITIONAL

Sections Packet contents Fields

IN = Internet

5 seconds

4 Bytes

111.22.33.4

NAME

TYPE

CLASS

TTL

RDLENGTH

RDATA

H sub.domain.edu

A = address record
A

Figure 3.3 Additional false resource record

the minimum time to live value to \min cache ttl"3. In case the remote site NSA

contacts the attacking name server NSB again within these �ve minutes, NSB could

overwrite the faked records by supplying new ones with the correct information.

We included the feature that the name server can understand an additional user

issued signal. Using this toggle signal, the attacker can switch on the malicious code

before the attack starts, and switch o� the distribution of the malicious records right

after access was granted by the attacked site. This ensures a directed attack and

minimum possible unwanted auditing.

3.6 Experiences Gained

This section states the pieces of information necessary to launch an attack and

describes the experiences gained while working with the test environment.

3in BIND version 4.8.3 (5*60) seconds = �ve minutes

51

case QUERY:

if query is 4.33.22.111.in-addr.arpa

...

...

add bogus record to additional section

increase HEADER.ARCOUNT

send packet to socket

{ ...

... }

... ns_req(...)

Y N

Y N

. /.

. /.

declare flag Eureka = false

set flag Eureka = true

if (Eureka == true)

Figure 3.4 Modi�cations in name server code

3.6.1 Acquiring Information

An attacker needs to have three pieces of information before he can launch an

attack:

� target host name NSA

� user name(s) on hosts NSA and HA to impersonate

� host name HA trusted by target host

In some environments, the local and remote login names for one user are identical.

A user has the possibility to specify other user names as trusted users of his account.

In that case, the login names are most likely di�erent.

52

In our setup, we were not in need of acquiring host name pairs and the appropriate

login names. Section 4.7 provides methods to obtain this information, followed by a

discussion.

3.6.2 Complexity of Modi�cations

Most of the work that was done during the experiments went into the setup of the

zones for the name servers, the source code modi�cations of the remote login and the

name server, and some shell scripts to automatize the break{in. The modi�cations

to facilitate a break{in are minimal in the simpler case that the Berkeley patch is

not installed. Only one record in the database for the reverse lookup tree must be

changed.

If, however, the patch is installed, the name server code must be changed to enter

the false resource record into the additional answer section. These changes are not

di�cult, but they require a good understanding of the Domain Name System protocol

and the name server source code.

Furthermore, there are some changes to the \rlogin" program. In the case that

user Alice on host NSA trusts user Bob on host HA, the attacking host would need

a legitimate user Bob that logs into NSA. But that would require adding a new user

id to the attacking system every time the attacker wants to impersonate a di�erent

user name, regardless of the viewable changes in the password �le. A much neater

approach requires few changes in the \rlogin" code. For the target host it is not

important that the remote user Bob exists; it is su�cient to pass Bob's login name

in the �rst packet (see section 3.5.4) from the \rlogin" client to the \rlogind" server

to make the target host believe Bob is \real".

Overall, the attack requires only a few changes and can be achieved easily. What

makes the break{in di�cult is obtaining the necessary information about remote users

and machine names, having superuser privileges on a system with a primary name

server, and having the pro�ciency of making the changes in the name server database

and code.

53

3.6.3 Detecting a DNS based Break{in

During an attack, an attacker usually wants to operate as furtively as possible.

After an attack, an attacker wants to leave behind as few clues as possible that could

point to him or his actions.

We distinguish between where the attacker's presence or his actions can be de-

tected or observed: On the attacked machine and on the attacker's machine.

In the following we assume that the attacker has not (yet) done any obvious harm

to the attacked system. In our examination we only treat the detection of the break-in

directly, not of its consequences, once an attacker has gained access. The false record

in the cache has a minimum lifetime of currently �ve minutes and can be detected

only in that short period of time. The false mapping could be detected by examining

a cache dump of the name server, or in case a user tried to resolve one of the names

involved in the tampering.

The simple fact that the attacker is logged in could be observed. In an environment

where many users access a system at the same time, this seems unlikely. However,

if the compromised machine is watched closely by a system administrator or users,

the chance of detecting the login is higher. If the attacker logs in as superuser, the

chances of detection are even higher, because logins of privileged users are logged

separately.

It is also possible to modify the \rlogin"{code to log all remote logins to gather

more information about connections involving the own host.

On the attacker's machine, we have to distinguish between the possible identities

of an attacker. If he is a rogue system administrator and has no higher authority

above him in his organization, there is hardly any chance that anyone on his system

could detect his malicious deeds.

If he has subverted the system and has gained the necessary superuser privileges

on the attacking machine, the chances of detecting him are better, though still pretty

small. Because the attacker has subverted the attacking machine in the �rst place,

54

everything we said about the possibilities of detecting anything on an attacked ma-

chine is applicable here as well. We could also observe the modi�ed executable �les,

that are necessary for the \rlogin" and the modi�ed name server operation. But all

changes in binaries can be made using local copies of the source code that is read-

ily available. Some sites run monitors that detect on a daily basis if binaries were

changed or touched. Using local copies avoids detection by this type of monitor. The

executables can even be started from local directories, well{hidden from others. The

name server that is already running has to be replaced by the local copy, but that is

a job that takes less than a second.

Tampering with the log �les also aids the attacker in staying undetected. With

the modi�ed \rlogin" version, there are no additional password �le entries necessary,

which otherwise could be observed.

Overall, the attacker has very good chances of hiding his activities completely.

Most of these methods of getting a glimpse of his doing seem farfetched to us and

their odds of success are quite small. The highest chances of detecting the tampering

is by catching the false record during its short lifetimeor by simply �nding the attacker

logged in.

55

4. SECURITY ANALYSIS AND SOLUTIONS

Most of the proposed \solutions" in this chapter are not complete solutions to the

problem. Some of them are valid under additional assumptions that cannot always

be met; others are applicable to parts of the problem.

Because many factors contribute to the security breach encountered in this thesis

and all of them are necessary, it is su�cient to eliminate one of them. That sounds

easy to accomplish, but is a di�cult task in practice, because eliminating any one

of the factors brings a trade{o� with functionality, e�ciency, or simply convenience

with it.

We present for each of our solutions the necessary background, if it was not al-

ready given in one of the previous chapters, followed by a description of the idea

of the solution. The solution is then examined and discussed using criteria such as

feasibility of its implementation, quality of the solution, complexity of the idea, and

compatibility with the original design goals.

