
Experiences with Tripwire:
Using Integrity Checkers for Intrusion Detection�

Purdue Technical Report CSD-TR-94-012

Gene H. Kim and Eugene H. Spafford
COAST Laboratory

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907–1398

21 February 1994

Abstract

Tripwire is an integrity checking program written for
the UNIX environment. It gives system administra-
tors the ability to monitor file systems for added,
deleted, and modified files. Intended to aid intru-
sion detection, Tripwire was officially released on
November 2, 1992. It is being actively used at thou-
sands of sites around the world. Published in vol-
ume 26 of comp.sources.unix on the USENET

and archived at numerous FTP sites around the world,
Tripwire is widely available and widely distributed.
It is recommended by various computer security re-
sponse teams, including the CERT and CIAC.

This paper begins by motivating the need for an in-
tegrity checker by presenting a hypothetical situation
any system administrator could face. An overview of
Tripwire is then described, emphasizing the salient
aspects of Tripwire configuration that supports its use
at sites employing modern variants of the UNIX op-
erating system. Experiences with how Tripwire has
been used in “in the field” are then presented, along
with some conjectures on the prevalence and extent
of system breakins. Novel uses of Tripwire and no-
table configurations of Tripwire are also presented.

�This paper appeared as [8]

1 Introduction

Tripwire is an integrity checking program written for
the UNIX environment that gives system administra-
tors the ability to monitor file systems for added,
deleted, and modified files. Intended to aid intru-
sion detection, Tripwire was officially released on
November 2, 1992,1 and is being actively used at
thousands of sites around the world. Published in
volume 26 of comp.sources.unix and archived
at numerous FTP sites around the world, Tripwire is
widely available and widely distributed. It is now
recommended by many computer security response
teams, including the ARPA Computer Emergency
Response Team (CERT).

Testing of Tripwire started in September 1992.
Since then, its design and code have been available
for scrutiny by the public at large. The design and
implementation are described in detail in [6].

An intensive beta test period resulted in Tripwire
being ported to over two dozen variants of UNIX,
including several versions neither author had ever
encountered. Currently entering its seventh (and
possibly last) revision, Tripwire has met our design
goals of being sufficiently portable, scalable, config-

1That release date was chosen for its historical significance
as well as being convenient to our development schedule.

urable, flexible, extensible, secure, manageable, and
malleable to enjoy widespread use.

This paper documents some of our experiences
and discoveries based on our development and use
of Tripwire. It begins by motivating the use of an
integrity checking tool (such as Tripwire) through
the presentation of a hypothetical scenerio that a
UNIX system administrator could face. Next, we
present an overview of Tripwire’s design, emphasiz-
ing the salient configuration aspects that allow its use
in modern UNIX variants. We then discuss experi-
ences gathered from Tripwire users since its Septem-
ber 1992 release. These stories seem to confirm the
practicality of this integrity checking scheme. There
are at least seven documented cases of Tripwire no-
tifying system administrators of intruders’ system
tampering. We present our conjectures on the preva-
lence and extent of system breakins based on our
data. We also describe novel uses of Tripwire and
surprising configurations that have been reported to
us. Feedback that has shaped the direction of Trip-
wire development is also presented.

Tripwire stands as an example how a simple idea
can be developed into a general and effective tool to
enhance UNIX security while also posing almost no
threat to the systems under guard. Unlike programs
like password crackers or flaw probes, Tripwire can-
not be turned against a system to identify or exploit
weaknesses or flaws. It is also an example of how a
program may have uses unanticipated by its authors.

2 Motivation

2.1 A cautionary tale2

Ellen runs a network of 50 networked UNIX comput-
ers representing nearly a dozen vendors — from PCs
running Xenix to a Cray running Unicos. This morn-
ing, when she logged in to her workstation, Ellen
was a bit surprised when the lastlog message in-
dicated that root had logged into the system at 3 AM.

2This is taken from [7].

Ellen thought she was the only one with the root pass-
word. Needless to say, this was not something Ellen
was happy to see.

A bit more investigation revealed that someone —
certainly not Ellen — had logged on as root, not only
on her machine but also on several other machines in
her company. Unfortunately, the intruder deleted all
the accounting and audit files just before logging out
of each machine. Ellen suspects that the intruder (or
intruders) ran the compiler and editor on several of
the machines. Being concerned about security, Ellen
is worried that the intruder may have thus changed
one or more system files, thus enabling future unau-
thorized access as well as compromising sensitive
information. How can she tell which files have been
altered without restoring each system from backups?

Poor Ellen is faced with one of the most tedious and
frustrating jobs a system administrator can have —
determining which, if any, files and programs have
been altered without authorization. File modifica-
tions may occur in a number of ways: an intruder,
an authorized user violating local policy or controls,
or even the rare piece of malicious code altering sys-
tem executables as others are run. It might even be
the case that some system hardware or software is
silently corrupting vital system data.

