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Abstract. Ranking queries, also known as top-k queries, pro-
duce results that are ordered on some computed score. Typ-
ically, these queries involve joins, where users are usually
interested only in the top-k join results. Top-k queries are
dominant in many emerging applications, e.g., multimedia re-
trieval by content, Web databases, data mining, middlewares,
and most information retrieval applications. Current relational
query processors do not handle ranking queries efficiently, es-
pecially when joins are involved. In this paper, we address
supporting top-k join queries in relational query processors.
We introduce a new rank-join algorithm that makes use of the
individual orders of its inputs to produce join results ordered
on a user-specified scoring function. The idea is to rank the
join results progressively during the join operation. We intro-
duce two physical query operators based on variants of ripple
join that implement the rank-join algorithm. The operators
are nonblocking and can be integrated into pipelined execu-
tion plans. We also propose an efficient heuristic designed to
optimize a top-k join query by choosing the best join order. We
address several practical issues and optimization heuristics to
integrate the new join operators in practical query processors.
We implement the new operators inside a prototype database
engine based on PREDATOR. The experimental evaluation of
our approach compares recent algorithms for joining ranked
inputs and shows superior performance.

Keywords: Ranking – Top-k queries – Rank aggregarion –
Query operators

1 Introduction

Rank-aware query processing has become a vital need for
many applications. In the context of the Web, the main applica-
tions include building metasearch engines, combining ranking
functions and selecting documents based on multiple crite-
ria [8]. Efficient rank aggregation is the key to a useful search
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engine. In the context of multimedia and digital libraries, an
important type of query is similarity matching. Users often
specify multiple features to evaluate the similarity between the
query media and the stored media. Each feature may produce
a different ranking of the media objects similar to the query,
hence the need to combine these rankings, usually through
joining and aggregating the individual feature rankings to pro-
duce a global ranking. Similar applications exist in the context
of information retrieval and data mining.

Most of these applications have queries that involve join-
ing multiple inputs, where users are usually interested in the
top-k join results based on some scoring function. Since most
of these applications are built on top of a commercial relational
database system, our goal is to support top-k join queries in
relational query processors. The answer to a top-k join query
is an ordered set of join results according to some provided
function that combines the orders on each input.

The following examples illustrate possible scenarios for
top-k join queries and highlight their challenges to current
relational database systems.

Example 1. Consider a video database system where several
visual features are extracted from each video object (frames or
segments). Example features include color histograms, color
layout, texture, and edge orientation. Features are stored in
separate relations and are indexed using high-dimensional in-
dexes that support similarity queries. Suppose that a user is
interested in the top 10 video frames most similar to a given
query image based on color. The top-k query is translated into
a similarity query (a nearest-neighbor query) using the high-
dimensional index on the color feature. Only the top 10 results
are presented to the user.

We call the above query a single-feature or a single-
criterion ranking. Answering a single-criterion ranking query
does not require any join. A database system that supports ap-
proximate matching ranks the tuples depending on how well
they match the query according to some similarity measure.

Example 2. In example 1, suppose that the user is interested in
the top 10 video frames most similar to the given query image
based on color and texture combined. The user also provides
a function for how to combine the ranking according to each
feature in an overall ranking. For example, the global rank of
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a frame = 0.5× rank(color)+0.5× rank(texture), where
rank(F ) of a frame (v) is the rank of v among all video frames
with respect to the similarity of v to the query image, based
on feature F .

We refer to the query in example 2 as a multicriteria rank-
ing query, or simply a top-k join query. Unlike single-criterion
ranking, in top-k join queries, the database query processor
combines (joins) the individual rankings into one global rank-
ing by applying the provided rank-combining function.

Example 3. Consider a user interested in finding a location
(e.g., city) where the combined cost of buying a house and
paying school tuition in that location is minimum. The user
is interested in the top five least expensive places. Assume
that there are two external sources (databases) – Houses
and Schools – that can provide information on houses and
schools, respectively. The Houses database can provide a
ranked list of the cheapest houses and their locations. Sim-
ilarly, the Schools database can provide a ranked list of the
least expensive schools and their locations.

A naı̈ve way to answer the user query in example 3 is to
retrieve two lists: a list of the cheapest houses from Houses
and a list of the cheapest schools from Schools. The user
then “joins” the two lists based on location. A valid pair is
a house and a school in the same location. For all the join
results, the user computes the total cost of each pair, e.g., by
adding the house price and the school tuition for 5 years. The
five cheapest pairs constitute the final answer to the user query.
Unfortunately, the user has to “guess” the size of the input lists
that will produce five valid matches. If, after the join operation,
there are fewer than five join results, the whole process needs
to be restarted with larger input sizes.

In all previous examples, answering the top-k join query
can be prohibitively expensive and requires complex join and
sorting operations on large amounts of input data.

More precisely, consider a set of relations R1 to Rm. Each
tuple in Ri is associated with some score that gives it a rank
within Ri. The top-k join query joins R1 to Rm and produces
the results ranked on a total score. The total score is computed
according to some function, say, f , that combines individual
scores. Note that the score attached to each relation can be the
value of one attribute or a value computed using a predicate
on a subset of its attributes. A possible SQL-like notation for
expressing a top-k join query is as follows:

SELECT *
FROM R1, R2, . . ., Rm

WHERE join condition(R1, R2, . . . , Rm)
ORDER BY f(R1.score, R2.score, . . . , Rm.score)
STOP AFTER k;

1.1 Motivation

The join operation can be viewed as the process of spanning
the space of Cartesian product of the input relations to get valid
join combinations. For example, in the case of a binary join
operation, the Cartesian space of the input relations A and B
is a two-dimensional space. Each point is a tuple pair (Ai, Bj),

where Ai is the i-th tuple from the first relation and Bj is the
j-th tuple from the second relation. The join condition needs
to be evaluated for all the points in the space. However, only
part of this space needs to be computed to evaluate top-k join
queries. This partial space evaluation is possible if we make
use of the individual orderings of the input relations.

Current join operators cannot generally benefit from or-
derings on their inputs to produce ordered join results. For
example, in a sort-merge join (MGJN) only the order on the
join column can be preserved. In a nested-loops join (NLJN),
only the orders on the outer relations are preserved through the
join, while in a hash join (HSJN), orders from both inputs are
usually destroyed after the join, when hash tables do not fit in
memory. The reason is that these join operators decouple the
join from sorting the results. Consider the following example
ranking query:

Q1: SELECT A.1,B.2
FROM A,B,C
WHERE A.1 = B.1 and B.2 = C.2
ORDER BY (0.3*A.1+0.7*B.2)
STOP AFTER 5;

where A, B, and C are three relations and
A.1,B.1,B.2, and C.2 are attributes of these rela-
tions. The Stop After operator, introduced in [3,4], limits the
output to the first five tuples. In Q1, the only way to produce
ranked results on the expression 0.3 ∗ A.1 + 0.7 ∗ B.2 is
by using a sort operator on top of the join. Figure 1a gives
an example query execution plan for Q1. Following the
concept of interesting orders [18] introduced in system R,
the optimizer may already have plans that access relations
A and B ordered on A.1 and B.2, respectively. Interesting
orders are those that are useful for later operations (e.g.,
sort-merge joins) and, hence, need to be preserved. Usually,
interesting orders are on the join column of a future join,
the grouping attributes (from the group by clause), and the
ordering attributes (from the order by clause).