It is important to view these solutions as not stand alone. In di�erent combinations

they achieve several degrees of security. The concluding chapter of this thesis contains

a high level discussion about combinations of our solutions, to obtain, if not absolute

security, at least a high level of con�dence in the security of the Domain Name System.

4.1 Security Considerations in the RFC 1035

In the design of the Domain Name System, security considerations were not for-

gotten, and the RFCs show that the integrity of the cache was an important issue.

The eagerness to improve performance led to the nasty logic bomb of adding unau-

thorized records to the additional section and | in absence of strong authentication

| believing their correctness.

56

Before responses are further processed, a number of preprocessing steps takes

place. These include a check for the plausibility of the header (id number check),

the correctness of the resource records' format, and time to live values. If a time

to live value exceeds one week, the speci�cation allows the implementor to discard

this record, or limit its lifetime to one week. The id in the header of the response

must match the id of the query. A name server expects the reply from the same

IP address where he sent the query. This can cause some confusion if replies come

from multihomed hosts that use other ports for sending the response, because of local

routing information. This was a common bug in name servers.

The standard states several situations in which data should not be cached. If a

packet is truncated (TC ag in the header is set), its resource records should not be

cached, although they can be used for the current mapping. The reason for this is

that a cache should not contain incomplete information. The information in a cache

might be out of date which will eventually be corrected; but the cache stays always in

a consistent state, because incomplete mappings are never entered. A cache should

never prefer cache data over authoritative data. Responses to inverse queries are also

taboo because of their incomplete information character. Name servers or resolvers

have to do all correctness checks before they can cache data. Responses of dubious

reliability have to be examined carefully. It is however not easy to decide criteria

such as \dubious origin," or \reliable source."

Before caching a newly received record, the name server should check for an ex-

isting record in the cache. Depending on the circumstances, either the data in the

response, or the cache is preferred, but the two should never be combined. If the

data in the response is marked as authoritative data in the answer section, it should

always be preferred.

57

4.2 Analysis of the Name Server Algorithm

In this section we review the name server algorithm stated in section 2.9.2 and

analyze it step by step. We are especially looking for weak assumptions that do not

always hold. These assumptions could be exploited by attackers.

1. In step one the algorithm determines if a recursive name resolution is requested

and available. If so, it branches to step �ve, where a copy of the resolver algo-

rithm or the local resolver is invoked. When the resolver returns an answer, the

name server algorithm believes this answer to be correct and copies it as is into

the according answer sections of the own reply. This answer could contain false

records not only in the additional section, but also in the answer or authorita-

tive section. This is a weak assumption because the response of an arbitrary

name server cannot always be trusted.

2. In step two the name server searches the available zones for the nearest ancestor.

It assumes that its zone data is accurate. This should usually be the case. But

there is a possibility that its data base is not consistent. This inconsistency can

lead to malfunction as it has in the past, and in the worst case to a security

threat.

3. In step three the server tries to match the query in its own authoritative data

base. In principle the same problem as in the previous step exists.

4. Step four is responsible for �nding data in the cache once the matching phase

in step three is not successful. If the QNAME is found in one of the cached

records, all resource records matching the QTYPE of the query are copied into

the answer section. If there is no delegation found in its authoritative data,

the algorithm puts the best referral found in the cache into the authoritative

section. In these cases, the algorithm believes the data that it retrieves from

the cache to be unimpaired. As we showed, this does not necessarily hold.

58

5. Step �ve is the call to another resolver. The problem here is that the response

is blindly believed, cached and used.

6. Step six does not contain a aw itself, but it demonstrates how easy it is to

add records to the reply, and that a name server accepts that without many

constraints.

4.3 Analysis of the Resolver Algorithm

In this section we review the resolver algorithm stated in section 2.9.3 and analyze

it step by step. We are especially looking for weak assumptions that do not always

hold. These assumptions could be exploited by attackers.

1. Step one in the resolver's algorithm shows one of the security aws in the pro-

tocol. The resolver searches the cache for the desired data. If the data is in

the cache, the resolver \assumes" it to be good enough for regular use. This

assumption can lead to the use of false records and aid an attacker in his unau-

thorized attempt to access another machine.

Some resolvers o�er the option at the user interface to force the resolver to

ignore cached data and always consult an authoritative server. Although this

approach would solve the problem, it is not recommended as the default, as this

is very ine�cient.

2. In step two the resolver looks for a name server to ask for the required data.

The general strategy is to look for locally available name server resource records,

starting at SNAME, towards the root. The resolver has many choices here and

depending on which choice it makes it can contact sound name servers or the

attacker's name server. However, if we assume, that the attacker has set up his

zones such that his name server is the only one with the necessary information to

answer the attacked machine's query, the resolver has certainly no other choice

than �nally contacting him.

59

3. Step three sends out queries until a response is received. The strategy is to

cycle around all of the addresses for all of the servers with a timeout between

each transmission.

4. In step four the resolver accepts answer packets from name servers it has con-

tacted. These packets can contain records in the additional section. The re-

solver performs some preprocessing on these packets and the contained records

(see 4.1 for detailed description), but very likely accepts them and caches their

contents. Caching unrequested data provided by some unknown source can

lead to a major problem but is also necessary to obtain a good overall system

performance.

If the resolver has direct access to a name server's zone, it should check to see if

the desired data is present in authoritative form, and if so, use the authoritative data

in preference to the cache.

One could ask where exactly the problem lies: in believing the cached data in

step one, or earlier in blindly caching additional information throughout step four.

Obviously, the data should be correct before it is entered into the cache. That ensures

the integrity of the internal data structures, which is an important precondition in

most systems.

But this answer only shifts the question to the origin of these records. Where is

the right point to ensure the integrity of transmitted resource records? In the name

server that writes the records into the additional section? That can be violated by

an attacker, as we have proved in our experiments. Or in the name server or resolver

that accepts the resource records, before they are added to the cache? The problem

here is that the receiving entity has no way of deciding what is reasonable to believe,

and what can lead to trouble.

Neither of the approaches is feasible { the central dilemma in the current Domain

Name System design.

60

4.4 Evaluation Criteria

The following sections present solutions that address the stated problem. Most

of the solutions are based on the Domain Name System and are not solutions to the

abstract problem.

As we have already mentioned, the presented approaches are not complete solu-

tions to the problem. Most of them work only under certain additional assumptions,

but then reliably. A good approach is probably to not limit a system to the appli-

cation of one solution, but to implement a reasonable variety of them. This variety

should cover as many cases as possible, with few overlaps. Some of the presented

solutions are already in use in some systems, while others are in their early stages of

design or development.

