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ABSTRACT

The last decade has witnessed an unprecedented rise in the application of machine learn-

ing in high-stake automated decision-making systems such as hiring, policing, bail sentencing,

medical screening, etc. The long-lasting impact of these intelligent systems on human life has

drawn attention to their fairness implications. A majority of subsequent studies targeted the

existing historically unfair decision labels in the training data as the primary source of bias

and strived toward either removing them from the dataset (de-biasing) or avoiding learning

discriminatory patterns from them during training. In this thesis, we show label bias is

not a necessary condition for unfair outcomes from a machine learning model. We develop

theoretical and empirical evidence showing that biased model outcomes can be introduced

by a range of different data properties and components of the machine learning development

pipeline.

In this thesis, we first prove that machine learning models are expected to introduce bias

even when the training data doesn’t include label bias. We use the proof-by-construction

technique in our formal analysis. We demonstrate that machine learning models, trained to

optimize for joint accuracy, introduce bias even when the underlying training data is free

from label bias but might include other forms of disparity. We identify two data properties

that led to the introduction of bias in machine learning. They are the group-wise disparity

in the feature predictivity and the group-wise disparity in the rates of missing values. The

experimental results suggest that a wide range of classifiers trained on synthetic or real-world

datasets are prone to introducing bias under feature disparity and missing value disparity

independently from or in conjunction with the label bias. We further analyze the trade-off

between fairness and established techniques to improve the generalization of machine learn-

ing models such as adversarial training, increasing model complexity, etc. We report that

adversarial training sacrifices fairness to achieve robustness against noisy (typically adver-

sarial) samples. We propose a fair re-weighted adversarial training method to improve the

fairness of the adversarially trained models while sacrificing minimal adversarial robustness.

Finally, we observe that although increasing model complexity typically improves general-

ization accuracy, it doesn’t linearly improve the disparities in the prediction rates.
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This thesis unveils a vital limitation of machine learning that has yet to receive significant

attention in FairML literature. Conventional FairML literature reduces the ML fairness task

to as simple as de-biasing or avoiding learning discriminatory patterns. However, the reality

is far away from it. Starting from deciding on which features collect up to algorithmic

choices such as optimizing robustness can act as a source of bias in model predictions. It

calls for detailed investigations on the fairness implications of machine learning development

practices. In addition, identifying sources of bias can facilitate pre-deployment fairness audits

of machine learning driven automated decision-making systems.
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1. INTRODUCTION

The last decade has witnessed an unprecedented rise in the development and application

of artificial intelligence and machine learning. Widespread applications of ML have led to

its use in making high-stakes decisions with long-lasting impacts on human life. Artificial

intelligence (AI), especially machine learning (ML), is frequently being used in making con-

sequential decisions such as hiring [ 1 ], credit lending [  2 ], policing and bail sentencing [ 3 ],

patient monitoring [  4 ,  5 ], etc. Although the initial motivation behind automatic decision-

making systems was to alleviate human labor, errors, and biases, mounting evidence [ 3 – 5 ]

suggest that machine learning models tend to further exacerbate bias in their predictions.

One of the most striking examples of unfairness in ML was reported in NothPointe’s criminal

risk assessment tool, commonly known as COMPAS [  3 ]. The authors revealed that COM-

PAS unfairly predicts higher risk scores for black defendants. It triggered a broad spectrum

of studies on fairness-aware machine learning (FairML).