Despite the fact that individual orders exist on A.1 and
B.2, current join operators cannot make use of these individ-
ual orders in producing the join results ordered on the expres-
sion 0.3∗A.1+0.7∗B.2. Hence, the optimizer ignores these
orders when evaluating the order by clause. Therefore, a sort
operator is needed on top of the join. Moreover, consider re-
placing B.2 by B.3 in the order by clause.According to current
query optimizers, B.3 is not an interesting order since it does
not appear (by itself) in the order by clause. Hence, generating
a plan that produces an order on B.3 is not beneficial for later
operations. On the other hand, B.3 is definitely interesting if
we have a rank-join operator that uses the orders on A.1 and
B.3 to produce join results ordered on 0.3 ∗ A.1 + 0.7 ∗ B.3.
Having a rank-join operator will probably force the generation
of base plans for B that has an order on B.3.

Two major problems arise when processing the previous
rank-join query using current join implementations: (1) sorting
is an expensive operation that produces a total order on all the
join results while the user is only interested in the first few
tuples and (2) sorting is a blocking operator, and if the inputs
are from external sources, the whole process may stall if one
of the sources is blocked.
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Fig. 1a,b. Alternative plans for query Q1

1.2 Our contribution

The two aforementioned problems result from decoupling the
sorting (ranking) from the join operation and losing the advan-
tage of having already ranked inputs. We need a ranking-aware
join operator that behaves in a smarter way in preserving the
interesting orders of its inputs. We need the new rank-join op-
erator to: (1) perform the basic join operation under general
join conditions, (2) conform with the current query operator
interface so it can be integrated with other query operators
(including ordinary joins) in query plans, (3) make use of the
individual orders of its inputs to avoid the unnecessary sorting
of the join results, (4) produce the first ranked join results as
quickly as possible, and (5) adapt to input fluctuations, a major
characteristic in the applications that depend on ranking. We
summarize our contribution in this paper as follows:

• We propose a new rank-join algorithm having the above
desired properties, along with its correctness proof.

• We analyze the I/O cost of the proposed algorithm and
prove its optimality. Our analysis provides strong perfor-
mance guarantee with respect to the number of required
database accesses.

• We implement the proposed algorithm in practical
pipelined rank-join operators based on ripple join, with
better capabilities of preserving orders of their inputs. The
new operators can be integrated in query plans as ordinary
join operators and hence give the optimizer the chance to
produce better execution plans. Figure 1b gives an exam-
ple execution plan for Q1, using the proposed rank-join
operator (RANK-JOIN). The plan avoids the unnecessary
sorting of the join results by utilizing the base table access
plans that preserve interesting orders. Moreover, the plan
produces the top-k results incrementally.

• We propose a novel score-guided join strategy that min-
imizes the range of the Cartesian space that needs to be
evaluated to produce the top-k ranked join results. We in-
troduce an adaptive join strategy for joining ranked inputs
from external sources, an important characteristic of the
applications that use ranking.

• We introduce an efficient mechanism for optimizing a top-
k join query by determining the best order to perform the
binary rank-join operations.

• We experimentally evaluate our proposed join operators
and compare them with other approaches to join ranked

inputs. The experiments validate our approach and show
a superior performance of our algorithm over other ap-
proaches.

The remainder of this paper is organized as follows. Sec-
tion 2 describes relevant previous attempts and their limita-
tions. Section 3 gives some necessary background on ripple
join. Section 4 describes the query model for answering top-k
join queries. Also, in Sect. 4 we introduce the new rank-join
algorithm along with its correctness and optimality proofs.
We present two physical rank-join operators in Sect. 5. We
introduce an efficient optimization heuristic for rank-join exe-
cution plans in Sect. 6. In Sect. 7, we generalize the rank-join
algorithm to exploit any available random access to the in-
put relations. Section 8 gives the experimental evaluation of
the new rank-join operator and compares it with alternative
techniques. We conclude in Sect. 9 with a summary and final
remarks.

2 Related work

A closely related problem is supporting top-k selection
queries. In top-k selection queries, the goal is to apply a scoring
function on multiple attributes of the same relation to select tu-
ples ranked on their combined score. The problem is tackled in
different contexts. In middleware environments, Fagin [9] and
Fagin et al. [10] introduce the first efficient set of algorithms to
answer ranking queries. Database objects with m attributes are
viewed as m separate lists, and each supports sorted and, pos-
sibly, random access to object scores. The TA algorithm [10]
assumes the availability of random access to object scores in
any list besides the sorted access to each list. The NRA algo-
rithm [10] assumes only sorted access is available to individual
lists. Similar algorithms are introduced (e.g., see [11,12,17]).
In [2], the authors introduce an algorithm for evaluating top-k
selection queries over Web-accessible sources assuming that
only random access is available for a subset of the sources.
Chang and Hwang [5] address the expensive probing of some
of the object scores in top-k selection queries. They assume
a sorted access on one of the attributes while other scores
are obtained through probing or executing some user-defined
function on the remaining attributes.

The more general problem of the top-k join is addressed
in [16]. The authors introduce the J∗ algorithm to join mul-
tiple ranked inputs to produce a global rank. J∗ maps the
rank-join problem to a search problem in the Cartesian space
of the ranked inputs. J∗ uses a version of the A∗ search al-
gorithm to guide the navigation in this space to produce the
ranked results. Although J∗ shares the same goal of joining
ranked inputs, our approach is more flexible in terms of join
strategies, more general in using the available access capabili-
ties, and more easily adopted by practical query processors. In
our experimental study, we compare our proposed join opera-
tors with the J∗ algorithm and show significant enhancement
in the overall performance. The top-k join queries are also
discussed briefly in [5] as a possible extension to their algo-
rithm to evaluate top-k selection queries. Importance-based
join processing [21] is another related problem of producing
“important” join results as early as possible; the importance
value of a tuple is provided from some sorting attribute. In [21],
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Fig. 2. Three steps in ripple join

important tuples are given higher priority to proceed through
the query evaluation plan.

Top-k selection queries over relational databases can
be mapped into range queries using high-dimensional his-
tograms [1]. In [15], top-k selection queries are evaluated in
relational query processors by introducing a new pipelined
join operator termed NRA-RJ. NRA-RJ modifies the NRA al-
gorithm [10] to work on ranges of scores instead of requiring
the input to have exact scores. NRA-RJ is an efficient rank-
join query operator that joins multiple ranked inputs based on
a key-equality condition and cannot handle general join condi-
tions. In [15], it is shown both analytically and experimentally
that NRA-RJ is superior to J∗ for equality join conditions on
key attributes.

3 An overview of ripple join

Ripple join is a family of join algorithms introduced in [13]
in the context of online processing of aggregation queries in
a relational DBMS. Traditional join algorithms are designed
to minimize the time till completion. However, ripple joins
are designed to minimize the time till an acceptably precise
estimate of the query result is available. Ripple joins can be
viewed as a generalization of nested-loops join and hash join.
We briefly present the basic idea of ripple join below.

In the simplest version of a two-table ripple join, one pre-
viously unseen random tuple is retrieved from each table (e.g.,
R and S) at each sampling step. These new tuples are joined
with the previously seen tuples and with each other. Thus the
Cartesian product R × S is swept out as depicted in Fig. 2.