Our presentation of each solution contains a description and a discussion. We use

several criteria that are important in an evaluation of solutions to our problem:

� The \quality" of the solution is a measurement of the radius of applicability of

the solution. This value cannot easily be speci�ed, because the set of applicable

cases is not precisely given. We mention the cases that are covered by a solution

and try to derive from that a judgement about the quality of the solution.

� The \feasibility of the implementation" of a solution determines how much e�ort

is needed to apply the solution to an unmodi�ed version of a state of the art

name server.

� The \complexity of its implementation" measures if modi�cations in di�erent

areas are involved and how complicated their interaction is. A solution can have

a very low degree of complexity, but require considerable implementation e�ort.

A complex implementation does not has to result in a large amount of coding.

� In solving the problem we are striving for \compatibility with the original de-

sign." A solution that does not require changes to the DNS protocol is usually

preferred over one that does { even if this conformity has other disadvantages.

61

� The Domain Name System is a system that resolves mappings on{line. The

e�ciency of the system and its performance are important factors of inuence.

The compliance of the solution's \e�ciency" with that of the system is equally

important.

� Some of the solutions involve users in general. For example if the solution

requires a change in the user interface, or in an organization's policy of handling

trust. The user has to learn to handle the changes, and his approval is a crucial

point. We combine these aspects in the term \acceptability by the user."

� Solutions might not be applicable in every organizational environment. We call

this criterion \applicability in an organization."

� An important point in the introduction of changes to systems is the \transition

process" from the original state (before the solution is applied) to the new state.

In case of minor changes this transition period can be very short { sometimes

hardly noticeable. If changes of considerable degree are involved, this process

plays a major role in the change management.

� The \transparency of the solution" involves the user interface and the software

interface to the system. This point examines another notion than the \compat-

ibility with the original design," which only involves the protocol issue | not

the user.

4.5 The Berkeley Patch

We already mentioned the Berkeley software patch in some sections of this thesis

and explained it in detail in Section 3.5.6.

This �rst attempted defense, developed at the University of Berkeley, CA , consists

of modi�cations of the \rlogind" and \rshd" code. The idea is to validate the inverse

mapping tree by looking at the corresponding node on the forward mapping tree. S.

Bellovin describes the method used by the patch in [Bel92] as follows: \To detect

62

this, we perform a cross{check; using the returned name, we do a forward check to

learn the legal address for that host. If that name is not listed, or if the addresses do

not match, alarms, gongs, and tocsins are sounded."

Refer to the description of the algorithm in Section 3.5.6 and Figure 3.2.

The �x is easily installed and not very complex. Its compatibility with the existing

Domain Name System protocol is another advantage. The transition process to move

to a name server that contains the patch is not di�cult or complex. A few lines of

code have to be inserted into the name server code, and the name server has to be

recompiled and started.

Although we regard this patch as an obligatory modi�cation to \rlogind" and

\rshd," it is limited in its scope. It can easily be countered using the methods demon-

strated throughout Section 3.5.6. Because a name server always prefers authoritative

data over non{authoritative records, it is impossible to poison the cache of a primary

or secondary server for a zone. Thus, an additional false A record cannot be inserted

into the cache, and the cross{check will detect the tampering.

Overall, the patch is a true solution if trust can be extended only within the

scope of authoritative data, and if the attacker does not use the more sophisticated

attacking method. In case the attacker supplies the additional \A" record with the

answer to the reverse lookup, and trust is extended to possibly untrustworthy sources,

this method will fail.

4.6 Examining Berkeley \r{Commands"

The Berkeley r{commands extensively use the \.rhosts" and \/etc/hosts.equiv"

�les to increase convenient network access. In Section 3.5.3, we discussed the Trusted

Network concept. R{commands such as remote login and remote shell o�er the pos-

sibility to extend trust to other machines. Users and system administrators can build

individual networks of trust. What looks like a good idea at the �rst glance proves

very dangerous in some cases.

63

The existence of these structures of trust is necessary for the break{in to happen.

Obviously, the break{in is prevented if we prohibit the usage of trusted hosts or users

completely. It is technically possible to disallow the usage of \trust" in Berkeley

commands. The choice can be made by the system administrator at compile time.

However, being able to access other machines without passwords makes the work in

a networking environment easier. Once used to the comfort, not many users agree

to sacri�ce their convenience for the prevention of \hypothetical" security concerns.

The trade{o� hereby would contain the loss of very convenient and in many cases

necessary tools for trouble free connection to hosts that are accessed frequently.

A less \safe" solution would be to limit trust to locally administered zones, i.e.

authoritative zones, where the Berkeley patch works reliably. As we discovered in

Section 4.5, limiting trust to certain zones �xes the aw. An organization could

issue the policy that only local trust is allowed. In some organizations this can be

considered a reasonable approach if hardly any remote accesses are originated outside

of the \own" zone to the \own" zone. Additional tools would be necessary to enforce

the policy, such as a script that periodically checks entries in \.rhosts" �les. If periodic

checks are still too weak, the r{command implementations could be changed in a way

that users cannot directly modify their database of trusted machines (\.rhosts"), but

have to use a special program to manage trust{entries. The data must be kept in a

protected data area of the operating system managed by the kernel. This program

could �lter out{of{zone entries at the time the user wanted to enter them. It would

also contain the possibility of managing setup changes centrally. This solution actually

proposes an automatized procedure to implement an organization's policy.

If the nature of connections allows a policy such as described above, implement-

ing it is a major e�ort. Some system scripts have to be written to ensure proper

usage, operating system code and r{command code must be modi�ed, and a new

user interface has to be developed. Users shall be trained how to apply the changed

facility and have to be made familiar with the new policy and the new user interface

(which could easily improve the existing one). Advantages of this new approach are

64

the compatibility with the existing Domain Name System protocol and additional

bene�ts in further security related issues.

Overall, a very weak point in the Berkeley derived UNIX systems is the usage of

trust. This thesis exploits only one of several known aws based upon trust. Using

trust{based mechanisms requires thinking about a change in individual policies in

dealing with granting trust to others. We can conclude, by citing S. Bellovin: \If a

host trusts another host not named in a local zone, its name server cannot protect

it." ([Bel90b])

Although we concentrate on the Berkeley \r{commands" in this section, we do

not forget that there are other ways in exploiting the aw. For example intercepting

electronic mail is a target of attackers; especially electronic mail that is exchanged by

security agencies and security related organizations.