FairML focuses on fairness concerns of ML models in real-world applications. Con-

ventional wisdom dictates that real-world systems are interweaved with social biases and

discriminations. Datasets collected from such biased systems typically include historically

biased decisions. Researchers posit that biased decision labels eventually drive ML models

toward unfairness. Preliminary works studied the direct or indirect relations between sensi-

tive attributes and decision labels. If the sensitive attributes directly influence the decision

making it is called direct bias. For example, the disenfranchisement of black women until

the 1965 Voting Rights Act. On the other hand, indirect bias occurs when an attribute,

commonly known as redlining attribute [ 6 ], acts as a proxy of the sensitive attributes. Re-

jecting loan applications from African American-dominated neighborhoods at a higher rate

is a well-known instance of the redlining effect where zipcode is used as a proxy of the racial

attribute. Thus redlining attributes contribute to unfair behavior even though the original

sensitive attribute is not directly involved in the decision-making process. From the FairML

perspective, direct bias indicates including the sensitive attributes in model training and pre-

dictions while indirect bias involves using proxy-sensitive attributes in model development.

In [ 7 ], it was formally shown that removing sensitive attributes is not sufficient since redlin-
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ing attributes contain sensitive information. Since it is often difficult to identify and remove

redlining attributes, fairness interventions attempt to avoid learning discriminatory patterns

in the presence of redlining attributes. In short, common fairness interventions assume that

label bias in the dataset is responsible for unfairness in machine learning and the goal of

FairML is to avoid learning the existing discriminatory patterns from these decision labels.

Fairness-interventions are broadly categorized as pre-processing [  6 ,  8 – 11 ], in-processing

[ 12 – 16 ] and post-processing techniques [  17 – 20 ]. Pre-processing focuses on data de-biasing

through sampling, relabeling, reweighing, etc. Similarly, in-processing techniques emphasize

on avoiding historical biases through fairness constraints and modification of traditional ML

algorithms. In contrast, post-processing techniques consider ML algorithms as black boxes

and ensure fairness by balancing out the predictions among sensitive groups. Applications of

causal reasoning to reduce the causal effect of sensitive attributes on the predictions have also

been explored in literature [ 21 – 23 ]. FairML literature acknowledges the fairness vs accuracy

trade-off [  24 ,  25 ]. Consequently, we see applications of game theory [  26 ,  27 ] and adversarial

mechanism [ 28 ] as fairness interventions that try to optimize this trade-off. Authors have

also proposed models that consider one or more desired properties, i.e., robustness [ 29 ],

explainability [ 30 ], etc., in conjunction with fairness.

Irrespective of the stage of fairness intervention, a universal assumption in FairML lit-

erature is that biased decision labels lead to biased model outcomes. However, label bias

is not the only source of bias in machine learning. In this work, we investigate the sources

of bias beyond label bias. These sources are often systemic in nature, i.e., introduced by

or inherent to the ML algorithm itself or the components of the ML development pipeline.

Although Systemic bias is recognized as a paradigm of bias in social justice literature [ 31 ,  32 ],

it is rarely considered in FairML. Systemic discrimination is typically defined as setting up

a system, institution, or policy in such a way that it inherently disadvantages the protected

group. A quintessential example of systemic bias is the higher stop-and-frisk rate at African

American majority neighborhoods results in higher incarceration of African Americans even

though the crime rate in those neighborhoods is similar to that of White ones. Without

a doubt, the COMPAS dataset is biased against African Americans. Stereotypes against

African American communities might have directly or indirectly skewed historical court de-
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cisions against them (label bias). At the same time, systemic bias, i.e., strict policing, poor

financial situation, lack of rehabilitation, etc., have contributed towards imbalanced arrest

and sentencing rates; resulting in a skewed majority of African American samples in the

COMPAS dataset. Instead of focusing on label bias, as was done in previous works, we pay

attention to systemic bias in machine learning systems. We define systemic bias in machine

learning as the biases that are inherent to the machine learning models themselves or intro-

duced by parts of the development process. As a result, in ML, we refer to systemic bias as

introduced bias or inherent bias. We investigate the extent of introduced bias in ML. In other

words, we investigate whether label bias is a necessary condition of unfair ML. We identify

several conditions where introduced bias appears in ML and establish them as a frequent

phenomenon in real-world ML systems. We provide theoretical and empirical evidence of

introduced bias under group-wise disparity in feature predictivity and group-wise disparity

in the rates of missing values. In addition, we show that adversarial robustness against dis-

parately effective evasion attacks can result in increased between-group disparity of model

robustness. Finally, we study the disparity in classification complexity and its implications

on model fairness.