In each of these situations, the problem is not so
much knowing that things might have been changed;
rather, the problem is verifying exactly which files
— out of tens of thousands of files in dozens of
gigabytes of disk on dozens of different architectures
— might have been changed. Not only is it necessary
to examine every one of these files, but it is also
necessary to examine directory information as well.
Ellen will need to check for deleted or added files,
too. With so many different systems and files, how
is Ellen going to manage the situation?

Resolving such a situation would prove tedious
and labor-intensive for even the most well-prepared
system administrator. Consider the problems facing
system administrators who use simple checklisting
schemes:

2

2.2 The resulting challenges

Established techniques for monitoring file systems
for potentially dangerous changes include main-
taining checklists, comparison copies, checksum
records, or a long history of backup tapes for this
kind of contingency [4, 2]. However, these methods
are costly to maintain, prone to error, and susceptible
to easy spoofing by a malicious intruder.

For instance, the UNIX utility find(1) is of-
ten used to generate a checklist of system files, per-
haps in conjunction with ls(1). This list is then
saved and compared using diff(1) to determine
which files have been added or deleted, and to find
which files have conflicting modification times, own-
ership, or sizes. An added level of security could
be added by augmenting these lists with informa-
tion from sum(8) or cksum(8), as is done by the
crc check program included with COPS [3].

However, numerous shortcomings in these simple
checklisting schemes prevent them from being com-
pletely trustworthy and useful. First, the list of files
and associated checksums may be tedious to main-
tain because of its size. Second, using timestamps,
checksums, and file sizes does not necessarily ensure
the integrity of each file (e.g., once intruders gain
root privileges, they may alter timestamps and even
the checklists at will). Furthermore, changes to a file
may be made without changing its length or check-
sum generated by the sum(8) program. And this
entire approach presumes that ls(1), sum(8), and
the other programs have not been compromised! In
the case of a serious attack, a conscientious adminis-
trator needs stronger proof that important files have
remained unchanged. But what proof can be offered
that is sufficient for this situation?

2.3 The resulting wishlist

A successful integrity checking scheme requires a
high level of automation — both in generating the
output list and in generating the input list of files. If
the scheme is difficult to use, it may not be used often
enough — or worse, used improperly. The automa-

tion should include a simple way to describe portions
of the filesystem to be traversed. Additionally, in
cases where files are likely to be added, changed,
or deleted, it must be easy to update the checklist
database. For instance, files such as /etc/motd
may change daily or weekly. It should not be neces-
sary to regenerate the entire database every time this
single file changes to maintain database accuracy.

Ideally, our integrity checking program could be
run regularly from cron(8) to enable detection of
file changes in a timely manner. It should also be pos-
sible to run the program manually to check a smaller
set of files for changes. As the administrator is likely
to compare the differences between the “base” check-
list and the current file list frequently, it is important
that the program be easy to invoke and use.

A useful integrity checker must generate output
that is easy to scan. A checker generating three
hundred lines of output from each machine for the
system administrator to analyze daily would be self-
defeating — this is far too much to ask of even
the most amazingly dedicated system administrator!
Thus, the program must allow the specification of
filesystem “exceptions” that can change without be-
ing reported, and hence reduce “noise.” For exam-
ple, changes in system log file sizes are expected,
but a change in inode number, ownership, or file
modes is cause for alarm. However, a change in
any value stored in the inodes (except for the access
timestamp) for system binaries in /bin should be
reported. Properly specified, the integrity checker
should operate unobtrusively, notifying Ellen when
a file changes outside the specified bounds, and oth-
erwise running quietly.

Finally, assuming that Ellen wants to run the in-
tegrity checker on every machine in her network, the
integrity checker should allow the reuse and sharing
of configuration files wherever possible. For exam-
ple, if Ellen has twenty identical workstations, they
should be able to share a common configuration file,
but allowing machine-specific oddities (i.e., some
software package installed on only one machine).
The configuration should thus support selective reuse
to reduces the opportunity for operator error.

3

3 Tripwire design

The criteria we describe above represent the motiva-
tion for some of the key design issues behind Trip-
wire. Ultimately, the goal of Tripwire is to detect and
notify system administrators of changed, added, and
deleted files in some meaningful and useful manner.
However, the success of such a tool depends on how
well it works within the realities of the administration
environment. This includes appropriate flexibility to
fit a range of security policies, portability to different
platforms in the same administrative realm, and ease
of use.

3.1 Component overview

A high level model of Tripwire operation is shown
in Figure 1. This shows how the Tripwire program
uses two inputs: a configuration describing the file
system objects to monitor, and a database of previ-
ously generated signatures putatively matching the
configuration.