4.7 Restricting Public Information Access

What makes the break{in possible in the �rst place is gathering necessary infor-

mation about host names of trusting machines and user names on di�erent systems

trusting each other. This section discusses how to obtain the names and whether it

is feasible or reasonable to restrict access to this information.

We are not discussing random patterns of trust that might exist between hosts,

but two common patterns using a systematic approach. The following discussion is

based on section 3 in [Bel90b]. In a cluster of time{sharing machines, each machine

is likely to extend trust to all its peers. This pattern is not common to the gen-

eral user population, but it is applicable to systems programming and operational

sta�. Another typical pattern is the occurrence of �le servers that trust their clients,

who serve as a source of extra CPU cycles. \Dataless" clients will frequently trust

administrative machines to permit software maintenance.

There are several networking utilities that are generally available to all users on

a system to spy out the wanted information.

65

A combined usage of \snmpnetstat" and \�nger" can do the job. One might

object that \snmpnetstat" is not always available and that some sites also restrict

the usage of the �nger daemon on their machines. But there are more common tools

that can be abused.

Examination of mail or news headers gives us information about where mail orig-

inated and which path it took. The \Received:" �elds contain a complete trace

of the route. Sometimes this route contains workstation - server names that trust

each other. A similar trick is possible using \traceroute" once we know a remote

workstation name.

We can also gain much insight using the Domain Name System itself. The SOA

records contain a machine name and a host address of a privileged user. With the

host name we can retrieve the IP address and then with a zone transfer obtain names

of other machines in the network local to that machine. Even if the zone transfer

is disabled, we could issue 254 reverse lookups to collect the names we seek. The

HINFO records give additional information.

Further \help" is provided by \ftp" (some servers o�er the service, only few work-

stations do), \smtp" (machines that run mail servers), and Sun's \rpcinfo" (what

services are running?) Published material is available from some universities that

describes the setup of their networks on a high level.

Some systems still use the same \/etc/hosts.equiv" �les on many hosts just to

simplify systems administration.

The mentioned collection of tools shows that it is a di�cult task to limit in-

formation access without sacri�cing the legitimate utilization of network services.

Preventing someone from gathering the necessary information is nearly impossible.

Too many services rely on address information, and most people would complain ter-

ribly if they were deprived of useful tools such as �nger, email, and news. The idea of

open systems requires open access to information services and address information.

Therefore, most system administrators have decided that the bene�ts of these utilities

outweigh the risks.

66

Overall, we think that shutting down well{known and widely used services is not a

good idea. The lack of these services would hurt functionality and the purpose of the

Internet to a considerable degree. There are too many ways to gather the necessary

information; it would be a hopeless job to protect the Internet against abuse.

4.8 Adjusting DNS Update Intervals

Some sites have connections chiey with machines outside of their zones that stay

stable in the sense that host name to IP address mapping will stay the same for a

long time. The idea is to enter long TTL values into the resource records, values that

exceed the currently implemented threshold of 1 week. Limits could be increased up

to 6, 12 months, or even longer, depending on the situation. If this data is entered

with great care to ensure correctness of the mappings, the DNS based break{in is

prevented.

This approach is limited by its scope of applicability, but it is a solution with

many advantages. It goes with the current Domain Name System protocol and can

be implemented without much e�ort, by simply changing the constant max cache ttl1

in the name server code and recompiling the system. As all necessary entries are kept

in the local cache, the system provides very quick replies to queries. It hardly ever

uses the network and therefore saves bandwidth on the medium for other tasks.

This approach has the problem of validating the host name to IP address mappings

before they are cached. How can it be ensured that the mappings are correct in the

�rst place? Certainly, a false entry would stay for a long time, and the attacker's

address would be �nally noted. But does that really help, once mischief is done? It

might aid in prosecution e�orts, but only little in prevention.

One of the original reasons to introduce the Domain Name System was to manage

the dynamic behavior of changes in the data base. This approach �xes mappings

for a long time and uses a powerful distributed database system for an infrequently

happening update process. Although we are not talking about a static mapping in

1in BIND version 4.8.3 (7*24*60*60) seconds = one week

67

this section, a well{maintained HOSTS.TXT �le would do the job with less overhead.

We will present the discussion about abandoning the Domain Name System and

returning to the previous system in Section 4.9.

Overall, the approach of extending TTL values to a long period of time is a safe and

feasible method in environments where the additional condition of static mappings

with long lifetimes is given. However, in this case not the Domain Name System seems

to be the right approach, but a locally well{administered static mapping mechanism.

4.9 Abandoning the Domain Name System

It could be suggested to abandon the DNS and either return to the previous system

with a static host table, or move on to another system, that has yet to be developed.

We are not going to talk about possible future development of the Domain Name

System here, but about returning to the previous system. Abandoning the Domain

Name System is not an extreme scenario of what we described in Section 4.8, as our

solution there only assumed slow dynamic behavior.

This section suggests an again centralized management of the mapping data. In

this approach, mappings can change frequently, but changes have to be reported to

a central authority that manages the whole Domain Name Space in contrast to the

Domain Name System approach of managing zones through delegated local author-

ities. This would not solve the problem, because the problem is not the DNS, but

inadequate methods of host authentication.

IP addresses of trusted machines could still be imitated. This is a somewhat

harder task, but the know-how has been published for quite some time (see [Mor85]).

Would it be safer to transmit updates to a central site? Email, telephone calls, or

conventional paper are not necessarily a reliable way to transmit mapping information

updates. The long time delay until centrally made changes are propagated through

the network would condemn the database to be in an inherently inconsistent state.

The system would again contain all the disadvantages described in Section 2.2, which

were the reasons for developing the current Domain Name System.

68

But besides these obvious, technical, and well{known reasons, there is a signi�cant

argument why no one can possibly be in favor of reinstalling the previous system: the

sheer size of the Internet. HOSTS.TXT was abandoned because 200,000 hosts was

too much to be managed. Are currently about 1.5 million (see [Lot93]) easier to

handle? Certainly not.

Overall, abandoning the Domain Name System would drag the name resolution

task in the Internet out of a functioning state with a not easily exploitable security

breach, into an unmanageable, not working state of prehistoric system design. We

think that would do more harm than doing nothing at all.

4.10 Hardening Name Servers

This section contains a number of problems that we classify into two groups and

a collection of possible modi�cations to the name server to provide (at least partial)

solutions to these problems.