The square version of ripple join draws samples from R
and S at the same rate. However, in order to provide the short-
est possible confidence intervals, it is often necessary to sam-
ple one relation at a higher rate. This requirement leads to the
general rectangular version of the ripple join where more sam-
ples are drawn from one relation than from the other. Variants
of ripple join are: (i) block ripple join, where the sample units
are blocks of tuples of size b (in classic ripple join, b = 1);
(ii) hash ripple join, where all the sampled tuples are kept
in hash tables in memory. In this case, calculating the join
condition of a new sampled tuple with previously sampled tu-
ples is very fast (saving I/O). The second variant is exactly
the symmetric hash join [14,22] that allows a high degree of
pipelining in parallel databases. When the hash tables grow in
size and exceed memory size, the hash ripple join falls back
to block ripple join.

4 Supporting top-k join queries

In this section we address the problem of supporting top-k
join queries. We start by defining the query model and present
our approach to supporting evaluation of this type of query in
relational query engines.

4.1 Query model

In traditional relational systems, the answer to a join query is
a set of m − tuple records, where m is the number of joined
relations and each join result is a new tuple that consists of the
concatenation of the tuples from the joined relations. There
is no order requirement imposed on the join results, although
the join technique may be able to preserve partial orders of
the inputs. In contrast, the answer to a top-k join query is an
ordered set of join results according to some provided function
that combines the orders on each input.

4.2 The new rank-join algorithm

Current implementations of the join operator do not make use
of the fact that the inputs may be already ordered on their
individual scores. Using these individual orderings, we can
perform much better in evaluating the top-k join queries by
eliminating the need to sort the join results on the combined
score.

The join operation can be viewed as the process of span-
ning the space of Cartesian product of the input relations to
get valid join combinations. An important observation is that
only part of this space needs to be computed to evaluate top-k
join queries if we have the inputs ordered individually.

In this section we describe a new join algorithm, termed
rank-join. The algorithm takes m ranked inputs, a join condi-
tion, and a monotone combining ranking function f and the
number of desired ranked join results k. The algorithm re-
ports the top-k ranked join results in descending order of their
combined score. The rank-join algorithm works as follows:

• Retrieve objects from the input relations in a descending
order of their individual scores. For each new retrieved
tuple:
1. Generate new valid join combinations with all tuples

seen so far from other relations, using some join strat-
egy.

2. For each resulting join combination, J , compute the
score J.score as

f(O1.score, O2.score, . . . , Om.score),

where Oi.score is the score of the object from the i-th
input in this join combination.

3. Let the object O
(di)
i be the last object seen from input

i, where di is the number of objects retrieved from that
input, O(1)

i is the first object retrieved from input i, and
T is the maximum of the following m values:
f(O(d1)

1 .score, O
(1)
2 .score, . . . , O(1)

m .score),

f(O(1)
1 .score, O

(d2)
2 .score, . . . , O(1)

m .score),
. . . ,

f(O(1)
1 .score, O

(1)
2 .score, . . . , O(dm)

m .score).
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4. Let Lk be a list of the k join results with the maximum
combined score seen so far and let scorek be the lowest
score in Lk; halt when scorek ≥ T .

• Report the join results in Lk ordered on their combined
scores.

The value T is an upper bound of the scores of any join
combination not seen so far. An object Op

i , where p > di,
not yet seen from input i, cannot contribute to any join
result that has a combined score greater than or equal to
f(O(1)

1 .score, . . . , O
(di)
i .score, . . . , O

(1)
m .score). The value

T is continuously updated with the score of the newly retrieved
tuples.

Theorem 1. Using a monotone combining function, the de-
scribed rank-join algorithm correctly reports the top-k join
results ordered on their combined score.

Proof. For simplicity, we prove the algorithm for two inputs
l and r. The proof can be extended to cover the m inputs case.
We assume that the algorithm accesses the same number of
tuples at each step, i.e., d1 = d2 = d. The two assumptions
do not affect the correctness of the original algorithm.

The proof is by contradiction. Assume that the algorithm
halts after d sorted accesses to each input and reports a join
combination Jk = (O(i)

l , O
(j)
r ), where O

(i)
l is the i-th ob-

ject from the left input and O
(j)
r is the j-th object from

the right input. Since the algorithm halts at depth d, we
know that Jk.score ≥ T (d), where T (d) is the maximum of
f(O(1)

l .score, O
(d)
r .score) and f(O(d)

l .score, O
(1)
r .score).

Now assume that there exists a join combination J =
(O(p)

l , O
(q)
r ) not yet produced by the algorithm and J.score >

Jk.score. That implies J.score > T (d), i.e.,

f(O(p)
l .score, O(q)

r .score) > f(O(1)
l .score, O(d)

r .score) (1)

and

f(O(p)
l .score, O(q)

r .score) > f(O(d)
l .score, O(1)

r .score).(2)

Since each input is ranked in descending order of object scores,
then O

(p)
l .score ≤ O

(1)
l .score. Therefore, O

(q)
r .score must

be greater than O
(d)
r .score. Otherwise, Inequality 1 will not

hold because of the monotonicity of function f . We conclude
that O

(q)
r must appear before O

(d)
r in the right input, i.e.,

q < d . (3)

Using the same analogy, we have O
(q)
r .score ≤ O

(1)
r .score.

Therefore, O
(p)
l .score must be greater than O

(d)
l .score. Oth-

erwise, Inequality 2 will not hold because of the monotonicity
of function f . We conclude that O

(p)
l must appear before O

(d)
l

in the left input, i.e.,

p < d . (4)

From Eqs. 3 and 4, if valid, the combination J =
(O(p)

l , O
(q)
r ) must have been produced by the algorithm, which

contradicts the original assumption. ��

id A B
1 1 5
2 2 4
3 2 3
4 3 2

id A B
1 3 5
2 1 4
3 2 3
4 2 2

L R

Fig. 3. Two example relations

Theorem 2. The buffer maintained by the rank-join algorithm
to hold the ranked join results is bounded and has a size that
is independent of the size of the inputs.

Proof. Other than the space required to perform the join, the
algorithm need only remember the top-k join results indepen-
dent of the size of the input. ��

Following this abstract description of the rank-join algo-
rithm, we show how to implement the algorithm in a binary
pipelined join operator that can be integrated in commercial
query engines. Theoretically, any current join implementation
can be augmented to support the previously described algo-
rithm. In practical terms, the join technique greatly affects the
performance of the ranking process. We show the effect of the
selection of the join strategy on the stopping criteria of the
rank-join algorithm.

4.3 Effect of the join strategy

The order in which the points in the Cartesian space are
checked as a valid join result has a great effect on the stopping
criteria of the rank-join algorithm. Consider the two relations
in Fig. 3 to be joined with the join condition L.A = R.A. The
join results are required to be ordered on the combined score
of L.B + R.B.

Following the new rank-join algorithm, described in
Sect. 4.2, a threshold value will be maintained as the max-
imum between f(L(1).B, R(d2).B) and f(L(d1).B, R(1).B),
where L(d1) and R(d2) are the last tuples accessed from L and
R, respectively. Figure 4 shows two different strategies for
producing join results.

Strategy (a) is a nested-loops evaluation, while strategy (b)
is a symmetric join evaluation that tries to balance the access
from both inputs. To check for possible join combinations,
strategy (a) accesses four tuples from L and one tuple from R,
while strategy (b) accesses two tuples from each relation. The
rank-join algorithm at this stage computes a different threshold
value T in both strategies. In strategy (a), T = max(5 +

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

ab

Fig. 4a,b. Two possible join strategies
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2, 5 + 5) = 10, while in strategy (b) T = max(5 + 4, 5 +
4) = 9. At this stage, the only valid join combination is the
tuple pair [(1, 1, 5), (2, 1, 4)] with a combined score of 9. In
strategy (a), this join combination cannot be reported because
of the threshold value of 10, while the join combination is
reported as the top-ranked join result according to strategy (b).