In its simplest form, the configuration file contains
a list of files and directories to be monitored, along
with their associated selection mask (i.e., the list of
attributes that can be safely ignored if changed). The
database file is generated by Tripwire, containing a
list of entries with filenames, inode attribute values,
signature information, selection masks, and the con-
figuration file entry that generated it.

3.2 Modes of Operation

In the four (mutually exclusive) modes of Tripwire
operation, program operation is driven by the con-
tents of the configuration file, tw.config. Each
mode is described in turn below.

In database initialization mode, Tripwire gener-
ates a baseline database containing entries for every
file specified in the configuration file, tw.config.
Each database entry contains the filename, inode at-
tributes, signature information, its selection mask,
and the configuration entry that generated it. As en-

tries in tw.config can be directories, each entry
can map to many entries in the database.

In integrity checking mode, Tripwire reads the
tw.config file and generates a new database.
Tripwire then compares this database with the base-
line, producing a list of added and deleted files. For
those files that have changed, the selection mask
is applied to determine whether a report should
be generated. Note that the selection mask stored
in the baseline database is used, not the one in
tw.config, based on the premise that the base
database has been stored on some secure media (e.g.,
read-only floppy).

When files change for legitimate reasons and
no longer match the baseline database description,
updating the baseline database becomes necessary.
Tripwire offers two modes to ensure database con-
sistency. In database update mode, Tripwire is given
a list of files or configuration entries on the command
line. The database entries for these files are regen-
erated, and a new database written out. Tripwire
then instructs the system administrator to move this
database to secure media. In interactive database
update mode, Tripwire first generates a list of all
changes (ala integrity checking mode). For each of
these changes, Tripwire then asks the system admin-
istrator whether the specified file or entry should be
updated.

3.3 Scalability aids

Tripwire includes an M4-like preprocessing language
[5] to help system administrators maximize reuse
of configuration files. By including directives such
as “@@include”, “@@ifdef”, “@@ifhost”, and
“@@define”, system administrators can write a
core configuration file describing portions of the file
system shared by many machines. These core files
can then be conditionally included in the configura-
tion file for each machine.

To allow the possible use of Tripwire at sites con-
sisting of thousands of machines, configuration and
database files do not need to reside on the actual ma-
chine. Input can be read from file descriptors, open at

4

Tripwire report

tw.config
 file

 newly
generated
 database

compare apply
ignore−masks

 old
database

generate

Files residing on system

Figure 1: Diagram of high level operation model of Tripwire

the time of Tripwire invocation. These file descrip-
tors can be connected to UNIX pipes or network con-
nections. Thus, a remote server or a local program
can supply the necessary file contents. Supporting
UNIX style pipes also allows for outside programs to
supply encryption and compression services — ser-
vices that we do not anticipate including as a standard
part of the core Tripwire package.

Tripwire does not encrypt the database file so as to
ensure that runs can be completely automated (i.e.,
no one has to type in the encryption key every night
at 3 AM). Because the database contains nothing
that would aid an intruder in subverting Tripwire,
this does not undermine the security of the system.
However, if Tripwire is used in an environment where
the database is encrypted as a matter of policy, the
interface supports this, as described above.

3.4 Configurability aids

Tripwire makes a distinction between the configura-
tion file and the database file. Each machine may
share a configuration file, but each generates its own
database file. Thus, identically configured machines
can share their configuration database, but each has
its integrity checked against a per-machine database.

Because of the preprocessor support, system ad-

ministrators can write Tripwire configuration files
that support numerous configurations of machines.
Uniform and unique machines are similarly handled.
This helps support reuse and minimize user overhead
in installation.

The configuration file for Tripwire, tw.config,
contains a list of entries, enumerating the set of di-
rectory (or files) to be monitored for changes, ad-
ditions, or deletions. Associated with each entry is
a selection-mask (described in the next section) that
describes which file (inode) attributes can change
without being reported as an exception. An excerpt
from a set of tw.config entries is shown in Figure
2.

Prefixes to thetw.config entries allow for prun-
ing (i.e., preventing Tripwire from recursing into the
specified directory or recording a database entry for
a file). Both inclusive and non-inclusive pruning are
supported; that is, a directory’s contents only may be
excluded from monitoring, or the directory and its
contents may both be excluded.

By default, all entries within a named directory are
included when the database is generated. Each entry
is recorded in the database with the same flags and
signatures as the enclosing, specified directory. This
allows the user to write more compact and inclusive
configuration files. Some users have reported using

5

file/dir selection-mask
/etc R # all files under /etc
@@ifhost solaria.cs.purdue.edu
!/etc/lp # except for SVR4 printer logs
@@endif
/etc/passwd R+12 # you can’t be too careful
/etc/mtab L # dynamic files
/etc/motd L
/etc/utmp L
=/var/tmp R # only the directory, not its contents

Figure 2: An excerpt from a tw.config file

configuration files of a simple /, naming all entries
in the file system!