We thought about organizing this section in a way that solutions are stated di-

rectly in each section describing a problem. But then we discovered that most of

the proposed solutions in hardening the name server are applicable to a variety of

problems. In the same time, it is necessary to not only concentrate on how to deal

with certain problems, but with all of them simultaneously. We therefore decided

that a more general approach is to state a list of problems next to a list of solutions.

This way we can relate problems to solutions and vice versa.

The following two sections are descriptions of the problems, grouped depending

on whether a given problem exploits cache poisoning, or not.

4.10.1 Problems Not Exploiting Cache Poisoning

In Section 3.4.2 we saw a �rst example of how to exploit the weaknesses of the

DNS. Simple changes in the database entries of a machine that is trusted, can lead

to a break{in. As we showed in this thesis, it is not di�cult to counter the attack

based on database modi�cation.

69

There are two more problems, that are related in their nature. In the �rst one,

an attacker intercepts a query to another name server and provides the reply himself.

If the reply contains a referral to some host that is under the attacker's control,

the originator of the query will �nally ask that name server and believe whatever

is returned. If the time to live values for records supplied in that answer are zero,

the originator will not cache the information, but use it for the current resolution

process. The name server that was originally addressed, or its network connection,

can be manipulated by the attacker in a way that they either not receive any query

at all, or that their response gets lost (see [Mor85] for an example).

A similar attack is based on the fact that the standard for the DNS implicitly

determines that the �rst answer a resolver receives to a query is returned to the user

program. The standard states in [Moc87a] : \Get the answer as quickly as possible".

If a query is answered by more than one host (and one of the hosts supplying an

answer can be the attacker who has intercepted the query, like in the previously

described problem) the fastest answer wins. This answer can again refer to another

name server under the control of the attacker.

4.10.2 Problems Exploiting Cache Poisoning

In the Sections 3.4.3 and 3.4.4 we described two problems that exploit the fact

that the cache of a name server can be poisoned. We describe two more problems in

this section.

Imagine again the scenario we described in the previous section, where the origina-

tor of a query receives more than one response and one of the responses contains false

information supplied by an attacker. The standard states in [Moc87b, 7.4] \When

several RRs of the same type are available for a particular owner name, the resolver

should either cache them all or none at all." The fact that the responses come from

di�erent IP addresses, does not matter to the originator. In [Moc87b] the standard

deals with the fact that name servers are sometimes multi{homed hosts and respond

to queries using another network interface than where the query arrived. We cite:

70

\That is, a resolver cannot rely that a response will come from the same address

which it sent the corresponding query to."([Moc87b])

Under certain additional assumptions it is possible to poison some name server's

cache by simply sending it a query that contains the corrupt information in the

additional section. This should work in the following setup:

� an Attacker on host NSB sends a query along with the false additional RR to a

name server B it wants to compromise, requesting recursive resolution

� the name server on host NSA does not cache incoming information according to

the RFC, but it shares its cache with the local resolver on the same machine

� if the name server on host NSA invokes its local resolver that will �nally get back

an answer from somewhere, this resolver on host NSA will cache whatever data

is provided according to the rules { including the additional record provided by

the attacker.

The name server on host NSA inherits the weakness of its own resolver.

4.10.3 Keeping Additional Information

A �rst idea is to log \rlogin" attempts with IP address and local and remote user

names. Or even more: to tag cache entries with their origin. The latter is another

easily achieved modi�cation that costs additional memory space in the cache. This

method makes it easier to track, for example, a false \A" record for the purpose of

debugging wrong zone data or investigating a DNS based break{in.

4.10.4 Prevention of Cache Poisoning

Preventing the cache from contamination is probably not feasible from within the

name server code, as there is no way of a priori determining if any given additional

record is trustworthy or not. We could start treating special cases of when to allow

or disallow additional information.

71

The default safe behavior would be to disallow the caching of unrequested infor-

mation, and to allow it only in cases where the information is necessary, and then

only for the current resolution.

4.10.5 Context Cache

But there are other, more sophisticated approaches possible: If some additional

or authoritative records are returned together with a resource record, they should be

interpreted only in the context of that resource record. The di�erence between the

default safe behavior approach and this one is that in the �rst one resource records are

only cached, when they were requested or necessary additional information, whereas

in the second approach the new entries get cached, but can be retrieved from the

cache only in the same context in which they were entered. For example, an \A"

record in the additional section of a response to an \MX" record request should only

be used for delivering mail. The information would not be acceptable for an \rlogin"

to another host, or generally usable for other services.

A glue \A" record coming along with an \NS" record would only be used for

domain hopping, because that is the context in which it was supplied.

\A" records along with \PTR" records should never be cached, because there is

no legal context in which they have to be returned in a single response.

This whole approach leads to the question of whether we still need the addi-

tional section at all. If only certain combinations of resource records are allowed as

a response to a query, why not consequently eliminate the idea of additional unre-

quested information completely, and adapt the protocol to accommodate the new

ideas, namely a certain limited number of types of associations?

First of all, that would require a protocol change, which is something we try to

avoid. Some of the original design goals of the Domain Name System also imply that

eliminating the additional section would not be a good approach. The system would

lose some of its generality, because the additional section might become very useful

in future applications of the Domain Name System without containing any security

72

threats. The system would certainly lose e�ciency. Here we see again an important

trade-o� that we have already mentioned in several earlier sections: an increase in

systems security and a decline in system performance vs. good system performance

and a possible lack of security.

It is therefore justi�able to take the approach of hardening the name server by

treating more special cases, and by increasing the complexity of the internal data

bases, instead of hardening it by implementing the same ideas accepting protocol

changes.

4.10.6 Authority Cache

A further approach would be to cache data only if the source of a record is known

to be authoritative for that zone. We give an example for that: If a name server NSA

receives a \PTR" record from some host NSB, and the DNS message also contains

an \A" record in its additional section, then the name server NSA would believe

and cache this information only if it already knows that the source name server NSB

is authoritative for the according zone. A name server following this strategy would

create its own tree of authoritative name servers. This tree would have to lose subtrees

according to the expiration of the lifetime of some node (name server).

4.10.7 Conditional Cache Use

The Berkeley patch (see Section 4.5) can fail in the case that the cache is already

poisoned. An idea to strengthen the Berkeley patch is to provide the possibility to

resolve queries without using the cache. That could be used by the Berkeley patch.

The system call executing the forward lookup would for example set a ag to indicate

that the cache contents should not be used for the following resolution. This method

again hits the e�ciency of the system, but it prevents the exploitation of the weakness.