The previous discussion suggests using join strategies that
reduce the threshold value as quickly as possible to be able to
report top-ranked join results early on. In the next section, we
present different implementations of the rank-join algorithm
by choosing different join strategies.

4.4 Optimality of algorithm rank-join

In this section, we analyze the I/O cost of the proposed rank-
join algorithm. The notion of instance optimality is defined by
Fagin et al. [10]. Formally, instance optimality is defined as
follows. Let A be a class of algorithms and let D be a class of
databases. For an algorithm A ∈ A and a database D ∈ D, let
cost(A, D) be the total number of I/O accesses incurred by
applying A on D. An algorithm B is instance optimal over A
and D if B ∈ A and for every A ∈ A and D ∈ D we have

cost(B, D) = O(cost(A, D)).

Hence, there exist constants c, c′ > 0 such that cost(B, D) ≤
c.cost(A, D)+ c′ for every choice of A ∈ A and D ∈ D. The
constant c is referred to as the optimality ratio.

Theorem 3. Let D be the class of all databases consisting of
m sorted relations (ranked lists) and let A be the class of all
correct algorithms that produce the top-k ranked join results
from these lists. The rank-join algorithm is instance optimal
over A and D.

Proof. We present the proof in the case of two lists L and R.
The proof can be easily generalized to m lists by adjusting the
optimality ratio. Refer to Fig. 5 for illustration. Let l be the
top element in L with a score sl and let r be the top element
in R with a score sr.

Assume that the rank-join algorithm, when run on D ∈ D,
halts at depth d. Let A ∈ A be an arbitrary algorithm. We
shall show that algorithm A must get to depth d in at least
one of the lists. It then follows that the rank-join algorithm is
instance optimal with an optimality ratio at most 2 (assuming
two lists). Assume that algorithm A does not get to depth d in
either list; we shall show that algorithm A makes a mistake on
some database.

Let T be the threshold value at depth d − 1, where T is
computed as T = MAX(f(sl, q), f(sr, p)), where p is the
score at depth d−1 in L, q is the score at depth d−1 in R, and
f is the scoring function. Without loss of generality, assume
that f(sl, q) ≥ f(sr, p), hence T = f(sl, q).

Since rank-join did not halt at depth d − 1, there are less
than k joinable pairs (a, b) that have been seen by depth d− 1
whose overall score is at least T . We now construct a database
D′ on which algorithm A errs.

Let D′ have exactly d elements in each list (so that D′ goes
only to depth d). Let D′ be identical to the original database,
D, up to depth d−1 in both lists. Hence, algorithm A performs
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Fig. 5. Instance optimality of rank-join algorithm

exactly the same on both D and D′. At depth d, we put a new
element a′ with score p in the first list and a new element b′
with score q in the second list such that b′ joins with l (the
top element in L). Hence, the join results (l, b′) has score
f(sl, q) = T .

Clearly, (l, b′) is not on the output list of algorithm A since
algorithm A never sees b′ before it stops. However, the output
list of algorithm A contains k joinable pairs with less than k
having score ≥ T . So algorithm A made a mistake on D′. ��

Since database accesses are the dominant cost factor in
querying large databases, the instance optimality of the rank-
join algorithm plays an important role in optimizing top-k
queries. In practical terms, instance optimality of the rank-
join algorithm establishes a strong performance guarantee for
the rank-join algorithm when compared with any other way to
evaluate top-k queries.

5 New physical rank-join operators

The biggest advantage of encapsulating the rank-join algo-
rithm in a real physical query operator is that rank-join can
be adopted by practical query engines. The query optimizer
will have the opportunity to optimize a ranking query by in-
tegrating the new operator in ordinary query execution plans.
The only other alternative to developing a query operator is to
implement the rank-join algorithm as a user-defined function.
This approach will lose the efforts of the query optimizer to
produce a better overall query execution plan. Figure 6 gives
alternative execution plans to rank-join three ranked inputs.

In this section, we present two alternatives to realizing the
new rank-join algorithm A algorithm as a physical join opera-
tor. The main difference between the two alternatives is in the
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join strategy that is used to produce valid join combinations.
Reusing the current join strategies (nested-loops join, merge
join, and hash join) results in a poor performance. Nested-
loops join will have a high threshold value because we access
all the tuples of the inner relation for only one tuple from the
outer relation. Merge join requires sorting on the join columns
(not the scores) of both inputs and hence cannot be used in the
rank-join algorithm. Similarly, hash join destroys the order
through the use of hashing when hash tables exceed memory
size. The join strategies presented here depend on balancing
the access of the underlying relations.

Since the join operation is implemented in most systems
as a dyadic (two-way) operator, we describe the new operators
as binary join operators. Following common query execution
models, we describe the new physical join operators in terms
of the three basic interface methods Open, GetNext, and Close.
The Open method initializes the operator and prepares its in-
ternal state, the GetNext method reports the next ranked join
result upon each call, and the Close method terminates the
operator and performs the necessary clean up.

In choosing the join strategy, the discussion in Sect. 4.3
suggests sweeping the Cartesian space in a way that reduces
the threshold value. We depend on the idea of ripple join as
our join strategy. Instead of randomly sampling tuples from
the input relations, the tuples are retrieved in order to preserve
ranking. One challenge is to determine the rate at which tuples
are retrieved from each relation. We present two variants of our
rank-join algorithm. The two variants are based on adopting
two ripple join variants: the hash ripple join and the block
ripple join.

5.1 Hash rank join operator (HRJN )

HRJN can be viewed as a variant of the symmetrical hash
join algorithm [14,22] or the hash ripple join algorithm [13].
The Open method is given in Table 1. The HRJN operator
is initialized by specifying four parameters: the two inputs,
the join condition, and the combining function. Any of the
two inputs or both of them can be another HRJN operator.1

The join condition is a general equality condition to evaluate
valid join combinations. The combining function is a mono-
tone function that computes a global score from the scores of
each input. The Open method sets the state and creates the

1 Because HRJN is symmetric, we can allow pipelined bushy
query evaluation plans.

Table 1. The HRJN Open operation

Open(L,R,C,f )
input L,R: Left and right ranked input

C: join condition.
f: monotone combining ranking function.

begin
Allocate a priority queue Q;
Build two hash tables for L and R;
Set the join condition to C;
Set the combining function to f ;
Threshold = 0;
L.Open();
R.Open();

end

operator internal state, which consists of three structures. The
first two structures are two hash tables, i.e., one for each input.
The hash tables hold input tuples seen so far and are used to
compute the valid join results. The third structure is a priority
queue that holds the valid join combinations ordered on their
combined score. The Open method also calls the initialization
methods of the inputs.