The tw.config file also contains the names
of files and directories with their associated
selection-mask. A selection-mask may look like:
+pinugsm12-a. Flags are added (“+”) or deleted
(“-”) from the set of items to be examined.

Tripwire reads this as, “Report changes in permis-
sion and modes, inode number, number of links, user
id, group id, size of the file, modification timestamp,
and signatures 1 and 2. Disregard changes to access
timestamp.”

A flag exists for every distinct field stored in an
inode. Provided is a set of templates to allow system
administrators to quickly classify files into categories
that use common sets of flags:

� read-only files Only the access timestamp is
ignored.

� log files Changes to the file size, access and
modification timestamp, and signatures are ig-
nored.

� growing log files Changes to the access and
modification timestamp, and signatures are ig-
nored. Increasing file sizes are ignored.

� ignore nothing self-explanatory

� ignore everything self-explanatory

Any files differing from their database entries are
then interpreted according to their selection-masks.
If any attributes are to be monitored, the filename is
printed, as are the expected and actual values of the
inode attributes. An example of Tripwire output for
changed files is shown in Figure 3.

A “quiet option” is also available through a
command-line option to force Tripwire to give terse
output. The output when running in this mode is
suitable for use by filter programs. This allows for
an external script to execute automated actions if de-
sired. One example would be to use the terse output
of Tripwire after a breakin to quickly make a backup
tape of only changed files, to be examined later.

By allowing reporting to be dictated by local pol-
icy, Tripwire can be used at sites with a very broad
range of security policies.

3.5 Signature support

Tripwire has a generic interface to “signature3” rou-
tines and supports up to ten signatures to be used for
each file. The following default methods are included
in the latest Tripwire distribution: MD5[11] (the
RSA Data Security, Inc. MD5 Message-Digest Algo-
rithm), MD4[10] (the RSA Data Security, Inc. MD4
Message-Digest Algorithm), MD2 (the RSA Data

3We use the term signature to include checksums, message
digests, secure hash functions, and/or cryptographic signatures.

6

changed: -rw-r--r-- root 20 Sep 17 13:46:43 1993 /.rhosts
Attr Observed (what it is) Expected (what it should be)
=========== ============================= =============================
/.rhosts
st_mtime: Fri Sep 17 13:46:43 1993 Tue Sep 14 20:05:10 1993
st_ctime: Fri Sep 17 13:46:43 1993 Tue Sep 14 20:05:10 1993

Figure 3: Sample Tripwire output for a changed file

Security, Inc. MD2 Message-Digest Algorithm),4

Snefru[9] (the Xerox Secure Hash Function), and
SHA (the NIST proposed Secure Hash Algorithm).
Tripwire also includes POSIX 1003.2 compliant
CRC-32 and CCITT compliant CRC-16 signatures.

Each signature may be included in the selection-
mask by including its index. Because each signature
routine presents a different balance in the equation
between performance and security, the system ad-
ministrator can tailor the use of signatures according
to local policy. By default, MD5 and Snefru signa-
tures are recorded and checked for each file. How-
ever, different signatures can be specified for each
and every file. This allows the system administrator
great flexibility in what to scan, and when.

Also included in the Tripwire distribution is
siggen, a program that generates signatures for
the files specified on the command line. This tool
provides a convenient means of generating any of
the included signatures for any file.

The code for the signature generation functions
is written with a very simple interface. Thus, Trip-
wire can be customized to use additional signature
routines, including cryptographic checksum methods
and per-site hash-code methods. Tripwire has room
for 10 functions, and only seven are preassigned, as
above.

4The copyright on the available code for MD-2 strictly limits
its use to privacy-enhanced mail functions. RSA Data Security,
Inc. has kindly given us permission to include MD-2 in the
Tripwire package without further restriction or royalty.

4 Experiences

Since the initial Tripwire release in November 1992,
seven subsequent versions have been released to in-
corporate bug fixes, support additional platforms,and
add new features. The authors estimate Tripwire is
being actively used at several thousand sites around
the world. Retrievals of the Tripwire distribution
from our FTP server initially exceeded 300 per week.
Currently, seven months after the last official patch
release, we see an average of 25 fetches per week.
This does not include the copies being obtained from
the many FTP mirror sites around the net.

We have received considerable feedback on Trip-
wire design, implementation, and use. We believe
that version 1.1 of Tripwire has succeeded in meeting
most of the goals of system administrators needing
an integrity checking tool.

In this section, we present feedback from system
administrators that seem to validate the workability
of integrity checkers and present conjectures on the
prevalence and extent of system breakins. We also
prevent novel uses of Tripwire and surprising config-
urations that have been reported to us. Feedback that
has shaped the direction of Tripwire development is
also presented.