One could also think of a system call to ush the cache followed by a reload of the

database, similar to the signal SIGHUP that a system administrator can send to the

BIND implementation of the name server to achieve the same.

73

4.10.8 Discussion

A very thorough analysis of the protocol is needed to determine the cases in which

additional resource records are legal and cannot do any harm, or have to be stored

in di�erent contexts.

Hardening the system would require careful design, implementation, and testing

and would lead to a higher complexity of the code and the system. Our analysis

has to stress the higher complexity, because design, implementation and testing are

a process that will be done at some point, but the complexity of a system is a feature

that stays with it. Higher complexity usually goes along with greater insecurity. It

is therefore important to keep the complexity in a manageable scope.

A decline in system performance would result from the fact that name servers

would believe and therefore cache less data | data that might be needed later.

Overall, hardening name servers consists of several possible modi�cations, some

of which seem promising, even though their application decreases the system's per-

formance and increases its complexity, which might lead to further insecurity.

4.11 Cryptographic Methods for Strong Authentication

In this section we describe an architecture for an authenticated Domain Name

System. The outline for the approach described below is only one of several possible

scenarios. There are systems that provide access authentication in distributed envi-

ronments. Some examples of systems that use tickets or security certi�cates are the

Kerberos authentication service ([SNS88]) and project SESAME ([Par91]). They are

not directly applicable to our problem.

Our approach contains three major features that are necessary to ensure the kind

of security we are trying to obtain:

1. data integrity of a message

2. originator authentication

74

3. originator's proof of being an authoritative source by presenting credentials

signed by the parent domain

In the following we will elaborate on these three features and present techniques

and ideas for their possible implementation.

4.11.1 Data Integrity

DNS message message digest algorithm

MD2, MD4, MD5

Snefru

message digest

Figure 4.1 Application of a message digest algorithm

Integrity service means that a recipient is provided with assurance that the content

of a received message is identical to the content of a message (including its header)

sent by its originator (see [Ken93a]).

In our case, we want to ensure the integrity of transmitted DNS messages. There

are several approaches to protect a message against unauthorized change: prevention

techniques, avoidance techniques, and detection and recovery techniques. All these

techniques have inherent advantages and disadvantages. We will not discuss them

here, but concentrate on a certain technique to detect unauthorized message alter-

ation. We stress this approach, because it is e�cient and considerably secure. In

case of alteration detection, recovery actions could be to ignore the DNS message and

issue an additional query. Our approach is based upon message digest algorithms.

They are one-way hash functions that compute a checksum of some data (in our case

the DNS message | see Figure 4.1). They have the following features:

75

� they are easy to compute (examples are the MD2, MD4, and MD5 algorithms

in [Kal92, Riv92a, Riv92b] and the Snefru algorithm in [Mer89])

� the signature (message digest or �ngerprint) is only a few bytes per message

� they are computationally hard to invert

� they usually require a certain size of input data

An originator would calculate the message digest of a DNS message immediately

before it is sent out. The recipient would recalculate the message digest and compare

the resulting value with the one calculated by the originator. In case of a mismatch,

the originator would conclude that he did not receive an unaltered DNS message. He

would dispose of it.

How does the message digest calculated by the originator get to the receiver unim-

paired? The message digest algorithms are publicly known and anyone tampering

with a message could easily modify the associated message digest accordingly. To

show how this can be prevented we discuss a method for originator authentication

in the following section. A message digest together with an authorization service

guarantee the integrity of transmitted data.

4.11.2 Originator Authentication

Originator authentication service permits the recipient of a message to reliably

determine the identity of the originator of a message.

We demonstrate a procedure that guarantees the originator's authenticity. In

an asymmetric (i.e. public key) cryptoalgorithm a pair of distinct, but mathemati-

cally related, keys are used for encryption and decryption. One key is private and

kept secret by the sender, the other one is publicly known. Data encrypted with a

sender's private key can be decrypted using his public key, and vice versa. These

keys are usually large integer numbers, several hundred decimal digits long with spe-

cial, mathematical properties. (ex. [Den82]). \RSA" is an example of a public key

encryption algorithm ([RSA78]).

76

Sender:

(data before signature)

hash algorithm

hash value

asymmetric cryptoalgorithm

digital signature

Receiver:

(received data)

hash algorithm

hash value

hash value
=?

asymmetric cryptoalgorithm

received digital signature

sender’s
private key

sender’s
public key

Figure 4.2 Digital signature generation and validation

The following procedure and Figure 4.2 outline how we would use the public key

cryptoalgorithm to ensure originator authentication.

The procedure could work as follows:

� The sending name server creates the digital signature of the DNS message m:

s = hash(m)

� The sending name server signs the message digest (the digital signature) s using

its private key KSender
priv : s0 = EKSender

priv
(s)

� The sending name server transmits (m; s0)

� The resolver decrypts s0 by applying the name server's public key KSender
pub :

s00 = DKSender
pub

(s0)

� The resolver recomputes the message digest s = hash(m)

77

� If (s = s00) then the resolver has validated the integrity and the originator of

the DNS message

Why do we calculate a message digest at all and not simply encrypt and then

transmit the whole message? The main point here is the di�erence between the

runtime costs of creating a message digest and encrypting a message, depending on

the length of the original message.

Runtime costs for public key encryption are rather high. Many CPU cycles are

needed. Therefore we want to �x the size of the data portion that has to be encrypted:

in our case the �ngerprint, the output of the message digest algorithm.

Runtime costs for the hash functions are rather small compared to those of public

key encryption. It is therefore important to note, that it is more e�cient to pad a

short DNS message, calculate its �ngerprint, and then encrypt the �ngerprint, than

simply to encrypt the whole DNS message. Message digest lengths are typically

shorter than the typical DNS message.

4.11.3 Passing Credentials to Prove Authority

The name server sending the DNS message has to provide credentials signed by its

parent domain, to convince the recipient of its authority over the domain for which

it just resolved a mapping.

The use of such a certi�cate transforms the problem of establishing the credibility

of one entity into the problem of establishing the credibility of the entity issuing

the certi�cate. This problem is very closely related to the problem of distributing

public key certi�cates. The CCITT recommendation X.509 shows a way to solve this

problem. In X.509, a certi�cate binds a public key to a directory name and identi�es

a party that vouches for the binding.