The GetNext method encapsulates the rank-join algorithm
and is given in Table 2. The algorithm maintains a thresh-
old value that gives an upper bound of the score of all join
combinations not yet seen. To compute the threshold, the al-
gorithm remembers the two top scores and the two bottom
scores (last scores seen) of its inputs. These are the variables
Ltop, Rtop, Lbottom, and Rbottom, respectively. Lbottom and

Table 2. The HRJN GetNext operation

GetNext()
output : Next ranked join result.
begin

if (Q is not empty)
tuple = Q.Top;
if (tuple.score ≥ T)

return tuple;
Loop
Determine next input to access, I; (Sect. 5.3)
tuple= I .GetNext();
if (I firstTuple)
Itop = tuple.score;
I firstTuple = false;

Ibottom = tuple.score;
T = MAX(f(Ltop, Rbottom), f(Lbottom, Rtop));
insert tuple in I Hash table;
probe the other hash table with tuple;
For each valid join combination

Compute the join result score using f ;
Insert the join result in Q;

if (Q is not empty)
tuple = Q.Top;
if (tuple.score ≥ T)

break loop;
End Loop;
Remove tuple from Q;
return tuple;

end
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Rbottom are continuously updated as we retrieve new tuples
from the input relations. At any time during execution, the
threshold upper-bound value (T ) is computed as the maxi-
mum of f(Ltop, Rbottom) and f(Lbottom, Rtop).

The algorithm starts by checking if the priority queue holds
any join results. If one exists, the score of the top join result
is checked against the computed threshold. A join result is
reported as the next GetNext answer if the join result has a
combined score greater than or equal to the threshold value.
Otherwise, the algorithm continues by reading tuples from the
left and right inputs and performs a symmetric hash join to gen-
erate new join results. For each new join result, the combined
score is obtained and the join result is inserted in the prior-
ity queue. In each step, the algorithm decides which input to
poll. This gives the flexibility of optimizing the operator to get
faster results depending on the joined data. A straightforward
strategy is to switch between left and right input at each step.

5.2 Local ranking in HRJN

Implementing the rank-join algorithm as a binary pipelined
query operator raises several issues. We summarize the differ-
ences between HRJN and the logical rank-join algorithm as
follows:

• The total space required by HRJN is the sum of two hash
tables and the priority queue. In a system that supports
symmetrical hash join, the extra space required is only the
size of the priority queue of join combinations. As shown
in Sect. 4.2, in the proposed rank-join algorithm (with all
inputs processed together), the queue buffer is bounded by
k, the maximum number of ranked join results that the user
asks for. In this case, the priority queue will hold only the
top-k join results. Unfortunately, in the implementation
of the algorithm as a pipelined query operator, we can
only bound the queue buffer of the top HRJN operator
since we do not know in advance how many partial join
results will be pulled from the lower-level operators. The
effect of pipelining on the performance is addressed in the
experiments in Sect. 8.

• Realizing the algorithm in a pipeline introduces a com-
putational overhead as the number of pipeline stages in-
creases. To illustrate this problem, we elaborate on how
HRJN works in a pipeline of three input streams, say,
L1, L2, and L3. When the top HRJN operator, OP1, is
called for the next top-ranked join result, several GetNext
calls from the left and right inputs are invoked. Accord-
ing to the HRJN algorithm, described in Table 2, at each
step OP1 gets the next tuple from its left and right inputs.
Hence, OP2 will be required to deliver as many top par-
tial join results of L2 and L3 as the number of objects
retrieved by L1. These excessive calls to the ranking al-
gorithm in OP2 result in retrieving more objects from L2
and L3 than necessary and accordingly larger queue sizes
and more database accesses. We call this problem the local
ranking problem.

Solving the local ranking problem.Another version of ripple
join is the blocked ripple join [13]. At each step, the algorithm
retrieves a new block of one relation, scans all the old tuples of
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Fig. 7a,b. Effect of applying heuristic to solve local ranking problem
in HRJN

the other relation, and joins each tuple in the new block with
the corresponding tuples there. We utilize this idea to solve the
local ranking problem by unbalancing the retrieval rate of the
inputs. We issue less expensive GetNext calls to the input with
more HRJN operators in its subtree of the query plan. For
example, in a left-deep query execution plan, for each p tuple
accessed from the right input, one tuple is accessed from the
left input. The idea is to have less expensive GetNext calls to
the left child, which is also an HRJN operator. This strategy
is analogous to the block ripple join algorithm, having the left
child as an outer relation and the right child as an inner rela-
tion with a block of size p. Using different depths in the input
streams does not violate the correctness of the algorithm but
will have a major effect on the performance. This optimiza-
tion significantly enhances the performance of the HRJN
operator, as will be demonstrated in Sect. 8. For the rest of
this paper, we call p the balancing factor. Choosing the right
value for p is a design decision and depends on the generated
query plan, but a good choice of p boosts the performance of
HRJN .

For example, in a typical query with three ranked in-
puts, we compare the total number of tuples accessed by the
HRJN operator before and after applying the heuristic. Fig-
ure 7 shows the number of retrieved tuples for each case. In
the plan in Fig. 7a, p is set to 1 for both HRJN operators.
This query pipeline is applied on real data to retrieve the top
50 join results. The top HRJN operator retrieves 328 tuples
from both inputs, hence the top 328 partial join results are
requested from the HRJN child operator. The child HRJN
operator has to retrieve 577 tuples from each of its inputs, for
a total of 1482 tuples. In the plan in Fig. 7b, p is set to 2 for
the top HRJN operator. While retrieving the same answers,
the total number of tuples retrieved is 994, which is much less
than that of the HRJN before applying the heuristic, since
the top HRJN operator requested only 102 tuples from its
left child.

5.3 HRJN∗: score-guided join strategy

As discussed in Sect. 4.3, the way the algorithm schedules the
next input to be polled can affect the operator response time
significantly. One way is to switch between the two inputs
at each step. However, this balanced strategy may not be the
optimal one. Consider the two relations L and R to be rank-
joined. The scores from L are 100, 50, 25, 10 . . ., while the
scores from R are 10, 9, 8, 5, . . ..After 6 steps using a balanced
strategy (three tuples from each input) we will have a threshold
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of max(108, 35) = 108. On the other hand, favoring R by
retrieving more tuples from R than L (four tuples from R and
two tuples from L) will give a threshold of max(105, 60) =
105.

One heuristic is to try to narrow the gap between the two
terms in computing the threshold value. Recall that the thresh-
old is computed as the maximum between two virtual scores:
T1 = f(Ltop, Rbottom) and T2 = f(Lbottom, Rtop), where
f is the ranking function. If T1 > T2, more inputs should be
retrieved from R to reduce the value of T1 and hence the value
of the threshold, leading to possibly faster reporting of ranked
join results.

This heuristic will cause the join strategy to adaptively
switch between the hash join and nested-loops join strategies.
Consider the previous example; since T1 > T2, more tuples
will be retrieved from R till the end of that relation. In this
case, Ltop can be reduced to 50. In fact, because all the scores
in L are significantly higher than those in R, the strategy will
behave exactly like a nested-loops join. At the other extreme,
if the scores from both relations are close, the strategy will
behave as a symmetric hash join with equal retrieval rate. Be-
tween the two extremes, the strategy will gracefully switch
between nested-loops join and hash join to reduce the thresh-
old value as quickly as possible. Of course, this heuristic does
not consider the I/O and memory requirements that may prefer
one strategy over the other. In the experimental evaluation of
our approach, discussed in Sect. 8, we implement the new join
strategy using theHRJN operator.We call the enhanced oper-
ator HRJN∗. HRJN∗ shows better performance than those
of other rank-join operators including the original HRJN .

5.4 An adaptive join strategy

When inputs are from external sources, one of the inputs may
stall for some time. An adaptive join algorithm makes use
of the tuples retrieved from the other input to produce valid
join results. This processing environment is common in ap-
plications that deal with ranking, e.g., a mediator over Web-
accessible sources and distributed multimedia repositories.