4.1 First, the good news: : :

We have gathered reports of at least seven cases
where Tripwire has alerted system administrators to
intruders tampering with their systems. In at least
two of these cases, the penetration was widespread,

7

with numerous system programs and libraries re-
placed with trojan horses.

Potentially less exciting than these stories, but
equally inspiring, are the dozens of stories we have
received of sites using Tripwire as a system ad-
ministration enforcement tool. System administra-
tors report having found hundreds of program bina-
ries changed, only to find that another person with
system-level access had made the changes without
following local notification policy.

There has also been one reported case of a system
administrator detecting a failing disk with Tripwire.
The normal system logging reporting the failure was
not read very often by the system administrator, but
the Tripwire output was surveyed daily.

All three classes of stories validate the theory
behind integrity checking programs. Although the
foundations of integrity checkers in UNIX security
have been discussed in [1, 2, 4], when Tripwire de-
sign was started in May 1992, no usable, publically
available integrity tools existed — providing one of
the primary motivations for writing Tripwire.

4.1.1 Where are all the bad guys?

The dramatically increased number of network
breakins throughout the Internet in early 1994 pre-
sented an opportunity to compare the prevalence of
system breakins at sites running Tripwire with those
sites that did not.5

One of us (Spafford) posted a query on USENET
asking whether any sites running Tripwire were suc-
cessfully subverted as described in the CERT advi-
sory. Surprisingly, no system administrator at any
site reported such a breakin. Why? Furthermore, out
of the thousands of machines running Tripwire, why
have we heard of only seven Tripwire-discovered
breakins since 1992? We offer some possibilities:

� The intruders have given up: if the competence
and ambition of intruders have dropped since

5See, in particular, CERT advisory CA-94:01 dated February
3, 1994.

1992, the small number of reported incidents
could be explained away. However, this is not
consistent with the reports from response teams
and the frequent advisories reporting newly dis-
covered system vulnerabilites being exploited
by intruders.

� The sites running Tripwire are not interesting:
if sites running Tripwire offer nothing of inter-
est to an intruder, then one would expect few
breakin attempts. However, given that some of
the highest-profile UNIX sites in the nation (e.g.,
public access UNIX sites, government informa-
tion servers, military sites) are running Tripwire,
this seems implausible.

� The site admins are not telling: it may be the
case that system administrators at sites where
breakins have occurred are not willing to tell us
that they have been sucessfully attacked. This is
possible considering the nature of many of the
sites running Tripwire, but we would expect at
least a few reports to be made in confidence.

� The sites are more security-conscious: if system
administrators running Tripwire are also con-
siderably more successful in securing their sys-
tems than other UNIX sites, intruders would find
known vulnerabilities corrected, greater than
usual protection measures employed, and more
vigilance from system administrators. This
would explain the low number of reported in-
trusion incidents from a sample made up exclu-
sively of sites running Tripwire.

� The sites have already been attacked: the Trip-
wire baseline database should be generated from
a clean distribution; one that is assured to be free
of trojan horses, logic bombs, etc. This usually
means reinstalling the operating system from
vendor-supplied media. However, this is of-
ten prohibitively inconvenient. If databases are
being generated on machines already compro-
mised, then Tripwire will have been installed
too late to have reported those critical file tam-
perings. If this is the case, then many sites have

8

not reported breakins because they continue to
be unaware of them.

� The intruders have completely subverted in-
tegrity checking schemes: changed files are
usually detected through the use of file signa-
tures. An intruder could be modifying files
in such a way that the resulting files preserve
their original signatures. However, Tripwire in-
cludes seven signature routines, and the choice
of which signatures are used for any file is not
fixed. That an intruder could be using such a
technique is possible, but the possibility is so
small as to be almost nonexistant.

Of the conjectures offered, the supposition most
credible is that system administrators who run Trip-
wire represent a poor sample for determining system
breakins. A substantial portion of the thousands of
Tripwire e-mail messages we have received under-
score the competence and paranoia of these system
administrators.

However, despite these system administrators’
best intentions, their lack of available, trusted signa-
tures for critical operating system files is especially
noteworthy. Instead of installing a system from dis-
tribution media, they typically choose a machine that
they believe is “clean,” using it to generate the base-
line database. This assumption, however, may be
completely ungrounded. We know of at least one
case of a reported breakin at a site where system ad-
ministrators discovered that their “safe baseline” was
actually the first to be attacked.

We believe that operating system distributions,and
perhaps other software (e.g., compilers, system ad-
ministration tools), should be shipped with a com-
plete signature database. This information could then
be stored locally on some secure media or offline, and
then used in the event of a suspected breakin.