We can adopt this mechanism, such that a certi�cate binds all name servers that

are authoritative for a certain zone to this zone of authority and identi�es the zone

that vouches for the binding. X.509 imposes no constraints on the semantic or syntac-

tic relationship between a certi�cate issuer and a subject. However, in our approach,

78

the certi�cation system takes the form of a single rooted tree. Each node represents

a zone. Several name servers serve as certi�cation authorities for each zone, because

all servers that were introduced to increase the reliability of the database system are

capable of valid referrals.

A certi�cate for a zone (for example sub.domain.dom) consists of all IP addresses

of authoritative name servers for that zone, signed with the private key of the name

servers for the parent domain (domain.dom). Any resolver that receives a DNS mes-

sage receives as part of it this certi�cate. After obtaining the public key for the

parent zone of the queried zone, the resolver can then verify the validity of the refer-

ral. But to verify the authority of the parent zone, the resolver has to ask this zone

for credentials.

This validation process for certi�cates is done recursively up the tree, starting at

the name server that provides the queried mapping. The recursion will stop at some

point, either at the root, or at some intermediate node that was certi�ed before. The

certi�cates that a name server holds are subject to timeouts, just like the resource

records that specify bindings of this name server. The certi�cate for the root must

be transmitted by some trusted, out-of-band mechanism. For example, the root

certi�cate could be published in a national newspaper.

Even if an attacker manages to get a valid certi�cate of a name server it wants

to impersonate, and has the capability to also spoof this name server's IP address, it

is still not possible for the attacker to impersonate another host. As we saw in the

previous Section 4.11.2, a DNS message is encrypted with the name server's private

key before it is sent out. The credentials are part of the message and are therefore also

encrypted. An attacker cannot construct the correctly enciphered message without

breaking the public key system used.

4.11.4 Example

We present an example to show how certi�cates are used in our approach. We

assume that all hosts already have the public keys of the machines that participate

79

in this example. Host \host.aim." wants to resolve the name{to{address binding

for the name \host.domain.dom.". The example is not complete in the sense that

all possibilities are not covered, or else reasons are given why a name server returns

a certain referral and not another one. But it describes the overall interaction and

stresses the use of certi�cates.

Table 4.1 contains a summary of the zones in Figure 4.3, and Table 4.2 interprets

the abbreviations used through<out the description of the resolution process.

Table 4.1 Example: certi�cate validation

Zone Name Domain Name(s) Name Server(s)

. . ns

dom ns

domain.dom domain.dom ns1.domain.dom

ns2.domain.dom

aim aim ns.aim

Table 4.2 Example: legend of abbreviations

Name Meaning

MD(m) message digest (�ngerprint) of message m

Kowner
pub=priv key of owner { public/private

EK(s) s encrypted with key K

DK(s) s decrypted with key K

� \host.aim" queries \ns.aim" for name{to{address resolution of \host.domain.dom".

80

"."

"dom" "aim"

"domain"

ns1 ns2 host

host ns

ns

zone "." root

zone "domain.dom"

zone "aim"

Figure 4.3 Example: certi�cate validation

� \ns.aim" replies with a referral to \ns2.domain.dom"

� \host.aim" queries \ns2.domain.dom" for name{to{address resolution

of \host.domain.dom".

� \ns2.domain.dom" replies with (m,c,s), where

m = mapping information \host.domain.dom" ! IPhost:domain:dom

c = credentials from \ns2.domain.dom"'s parent zone's name server \ns"

= EKns
priv

(list of all IP addresses of authoritative name servers

for zone \domain.dom")

s = encrypted message digest of m concatenated with c

= EKns2:domain:dom
priv

(MD(mjc))

� \host.aim" receives (m,c,s), and then

81

{ validates s, by calculating s0 = MD(cjs) and s00 = DKns2:domain:dom
pub

(s) and

comparing them.

If they are equal ! ok!

{ validates c, by calculating L = DKns
pub
(c) and checking

if IPns2:domain:dom 2 L.

If so ! ok!

{ checks if \ns" is already validated (previously, or root name server).

If \ns" were not a root name server, \host.aim" would request credentials

from \ns"'s parent zone and validate them the same way

4.11.5 Discussion

The validation of integrity and originator of the message, and its underlying pat-

tern of certi�cations stating trust are the features that make this approach secure.

The following discussion shows its disadvantages. Some of them are serious enough

to block an implementation of this approach at the current time.

The whole procedure is very time and space consuming. Many rather long public

keys have to be stored (about 200 decimal digits long each to make the public key

encryption reasonably strong). Obtaining memory for them, as well as additional

cache memory for larger resource records, is not a problem in current architectures.

The keys have to be obtained before they can be used. S. Kent describes in [Ken93b]

certi�cate based key management; X.509 is the equivalent in the OSI2-world. We will

not go into detail regarding the key distribution process. The registering process is

rather cumbersome. The calculations to encrypt and decrypt message digests may

take too long to support the goal of the Domain Name System of e�ciency. The

additional data that has to be transmitted would not degrade performance too badly,

especially if faster transmission media becomes broadly available, but the calculation

overhead for encryption and decryption cannot easily be amortized.

2\Open Systems Interconnection { A reference to protocols, speci�cally ISO standards, for the
interconnection of cooperative computer systems."[Com91]

82

The implementation of such a solution is a major e�ort. The whole key man-

agement problem is complex and it also requires additional administrative e�ort.

Resolver routines and name server routines have to be modi�ed, along with the DNS

protocol. The implementation is feasible, though very complex. Another drawback

is the transition phase that is necessary because of protocol changes.

Overall, the method seems to be hardly feasible, because of its large computational

overhead. Further drawbacks are the necessary protocol changes and the complexity

of proper key and certi�cate management.

83

5. CONCLUSIONS AND OUTLOOK

The Domain Name System is the world's most distributed database, managing

name resolution for about 1.5 million hosts. In this thesis we outlined and explained

the current implementation of the Domain Name System.

We stated the main problem we are dealing with in this thesis: name based au-

thentication, where the name resolution process cannot be trusted. We examined a

method to abuse the Domain Name System for system break{ins and showed that

this method exploits several weaknesses. All these weaknesses are necessary before

the break{in is possible. We demonstrated the feasibility of the break{in by describ-

ing our implementation in an experimental network, set up to satisfy the necessary

assumptions that match the real world situation in the crucial points.

We provided the security considerations found in the o�cial design documents

and analyzed name server and resolver algorithms with respect to security aws or

weak assumptions. Most of the solutions presented are not complete solutions to the

problem in the sense that they cannot prevent the break{in unconditionally. However,

a combination of some of the proposed solutions increases the security of the Domain

Name System and gives a high con�dence in security, although complete security is

not achieved.