In these variable environments, the join strategy of the
rank-join operators may use input availability as a guide in-
stead of the aforementioned score-guided strategy. If both in-
puts are available, the operator may choose the next input to
process based on the retrieved scores. Otherwise, the avail-
able input is processed. HRJN can be easily adapted to use
XJoin [20]. XJoin is a practical adaptive version of the sym-
metric hash join operator. The same GetNext interface will be
used with the only change that the next input to poll is deter-
mined by input availability and rate. The adaptive version of
HRJN will inherit the adaptability advantage of the underlying
XJoin strategy with the added feature of supporting top-k join
queries over external sources.

6 Choosing the best join order

As described in Sect. 5, the join operation is implemented in
most systems as a dyadic (two-way) operator for flexibility and
practical implementation reasons. Hence, rank-join operators,
e.g., HRJN , are implemented as binary join physical opera-
tors. To rank-join n ranked inputs, the inputs are organized in
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a pipelined query evaluation plan in the form of a binary tree.
The evaluation plan determines the order at which we carry
out the rank-join operations. In this section we highlight the
effect of join order on the overall performance of top-k join
queries. We propose an optimization heuristic to choose the
best join order based on sampling.

Consider the following example to join three ranked inputs
A, B, and C. Figure 8 gives the number of retrieved records
from each input to report the top ten join results. Figure 8 also
gives three different join orders (evaluation plans) for the rank-
join operations among A, B, and C. The figure shows that the
join order significantly affects the number of retrieved records
from the inputs. For example, we save a significant number
of I/O accesses by changing the join order from plan (b) to
plan (c). For plan (b), the number of records retrieved from
A, B, and C is 499, 499, and 217, respectively, with a total
of 1215 records. For plan (c), the number of records retrieved
from A, B, and C is 324, 324, and 218, respectively, with a
total of 866 records, which is 70% of the inputs required for
plan (b).

The main reason for the effect of the join order on the size
of required input – and hence the performance of the rank-join
operation – is the correlation or the similarity among the input
rankings. In Fig. 8, the degree of similarity between the rank-
ings of A and C is higher than that between the rankings of A
and B. Hence, a rank-join between A and C is likely to require
fewer records than a rank-join between A and B to produce
the same number of ranked results. Like traditional query op-
timization, the main goal of optimizing rank-join queries is
to choose the best join order. Unlike traditional optimization,
the size of the inputs involved in the rank-join operation is
not known a priori. Hence it is hard to estimate the cost of a
rank-join operation. Figure 9 gives actual total execution time
and the number of I/O accesses to rank-join four ranked inputs
with six different join orders. The figure shows the significant
impact of the order on the overall performance of the rank-join
operation.

An optimal query execution plan is the plan with the cheap-
est overall cost, where the cost includes various components,
e.g., the I/O complexity and the memory usage. Since the num-
ber of retrieved input records greatly affects the I/O and time
complexities of the rank-join operation, we give a definition
of an optimal rank-join order. For simplicity, the definition as-
sumes that the I/O cost to retrieve a record is the same for all
the inputs. This simplification can be easily relaxed by using
a different weight for each input.
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Definition 4 Optimal rank-join order: A rank-join order is
optimal if it requires the least number of input records to pro-
duce the same number of ranked join results.

Computing the optimal rank-join order is hard and even
impossible in certain situations for the following reasons:

• Determining the number of input records needed to pro-
duce the top-k join results requires a complete knowledge
of the score distribution of each input and a well-defined
notion of similarity measure among input rankings.

• There is no clear way of estimating the number of required
join results, k, when pushed down in a plan pipeline. For
example, in plan (c) of Fig. 8, while k = 10 for the top
HRJN operator, k = 111 for the left child HRJN op-
erator. The value of k in each rank-join operator depends
on the final value of k (specified in the user query), the
rank-join strategy, and the score distribution of the input.

• Assuming that there is a way to compute and use these
statistics to estimate the input size, the input itself may
not be available offline. For example, the input rankings
may be computed as the output of single-feature similarity
subqueries (refer to examples 1 and 2).

In the following discussion, we propose a simple yet ef-
ficient heuristic to choose a “good” rank-join order based on
sampling.

6.1 Rank-join order heuristic

The main idea of the proposed heuristic is to push the rank-join
of similar rankings as early as possible in the query evaluation
plan. We describe the intuition behind this heuristic as follows:

• Since the number of required results from each rank-join
operator increases as we go down in the query pipeline,
we aim at making early rank-join operations (deep in the
query plan) as fast as possible.

• The best-case scenario for the rank-join algorithm occurs
when joining identical ranked inputs. We can easily show
that the algorithm performance deteriorates, i.e., requires
more input before termination, as the similarity between
the input rankings decreases.

The proposed technique depends on two main steps: first,
obtaining a ranked sample of size S from each input, and sec-
ond, having a well-defined notion for the similarity between
two rankings. The first step depends on the type of the in-
put rankings. In general, input rankings can be in one of the
following two forms:

• Available offline as regular database relations: In this case
the ranked sample is the top S records from the inputs and
is available statically without the need to run the whole (or
part) of the top-k query.

• Dynamically computed input: Examples of this cate-
gory are the output of single-feature similarity queries
or through-pulling ranked results from an external source
(e.g., a Web site). In this case we need to run warmup
subqueries on the inputs. A warmup subquery is a single-
feature top-S query on each individual input.

In both cases, the ranked samples are ranked “lists” of the top
S objects from each individual ranking.

We define a similarity measure between two rankings
based on the footrule distance [6,7] between those two rank-
ings. The footrule distance between two ranked lists L and
R over the same set of objects is defined as F (L, R) =∑

i |L(i) − R(i)|, where L(i) and R(i) are the rank of ob-
ject i in L and R, respectively. For two input rankings (pos-
sibly on different sets of objects), with a join condition to
join objects from the first input with objects from the sec-
ond input, we generalize the distance metric F (L, R) to
F (L, R) =

∑
i,j |L(i) − R(j)|, where (i, j) is a valid join

result that joins object i from L with object j from R.
Using the ranked sample and the definition of the distance

metric, F (L, R), we lay out the rank-join order technique in
Table 3. The technique is an adaptation of Kruskal’s minimum
spanning tree algorithm to build the final rank-join evaluation
plan.

The algorithm in Table 3 starts by building a graph struc-
ture that represents the similarity measure among all inputs.
An edge in the graph connects two vertices, each representing
an input ranking list, where a join condition exists between
these two inputs. The edge is labeled by the value of the dis-
tance metric F (L, R), described earlier. The final rank-join
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Table 3. The rank-join order algorithm

Rank-join order (L1, L2, . . . , Lm, JCs)
input L1, . . . , Lm: m input ranked lists of size S

JCs: a set of join conditions pairs of inputs.
output P : a query plan to rank-join the inputs
begin

Compute F (Li, Lj) for each pair of inputs Li and Lj

Define a graph G = (V, E) as follows:
Each input ranked list represents one vertex in V
An edge (Li, Lj) exists if
there exists a join condition in JCs between Li and Lj

Each edge (Li, Lj) is labeled with F (Li, Lj)
Let T = {} be a set of graph vertices
Loop while E is not empty

Choose the edge e = (Li, Lj) with the least F (Li, Lj)
Remove e from E
if Li ∈ T and Lj ∈ T , then ignore e
else if Li /∈ T and Lj /∈ T , then:

Form a subplan P ′ that rank-joins Li and Lj

if P = NULL, then P = P ′

else let P ′′ be a subplan that rank-joins P and P ′;
and set P = P ′′

T = T ∪ {Li, Lj}
else if Li /∈ T , (same for Lj) then:

let P ′′ be a subplan that rank-joins P andLi;
and set P = P ′′

T = T ∪ {Li}
End Loop

end
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evaluation plan, say, P , is built bottom-up by choosing the
next most similar pair of inputs from the graph. If neither of
the two chosen inputs exists in the current plan, a new sub-
plan, P ′, is formed by providing these two inputs as the inputs
to a rank-join operator. P ′ is joined to the current evaluation
plan, P , through building a new rank-join root operator; the
inputs of the new root are the current evaluation plan, P , and
the newly formed subplan, P ′. If only one input from the pair
of chosen inputs does not exist in P , this input is joined to the
plan using a rank-join operator. Note that, because of the sym-
metry of rank-join operators, we do not distinguish between
the left and right child while building P .