Not coincidentally, Tripwire could be used effec-
tively in such a role if software vendors supplied
a Tripwire-conformant database with their distribu-
tions. The Tripwire database is suited for such a
purpose: it is ASCII, mostly human readable, sim-
ple to parse and construct (21 fixed fields), compact

(signatures are stored in base 64), self-contained (all
the database information is encapsulated in a single
file), and individual entries can be checked using the
siggen program.

4.1.2 How about the good guys?

“The mark of a good tool is that it is used
in ways that its author never thought of.”
6

As noted previously, many system administrators
are using Tripwire primarily as a tool to enforce local
policy. When system administration duties are dele-
gated among numerous people, changes made by one
person often go unnoticed and unexplained to others.
Running Tripwire allows these changes to be noticed
in a timely manner — a goal very similar to intrusion
detection.

Another application we note uses Tripwire to
help salvage file systems not completely repaired by
fsck, the program run at system boot that ensures
consistency between file data and their inodes. In
cases when file blocks cannot be bound to its file
name, they are placed in the lost+found direc-
tory and renamed to some (less than useful) number.
If a database of file signatures is available, this file
could be rebound to its original name by searching
the database for a matching signature.

Because providing a useful tool to system admin-
istrators was one of the goals of writing Tripwire, the
variety of applications of Tripwire outside the do-
main of intrusion detection has been especially sur-
prising and satisfying for us. We are still collecting
other stories of novel use of the Tripwire package.

4.2 Stealth-Tripwire

Several site administrators have reported going to
considerable lengths to conceal the operation of Trip-

6Brian Kernighan has said this, in one form or another, in
several of his presentations and written works. This particular
version was in private e-mail to one of us in response to a citation
request.

9

wire. These system administrators feel strongly that
they should not advertise their security measures or
policies.

As a result, Tripwire is not being run through pro-
grams like cron(8), the conventional means of
executing programs on a regular schedule. Instead,
a wide variety of local tools are used. For example,
a special daemon might be loaded at system startup,
waking only to run Tripwire at a scheduled time.

Where cron is used, deception through indirec-
tion is sometimes used to prevent an intruder from
immediately detecting evidence of Tripwire opera-
tion. In one case, a system administrator uses three
levels of indirection before finally executing Trip-
wire (e.g., cron runs a script that runs a script than
runs a script that runs Tripwire).

We wonder whether these measures to conceal
Tripwire are necessary, or even desirable. One of
us (Spafford) has heard of an “underground” publi-
cation warning of the need for special vigilance when
attempting to crack systems running Tripwire. If this
warning is heeded, then the presence of Tripwire may
have the ability to deter crackers. Advertising the use
of Tripwire (even if not true) could thus help avert
attacks.

4.3 Security is nice, if it’s not too difficult

Because Tripwire reports are only as reliable as its
inputs, the design document stresses the need to en-
sure the integrity of the baseline database. Thus,
we suggest that the baseline database be moved to
some secure read-only media immediately after it is
is generated.

The most common Tripwire configuration reported
to us to facilitate this is the use of a “secure server,” a
specialized server receiving extra scrutiny from ad-
ministrators. A remote file system or server process
is then used to export the baseline database to clients.

However, several sites have gone to much fur-
ther lengths to maintain the integrity of Tripwire
databases. At least two sites have considerably modi-
fied Tripwire to support alternate channels for receiv-

ing the database and transmitting the report, adding
layers for networking support, encryption, and host
authentication.

Since its original release, we have added full sup-
port for using open UNIX file descriptors to read the
Tripwire configuration and database files. This al-
lows system administrators to easily add support for
encryption and compression without having to mod-
ify the Tripwire package so drastically. Instead, a
wrapper program (even a shell script) can be used
to supply these facilities. Used with named pipes,
wrapper scripts in Perl or Tcl, or simple network
clients this also allows centralized administration of
Tripwire checks in large installations.

It is interesting to note that mistrust of networked
file systems has motivated many of the enduser-
modifications to Tripwire. However, some of the
replacements we have have been told about sound as
if they include other weaknesses. A sound, portable
solution to the problem has yet to appear.

4.4 Paranoia is unbounded

The Tripwire design document recommends running
Tripwire in integrity checking mode on a regular ba-
sis (e.g., daily) to ensure that file system tampering
can be detected in a timely manner.

However, there have been two reported cases of
large sites running Tripwire far more frequently. In
fact, these experiences motivated the option of in-
cluding a signature selection feature to allow skip-
ping certain signatures by specifying choices on the
command line. Because these site admins were run-
ning Tripwire on their machines hourly with all sig-
nature checking enabled, the Tripwire runs were not
completed by the time the next Tripwire run started!

We were left wondering what these machines did
besides spending all the CPU cycles computing file
signatures. We also wonder why they placed so little
faith in their other security measures, and what level
of threat they were actually fearing.