We consider the Berkeley patch to be mandatory. The current implementation

of the Trusted Network concept in UNIX is far from being optimal from a security

point of view. We propose major improvements in its design, which would also take

care of other shortcomings in the security of systems.

Future work could implement some of the solutions we gave in the previous chap-

ter. Experience with the implementation of policy based solutions would give deep

insight into the applicability of these approaches.

84

An implementation of the solution presented in Section 4.11 (Digital Signatures

and Public Key Encryption) would provide a test environment to determine runtime

costs of that approach. These results in connection with results of the experiences

gained with the PEM system could lead to surprising conclusions. Despite the many

disadvantages we found, we still consider this solution worth some more thought and

examination.

BIBLIOGRAPHY

85

BIBLIOGRAPHY

[AL92] Paul Albitz and Cricket Liu. DNS and BIND. O'Reilley & Associates, Inc.
Sebastopol, CA., 1992.

[Bel89] Steven M. Bellovin. Security Problems in the TCP/IP Protocol Suite.
AT&T Bell Laboratories, Murray Hill, New Jersey, April 1989.

[Bel90a] Steven M. Bellovin. Pseudo-Network Drivers and Virtual Networks. In
Proc. Winter USENIX Conference, pages 229{244, Washington, D.C.,
1990.

[Bel90b] Steven M. Bellovin. Using the Domain Name System for System Break-
ins. AT&T Bell Laboratories, Murray Hill, New Jersey, 1990. (unpublished
technical report).

[Bel92] Steven M. Bellovin. There Be Dragons. In UNIX Security Symposium III
Proceedings, pages 1{16, Baltimore, MD, 1992.

[BG92] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice-Hall,
Englewood Cli�s, New Jersey, second edition, 1992.

[CD88] George F. Coulouris and Jean Dollimore. Distributed Systems. Addison-
Wesley Publishing Company, Inc., 1988.

[Com91] Douglas E. Comer. Internetworking with TCP/IP. Prentice-Hall, Engle-
wood Cli�s, New Jersey, second edition, 1991.

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley
Publishing Company, Inc., 1982.

[DK84] Kevin J. Dunlap and Michael J. Karels. Name Server Operations Guide
for BIND, Release 4.8. University of California, Berkeley, CA, May 1984.

[DOK92] Peter B. Danzig, Katia Obraczka, and Anant Kumar. An Analysis of Wide-
Area Name Server Tra�c. Computer Communications Review, 22(4):281{
92, October 1992.

[GS91] Simson Gar�nkel and Gene Spa�ord. Practical UNIX Security. O'Reilley
& Associates, Inc. Sebastopol, CA., 1991.

86

[Hun92] Craig Hunt. TCP/IP Network Administration. O'Reilley & Associates,
Inc. Sebastopol, CA., 1992.

[Kal92] Burton S. Kaliski. RFC-1319 The MD2 Message-Digest Algorithm. Net-
work Working Group, April 1992.

[Ken93a] Stephen T. Kent. Internet Privacy Enhanced Mail. Communications of
the ACM, 36(8):48{59, May 1993.

[Ken93b] Stephen T. Kent. RFC-1422 Privacy Enhancement for Internet Electronic
Mail: Part II: Certi�cate-Based Key Management. Network Working
Group, February 1993.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. Programmieren in C. Carl
Hanser Verlag M�unchen Wien, second edition, 1988.

[Lot93] Mark Lottor. Internet Domain Survey Apr 93. SRI International, April
1993.

[LR93] Daniel C. Lynch and Marshall T. Rose. Internet System Handbook.
Addison-Wesley Publishing Company, Inc., 1993.

[Mad92] J�rgen Bo Madsen. The greatest cracker-case in Denmark: The detect-
ing, tracing and arresting of two international crackers. In UNIX Security
Symposium III Proceedings, pages 17{40, Baltimore, MD, 1992.

[Mer89] Ralph C. Merkle. Snefru. Xerox Corporation, Palo Alto, CA, 1989.

[Moc83a] Paul Mockapetris. RFC-882 Domain Names - Concepts and Facilities.
Network Working Group, November 1983.

[Moc83b] Paul Mockapetris. RFC-883 Domain Names - Implementation and Speci-
�cation. Network Working Group, November 1983.

[Moc87a] Paul Mockapetris. RFC-1034 Domain Names - Concepts and Facilities.
Network Working Group, November 1987.

[Moc87b] Paul Mockapetris. RFC-1035 Domain Names - Implementation and Spec-
i�cation. Network Working Group, November 1987.

[Moc89] Paul Mockapetris. RFC-1123 Requirements for Internet Hosts { Applica-
tion and Support. Network Working Group, 1989.

[Mor85] R. T. Morris. A Weakness in the 4.2BSD UNIX TCP/IP Software. Com-
puting Science Technical Report No. 117, AT&T Bell Laboratories, Murray
Hill, New Jersey, February 1985.

87

[Par91] T. A. Parker. A Secure System for Applications in a Multi-vendor Envi-
ronment (The SESAME project). In 14th NCSC Conference Proceedings,
1991. Vol. II.

[PL91] R. Paans and H. de Lange. Auditing the SNA/SNI Environment. Com-
puter & Security, 10(3):251{61, May 1991.

[Riv92a] Ronald L. Rivest. RFC-1320 The MD4 Message-Digest Algorithm. Net-
work Working Group, April 1992.

[Riv92b] Ronald L. Rivest. RFC-1321 The MD5 Message-Digest Algorithm. Net-
work Working Group, April 1992.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. Communications of the ACM,
21(2):120{6, February 1978.

[SNS88] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An Authentication
Service for Open Network Systems. In Proceedings, Winter USENIX, Dal-
las, Texas, 1988.

[Spa88] Eugene H. Spa�ord. The Internet Worm Program: An Analysis. Technical
Report CSD-TR-823, Purdue University, West Lafayette, IN, 1988.

[Ste90] Richard W. Stevens. UNIX Network Programming. Prentice-Hall, Engle-
wood Cli�s, New Jersey, 1990.

[Sto89] Cli�ord P. Stoll. The Cuckoo's Egg: Tracing a Spy Through the Maze of
Computer Espionage. Doubleday, 1989.

[Sun91] Sun Microsystems. manual pages, 4.1 edition, January 1991.

[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Engle-
wood Cli�s, New Jersey, 1992.

[Tho84] Ken Thompson. Reections on Trusting Trust. Communications of the
ACM, 27(8):761{3, August 1984.