We argue that systemic bias appears due to disparities in data collection, feature design,

or other steps in the ML algorithm pipeline, in short disparities not directly related to label

bias. These biases contribute to producing biased ML models. Given a dataset with fixed

data properties, systemic biases pose an upper bound of model fairness beyond which may

not be achievable with simple computational solutions. Therefore, it is imperative to study

and identify conditions where systemic bias introduces or intensifies bias in machine learning.

Similar to the case of societal, institutional, or political systemic bias, systemic bias in ML

often requires system-wide changes and carefully designed practices. We hypothesize that

machine learning models can be expected to introduce/ amplify bias in model outcomes

under certain conditions irrespective of whether the training data contains label bias.
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1.1 Problem Formulation

In this thesis, we examine whether sources of bias other than label bias exist which either

exacerbates the existing AI systems’s inequality or drives the model toward unfair predic-

tions. In this regard, we examine systemic bias as a potential source of bias in ML. Typically,

systemic bias is defined as the inherent tendency of a system to support unfair outcomes. It

either introduces or amplifies existing discrimination by systematically deteriorating the sta-

tus of the disadvantaged group. The effect of systemic bias on the unprivileged group is even

more insidious since it provokes justification for unfair treatment towards them. From the

perspective of machine learning, systemic disparities may appear innocuous but can intro-

duce unfair outcomes in the long run. Therefore, it is also called introduced bias or induced

bias. While ML models simply mimic the label bias, introduced bias drives the ML mod-

els towards further unfairness in their predictions. In this work, we take the first attempt

to study introduced bias in machine learning. We show that certain systemic disparities

during the ML development process introduce bias in the model outcome independently of

label bias. In our analysis, we assess the extent of introduced bias in ML by measuring the

disparate group-wise prediction rates when systemic disparities are imposed on the training

data. We explore the following instances where introduced bias can appear in ML.

• We first study whether the between-group disparity in the efficacy of the collected

features is an instance of introduced bias.

• Secondly, we examine the existence of introduced bias due to the disparity in group-

wise rates of missing values.

• Next, we explore whether achieving robustness against noisy samples is at odds with

ML fairness. More specifically, we examine whether optimizing for robustness can

sacrifice model fairness.

• Finally, we study the fairness implications of increasing model complexity and dispar-

ities in group-wise classification complexities.
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Disparity in feature predictivity appears from improper feature engineering and selection.

Similarly, the disparity in noise and missingness typically results from the discrepancies in

the data collection mechanism. Missing value in data samples is a well-known phenomenon

in machine learning. About 45% of the datasets in the renowned UCI dataset repository

contain missing values [  33 ]. Missing values can appear due to partial survey completion

by the participants, missing by nature such as middle name, or non-response to optional

items such as online profile, college application, etc. In addition to missing values, a group

of individuals may be under-represented when representative samples are missing from the

dataset. We consider both missing values and missing samples under the umbrella of missing

data. Data imputation is a widely approved technique to handle missing data. Since the

group-wise rates of missing values are beyond the control of ML developers and largely based

on the underlying data collection mechanisms, we consider such disparity as an instance

of systemic bias. We investigate whether such disparity in missing value appearance can

introduce bias in machine learning. Furthermore, we study the interaction of model fairness

with the stability of model predictions, typically known as model robustness. We argue

that noisy samples may appear at a disparate rate among the sensitive groups. A lack

of robustness against noisy samples in one group leads to unfair prediction rates against

adversaries. Finally, we observe that fairness is not monotonically increasing with model

complexity. As a result, established practices of over-parameterization of large-scale neural

networks may lead to unfair model choices. Note that the disparities in both robustness and

classification complexity are inherent to the classification task at hand and independent of

the label bias in the dataset.