In contrast is the lack of use of an ideal Tripwire-
aided bit of paranoia. One of the ideas be-

10

hind Tripwire’s design (and the name itself) was
for system managers to scatter “plant” files on
their system, similar to what was done by Cliff
Stoll[12]. These files would have interesting names
(e.g., master-passwords), but useless contents.
These files would not normally be accessed by users,
but might be prime targets for intruders. By monitor-
ing these files as “mini-tripwires,” it would be pos-
sible to detect an otherwise stealthy intrusion. We
have yet to hear of anyone using this scheme to good
effect.

4.5 Scalability includes sites large and small

When designing Tripwire, we were more concerned
about the problems facing system administrators at
large sites. Although design considerations were
made for these configurations, how Tripwire was
used at small sites was more surprising.

4.5.1 Mega-Tripwire

Tripwire provides a configuration language intended
to aid system administrators in managing larger sites.
We were especially interested in how these tools
would be used by system administrators – the Trip-
wire design document suggests that a core configura-
tion file could be shared by numerous hosts by using
the @@include directive.

From reports we have gathered, this appears to be
a less than popular method. Instead, system admin-
istrators create one configuration file to be shared
by all machines, using the @@ifhost directive to
segregate non-common file groups.

We suspect that the overhead of tracking multi-
ple configuration files outweighs the inconvenience
caused by files obfuscated by many “@@ifdef”
statements. These shared configuration files are ap-
parently still manageable, as the number of entries in
the file is usually not large. (We suspect that if files
had to be individually enumerated, these configura-
tion files would be far larger, and therefore unman-
ageable.)

Tripwire has proven scalable, with documented
cases of sites of almost one thousand machines run-
ning Tripwire, as well as sites of only one machine.
That system administrators have done so using a
different mechanism than suggested in the design
document is especially interesting. That system ad-
ministrators are not slavishly following our design
document is reassuring.

4.5.2 Micro-Tripwire

How Tripwire is used on workstations with minimal
disk resources proved surprisingly elegant. Although
the Tripwire configuration file allows considerable
flexibility in specifying files and directories to mon-
itor, configuration files concocted by system admin-
istrators for these workstations consist of only one
character: “/”

Thusly, Tripwire scans all the local disk partitions
under the root directory, collecting the default MD5
and Snefru signatures. For some sites, this has proved
adequate for all their machines!

4.6 Running Tripwire on the Sasquatch
Kumquat Mark VIIa/MP

Tripwire has proven to be highly portable, success-
fully running on over 28 UNIX platforms. Among
them are Sun, SGI, HP, Sequents, Pyramids, Crays,
Apollos, NeXTs, BSDI, Lynix, Apple Macintosh,
and even Xenix. Configurations for new operat-
ing systems has proven to be sufficiently general
to necessitate the inclusion of only eight example
tw.config files.

However, potentially challenging situations result
when we receive requests from system administrators
asking for help compiling Tripwire on machines that
neither of us have ever heard of. In one case, this was
a machine only sold in Australia and shipped with in-
correct system libraries. Other instances included an
especially ignoble machine that has not been sold
since 1986 (predating college for of us), and numer-
ous machines with non-standard compilers, libraries,

11

system calls, and shells.

In all but two cases (of the last variety), we have
incorporated changes in Tripwire sources to accomo-
date these machines. In most cases, there has been
a sufficiently large group of system administrators
with similarly orphaned machines who put together
a suitable patch to allow correct Tripwire compilation
and operation.

It is interesting to analyze the time needed to fully
support a configuration. Full support for Sun’s new
Solaris operating system was added two months af-
ter the initial Tripwire release. A workaround for
the two afforementioned Australian machines was
released six months after the problems were first re-
ported. However, some Tripwire users running ma-
chines from a large workstation vendor continue to
be unable to find a compiler that correctly generates
a Tripwire that passes the entire test suite; investi-
gation has determined that this is because of non-
standard and broken compilers and libraries on those
platforms.

4.7 You added WHAT to Tripwire?

We recently received a report from a user who is
adding support for Intel machines running UNIX to
allow Tripwire to check mounted MSDOS file sys-
tems. In such a manner, they are using Tripwire to
check not only UNIX file systems, but also their DOS
files (for viruses, etc.).

We also received, and are incorporating into a fu-
ture Tripwire patch release, a set of changes to allow
Tripwire to check the integrity of symbolic links — a
weakness noted in [13]. One novel and elegant solu-
tion was implemented by storing the contents of the
symbolic link as a signature.7 Our actual solution
will involve taking the signatures of the link field
contents.

We are especially pleased that system administra-
tors can so easily make feature additions that they
perceive as necessary. We believe this reflects well

7This solution was proposed and implemented by Paul Szabo
of the University of Sydney.

on the design and coding of the Tripwire release, al-
though we realize that the code is rather opaque in
many spots.