Figure 10 gives a real example of applying the rank-join or-
der algorithm in Table 3 on 4 inputs. The sample size S = 100
records from each input. The join condition is an equijoin on
the object id from each list. The labels on the graph edges rep-
resent the ranking distance as described earlier in this section.
First, the algorithm chooses the two inputs B and D since they

have the least distance value, 7174. The current evaluation plan
P = P1 is a rank-join operator that joins B and D. Since the
pair of inputs C and D has the next smallest distance value,
C is joined to P1 to form the evaluation plan P2. Finally, the
next most similar two inputs are A and C. Hence, A is joined
to P2 to form the final evaluation plan P3. Other edges in the
graph are ignored since we consumed all the inputs.

7 Generalizing rank-join to exploit
random access capabilities

The new rank-join algorithm and query operators assume only
sorted access to the input. Random access to some of these
inputs is possible when indexes exist. Making use of these
indexes may give better performance depending on the type
of the index and the selectivity of the join operation. We would
like to give the optimizer the freedom to choose whether to
use indexes given the necessary cost parameters.

In this section, we generalize the rank-join algorithm to
make use of the random access capabilities of the input rela-
tions. The main advantage of using random access is to further
reduce the upper bound of the score of unseen join combina-
tions, and hence to be able to report the top-k join results
earlier. For simplicity, we present the algorithm by generaliz-
ing the HRJN operator to exploit the indexes available on
the join columns of the ranked input relations. Consider two
relations L and R, where both L and R support sorted access
to their tuples. Depending on index existence, we have two
possible cases. The first case is when we have an index on
only one of the two inputs, e.g., R. Upon receiving a tuple
from L, the tuple is first inserted into L’s hash table and used
to probe the R index. This version can be viewed as a hybrid
between a hash join and an index nested-loops join. The sec-
ond case is when we have an index on each of the two inputs.
Upon receiving a tuple from L(R), the tuple is used to probe
the index of R(L). In this case, there is no need to build hash
tables.

On-the-fly duplicate elimination. The generalization, as pre-
sented, may cause duplicate join results to be reported. We
eliminate the duplicates on the fly by checking the combined
score of the join result against the upper bound of the scores of
join results not yet produced. Consider the two relations L and
R with an index on the join column of R. A new tuple from L,
with score Lbottom, is used to probe R’s index and generate all
valid combinations. A new tuple from R, with score Rbottom,
is used to probe L’s hash table of all seen tuples from L. A key
observation is that any join result not yet produced cannot have
a combined score greater than U = f(Lbottom, Rbottom). No-
tice that Lbottom is an upper bound of all the scores from L
not yet seen. All join combinations with scores greater than
U were previously generated by probing R’s index. Hence,
a duplicate tuple can be detected and eliminated on the fly if
it has a combined score greater than U . A similar argument
holds for the case when both L and R have indexes on the join
columns. One special case is when the two new tuples from L
and R can join. In this case, only one of them is used to probe
the other relation.

Faster termination. Although index probing looks similar
to hash probing in the original HRJN algorithm in Table 2,
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it has a significant effect on the threshold values. The rea-
son is that, since the index contains all the tuples from the
indexed relation (e.g., L), the tuple that probes the index
from the other relation (e.g., R) cannot contribute to more
join combinations. Consequently, the top value of relation R
should be decreased to the score of the next tuple. For exam-
ple, for the two ranked relations L and R in Fig. 3, assume
that relation R has an index on the join column to be ex-
ploited by the algorithm. In the first step of the algorithm, the
first tuple from L is retrieved: (1, 1, 5). We use this tuple to
probe the index of R, and the resulting join combination is
[(1, 1, 5), (2, 1, 4)]. Since the tuple from L cannot contribute
to other join combinations, we reduce the value Ltop to be
that of the next tuple (2, 2, 4), i.e., 4. In this case we always
have Ltop = Lbottom, which may reduce the threshold value
T = max(Ltop + Rbottom, Lbottom + Rtop). Note that if no
index exists, the algorithm behaves exactly like the original
HRJN algorithm.

8 Performance evaluation

In this section, we compare the two rank-join operators,
HRJN and HRJN∗, introduced in Sect. 5, with another
rank-join operator based on the J∗ algorithm. The exper-
iments are based on our research platform for a complete
video database management system (VDBMS) running on a
Sun Enterprise 450 with four UltraSparc-II processors run-
ning SunOS 5.6 operating system. The research platform is
based on PREDATOR [19], the object relational database sys-
tem from Cornell University. The database tables have the
schema (Id, JC, Score, Other Attributes). Each table is ac-
cessed through a sorted access plan, and tuples are retrieved
in a descending order of the Score attribute. JC is the join
column (not a key) having D distinct values.

We use a simple ranking query that joins four tables on the
non-key attribute JC and retrieves the join results ordered on
a simple function. The function combines individual scores,
which in this case is a weighted sum of the scores (wi is the
weight associated with input i). Only the top k results are
retrieved by the query. The following is a SQL-like form of
the query:

Q: SELECT T1.id, T2.id, T3.id, T4.id
FROM T1, T2, T3, T4
WHERE T1.JC=T2.JC and

T2.JC=T3.JC and
T3.JC=T4.JC

ORDER BY w1*T1.Score + w2*T2.Score +
w3*T3.Score + w4*T4.Score

STOP AFTER k;

One pipelined execution plan for query Q is the left-deep
plan, plan A, given in Fig. 11. We limit the number of reported
answers to k by applying the Stop-After query operator [3,4].
The operator is implemented in the prototype as a physical
query operator Scan-Stop, a straightforward implementation
of Stop-After, and appears on top of the query plan. Scan-Stop
does not perform any ordering on its input.

RANK−JOIN

Scan−Stop(k)

RANK−JOIN Index−Scan
Score

RANK−JOIN

T4

Index−Scan
Score
T1

Index−Scan
Score
T3

Index−Scan
Score
T2

w1*T1.Score+w2*T2.Score+w3*T3.Score

w1*T1.Score+w2*T2.Score

w1*T1.Score+w2*T2.Score+w3*T3.Score+w4*T4.Score

Fig. 11. Plan A: A left-deep execution plan for Q

8.1 A pipelined bushy tree

Plan A is a typical pipelined execution plan in current query
optimizers. Plan B is a bushy execution plan given in Fig. 12.
Note that bushy plans are not pipelined in current query pro-
cessors because of the current join implementations. Because
rank-join is a symmetric operation, a bushy execution plan can
also be pipelined. The optimizer chooses between these plans
depending on the associated cost estimates.

Plan B does not suffer from the local ranking problem,
described in Sect. 5.2, because each operator has almost the
same cost for accessing both of its inputs (same number of
plan levels). However, with large variance of the score values
between inputs, retrieving more inputs from one side may
result in a faster termination. This is a typical case where the
operator HRJN∗ can perform better because HRJN∗ uses
input scores to guide the rate at which it retrieves tuples from
each input.

8.2 Comparing the rank-join operators

In this section, we evaluate the performance of the introduced
operators by comparing them with each other and with a rank-
join operator based on the J∗ algorithm [16]. We limit our
presentation to comparing three rank-join operators: the basic
HRJN operator, the HRJN∗ operator, and the J∗ opera-
tor. HRJN applies the basic symmetric hash join strategy;
at each step one tuple is retrieved from each input. The local
ranking minimization heuristic, proposed in Sect. 5.2, is ap-
plied in HRJN . The HRJN∗ operator uses the score-guided

Index−Scan
Score
T1

Index−Scan
Score
T2

Index−Scan
Score
T3

Index−Scan

T4
Score

RANK−JOINRANK−JOIN

RANK−JOIN

Scan−Stop(k)

w1*T1.Score+w2*T2.Score+w3*T3.Score+w4*T4.Score

w1*T1.Score+w2*T2.Score w3*T3.Score+w4*T4.Score

Fig. 12. Plan B: A bushy execution plan for Q
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Fig. 13a–c. Comparing HRJN , J∗, and HRJN∗ for m = 4 and
selectivity = 0.2%

strategy, proposed in Sect. 5.3, to determine the rate at which
it retrieves tuples from both inputs. The J∗ operator is an im-
plementation of the J∗ algorithm. We do not compare with the
naı̈ve approach of joining the inputs then sorting since all the
rank-join algorithms give a better performance by orders of
magnitude. We choose four performance metrics: total time to
retrieve k ranked results, total number of accessed disk pages,
maximum queue size, and total occupied space. In the follow-
ing experiments, we use plan A as the execution plan for Q.
Using plan B gives similar performance results.

Changing the number of required answers. In this exper-
iment, we vary the number of required answers, k, from 5
to 100 while fixing the join selectivity to 0.2%. Figure 13a
compares the total time to evaluate the query. HRJN and
HRJN∗ show a faster execution by an order of magnitude
for large values of k. The high CPU complexity of the J∗ al-
gorithm is due to the fact that it retrieves one join combination
in each step. In each step, J∗ tries to determine the next opti-
mal point to visit in the Cartesian space. Since both HRJN
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Fig. 14a–c. Effect of selectivity on HRJN , J∗, and HRJN∗ for
m = 4 and K = 50

and HRJN∗ use a symmetric hash join to produce valid join
combinations, more join combinations are ranked at each step.
Figure 13b compares the number of accessed disk pages. The
three algorithms have a comparable performance in terms of
the number of pages retrieved. J∗ and HRJN∗ achieve better
performance because retrieving a new tuple is guided by the
score of the inputs, which makes both algorithms retrieve only
the tuples that causes a significant decrease in the threshold
value and hence less I/O. Figure 13c compares the number
of maintained buffer space. HRJN and HRJN∗ have low
space overhead because they use the buffer only for ranking
the join combinations, while J∗ maintains all the retrieved tu-
ples in its buffer. Had we also included the space of the hash
tables, J∗ would have had a lower overall space requirement.
In most practical systems the hash space is already reserved
for hash join operations. Hence, the space overhead is only the
buffer needed for ranking.

Changing the join selectivity. In this experiment, we fix the
value of k at 50 and vary the join selectivity from 0.12 to 2%.
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Fig. 15a–c. Effect of pipelining on HRJN , J∗, and HRJN∗ for
selectivity = 0.2% and K = 50

Figure 14a compares the total time to report 50 ranked results,
while Figs. 14b and 14c compare the number of accessed disk
pages and the extra space overhead, respectively. For all se-
lectivity values, HRJN∗ shows the best performance. J∗ has
a better performance than HRJN for high selectivity values,
while HRJN performs better for low selectivity values. The
reason is that HRJN∗ combines the advantages of J∗ and
HRJN . While HRJN∗ uses a score-guided strategy to nav-
igate in the Cartesian space for a faster termination (similar
to J∗), it also uses the power of producing fast join results by
using the symmetric hash join technique (similar to HRJN ).

The effect of pipelining. In this experiment, we evaluate
the scalability of the rank-join operators. We vary the number
of join inputs, m, from 3 to 6 and fix k = 50 and the join
selectivity to 0.2%. Figure 15a gives the effect of pipelining on
the total query time. HRJN and HRJN∗ show much better
scalability than that of J∗ by orders of magnitude. The CPU
complexity ofJ∗ increases significantly asm increases. On the

Fig. 16. Evaluation of rank-join order technique

other hand, J∗ and HRJN∗ show better performance in terms
of the number of accessed pages compare to HRJN (Fig. 15b)
because of the score-guided strategy they use. HRJN∗ is the
most scalable in terms of the space overhead, as shown in
Fig. 15c.

8.3 Evaluating the rank-join order technique

In Sect. 6, we introduced a technique for choosing an order
of the rank-join operators based on sampling. In this exper-
iment, we evaluate the efficiency of the proposed heuristic.
We experiment with several top-k join queries and choose 7
representative queries that join the rankings according to three
visual features. The set of visual features in each query is dif-
ferent. For each query, we compute the cost of all possible
evaluation plans by actually executing these plans. In each
query, we compare the cost of best plan, the cost of the chosen
plan according to our heuristic, and the cost of the worst plan.
The cost of a plan is calculated as the total number of retrieved
objects from the input rankings.

Figure 16 shows that in most cases, the heuristic is able
to avoid “bad” orders and hence expensive execution plans.
The figure shows that for the cases where there is a significant
difference between the cost of the best and the worst order,
our technique is able to choose an order that is (or as close
as possible to) the optimal rank-join order, saving up to 48%
of the cost. For the cases where there is no significant cost
difference between the best and the worst plan (less that 20%),
the technique tends to choose a random join order that can
range from the best to the worst rank-join order.

9 Conclusion

In this paper, we address supporting top-k join queries in prac-
tical relational query processors. We introduce a new rank-join
algorithm that is independent of the join strategy, along with
its correctness proof. The proposed rank-join algorithm makes
use of the ranking on the input relations to produce ranked join
results on a combined score. The ranking is performed pro-
gressively during the join, and hence there is no need for a
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blocking sort operation after the join. We analyze the I/O per-
formance of the proposed rank-join algorithm and prove its
optimality in terms of the number of accessed input tuples.
We present a physical query operator to implement rank-join
based on ripple join, the hash rank join (HRJN ). We propose
a new join strategy that is guided by the input score values and
apply the new strategy to the original HRJN algorithm and
call the new operator HRJN∗. We study the effect of rank-
join order on the performance of rank-join query evaluation
pipeline and introduce an efficient rank-join order heuristic to
help choose a near-optimal join order. We address the possi-
bility of exploiting available indexes on the join columns, pro-
pose a general rank-join algorithm that utilizes these indexes
for faster termination of the ranking process, and experimen-
tally evaluate the proposed join operators and compare their
performance with a recent algorithm to join ranked inputs. Fi-
nally, we conduct several experiments varying the number of
required answers, the join selectivity, and the number of inputs
in the pipeline. The experiments prove the concept and show a
significant performance enhancement, especially for low join
selectivity values.
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