4.8 Static file systems aren’t

According to system administrators, the ability to up-
date Tripwire databases is among its most important
features. Files seem to change for many unforeseen
reasons. Consequently, the database is updated reg-
ularly. The addition of the interactive update facility
in Tripwire was among the most enthusiastically re-
ceived features.

Allowing database updates was a feature that we
resisted for several months during the beta test period
in 1992. We believed (and still do, in part) that ease
of update may lead some administrators to be careless
in their storage of the database, thus weakening the
assurance Tripwire is capable of providing. That
users acquiesced and still used Tripwire despite its
lack of ability to update the baseline database without
regenerating the entire database astounds the authors
— in hindsight, at least.

5 Conclusions

Tripwire has proven to be a highly portable tool
that system administrators can build using commonly
available tools. It is completely self-contained, and
once built, requires no other tools for execution.
Tripwire is publically available, is widely distributed,
and widely used.

Tripwire has been used by system administrators
in large and small sites: we have documented Trip-
wire’s active use at single machine sites, as well as
sites having several hundreds of machines. We have
yet to hear a report of a site where Tripwire was in-
stalled and then removed because it did not function
according to expectation, or because it was too dif-
ficult to build or maintain. Coupled with the many
positive comments we have received, and the fact
that Tripwire has already caught several intruders,
leads us to conclude that our analysis and design are

12

successful. We hope this effort serves as a model
for others who consider building security tools with
similar goals.

6 Availability

The beta version of Tripwire was made publically
available and posted to comp.sources.unix on
November 2, 1992 after three months of extensive
testing. Over three hundred users around the world
critiqued the four preliminary releases during Sum-
mer 1992, guiding the development towards a ship-
pable, publically available tool. The formal release
of Tripwire occurred in December of 1993.

Tripwire source is available at no cost.8 It has
appeared in comp.sources.unix (volume 26)
on Usenet, and is available via anonymous FTP
from many sites, includingftp.cs.purdue.edu
in pub/spaf/COAST/Tripwire. Those with-
out Internet access can obtain information on ob-
taining sources and patches via e-mail by mailing
totripwire-request@cs.purdue.edu with
the single word “help” in the message body.

We regret that we do not have the resources avail-
able to make tapes or diskette versions of Tripwire for
anyone other than COAST Project sponsors. There-
fore, we ask that you not send us media for copies –
it will not be returned.

References

[1] Vesselin Bontchev. Possible virus attacks
against integrity programs and how to prevent
them. Technical report, Virus Test Center, Uni-
versity of Hamburg, 1993.

[2] David A. Curry. UNIX System Security: A
Guide for Users and System Administrators.
Addison-Wesley, Reading, MA, 1992.

8It is not “free” software, however. Tripwire and some of the
signature routines bear copyright notices allowing free use for
non-commercial purposes.

[3] Daniel Farmer and Eugene H. Spafford. The
COPS security checker system. In Proceed-
ings of the Summer Conference, pages 165–190,
Berkely, CA, 1990. Usenix Association.

[4] Simson Garfinkel and Gene Spafford. Practical
Unix Security. O’Reilly & Associates, Inc.,
Sebastopol, CA, 1991.

[5] Brian W. Kernighan and Dennis M. Ritchie. The
M4 Macro Processor. AT&T Bell Laboratories,
1977.

[6] Gene H. Kim and Eugene H. Spafford. The de-
sign and implementation of tripwire: A file sys-
tem integrity checker. Technical Report CSD–
TR–93–071, Purdue University, nov 1993.

[7] Gene H. Kim and Eugene H. Spafford. Mon-
itoring file system integrity on unix platforms.
InfoSecurity News, 4(4):21–22, July 1993.

[8] Gene H. Kim and Eugene H. Spafford. Expe-
riences with tripwire: Using integrity checkers
for intrusion detection. In Systems Administra-
tion, Networking and Security Conference III.
Usenix, 1994.

[9] Ralph C. Merkle. A fast software one-way hash
function. Journal of Cryptology, 3(1):43–58,
1990.

[10] R. L. Rivest. The md4 message digest algo-
rithm. Advances in Cryptology — Crypto ’90,
pages 303–311, 1991.

[11] R. L. Rivest. RFC 1321: The md5 message-
digest algorithm. Technical report, Internet Ac-
tivities Board, April 1992.

[12] Cliff Stoll. The Cuckoo’s Egg. Doubleday, NY,
NY, October 1989.

[13] David Vincenzetti and Massimo Cotrozzi. ATP
anti tampering program. In Edward DeHart, ed-
itor, Proceedings of the Security IV Conference,
pages 79–90, Berkeley, CA, 1993. USENIX
Association.

13