Identifying sources of bias necessitates removing confounding factors from the analysis.

As a result, in the formal analysis, we start with fairness guarantees such as equal base rates

across the demographic sub-groups, no selection bias, i.e., balanced collection of samples

with no majority or minority groups, etc. We analyze whether in the absence of other types

of disparities introducing certain disparities in the dataset leads the joint-optimal models

to produce unfair prediction rates. Similarly, during the experimental evaluations, it is

necessary to avoid other types of disparities in the training process to identify the extent

of bias introduced by a specific disparity. As a result, we exploit synthetically generated
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data that offers the flexibility to enforce fairness guarantees. For each specific evaluation, we

generate the synthetic samples such that they contain only one type of disparity. It allows

us to measure the bias introduced in the final models by a specific type of disparity. We

further extend the empirical evaluations to real-world datasets so that we can analyze the

frequency of introduced bias in real-world applications. Here, we first train baseline models

on the unaltered publicly available real-world dataset. Then, we induce the type of disparity

under consideration. In this way, we can determine the level of introduced bias by comparing

the bias in model performance with or without the specific disparity.

In short, this thesis explores the hypothesis that systemic biases lead to exacerbating AI

systems’ inequality in outcomes and explores conditions where such disparities can intro-

duce bias in ML. A thorough understanding of the effects of these biases will contribute to

designing better ML systems and development practices.

1.2 Contributions

The contributions of this work are manifold. We summarize the key contributions as

follows,

• We offer a concise survey of state-of-the-art fairness interventions and fairness metrics.

(Chapter  2 )

• We show that ML models can be expected to produce group-wise inequality even

when the training data offers certain fairness guarantees. We start with data having

no base rate disparity (equal favorable/unfavorable outcomes between groups), an

absence of majority or minority group (balanced), and all examples are presumed

correct. We show that even with such fair training data, an optimal accuracy ML

model is expected to introduce disparate impact (different favorable outcome rates

between groups) in predictions. In particular, when the optimal group-wise models

are different we theoretically show that Bayes-optimal ML models can be expected to

introduce such bias. We also analyze the cases where the allocable resources are either

insufficient or surplus. We substantiate our theoretical claims with empirical estimates

using multiple machine learning approaches and real-world datasets. (Chapter  3 )

22



• Secondly, we prove that missing value disparity is sufficient to introduce bias in model

behavior. We offer constructive proof of missing value disparity-induced bias involving

simple mechanisms, showing why missing value handling leads to outcome (prediction)

bias. We prove by construction that for a Bayes-optimal classifier, missing value dis-

parity handled by dropping or mean imputation is sufficient to induce outcome bias

when the group-wise optimal models are different. The use of a Bayes-optimal classi-

fier implies that the construction is extendable to other optimal accuracy classifiers. It

indicates that this introduced bias is inherent to techniques that maximize accuracy.

We further show that disparity in missing value rates exacerbates unfairness in imbal-

anced datasets. We also offer empirical evidence of outcome bias induced by missing

data in more complex situations, including real-world data that may contain several

sources of bias, more complex missing value imputation methods (k-NN imputation

[ 34 ], MICE [  35 ], matrix completion [ 36 ]), and both traditional (SVM, Neural Net-

work) and state-of-the-art fairness-aware classifiers. We report that in cases where the

changes in prediction probabilities were too low to alter the predicted labels, missing

value disparity drives the classifiers to disproportionately promote the relative rank-

ings of one group and demote the other. Although we mainly focus on missing values

in the training data, we found that induced bias became even more prominent when

the test data included missing values. Having shown that missing value disparity is

sufficient to induce bias, we further investigate the extent of this induced bias when

coupled with other sources of bias. We hypothesize that missing data disparity will

exacerbate existing outcome bias in situations where there are multiple sources of bias.

We validate this with experiments on real-world datasets which commonly contain se-

lection bias and label bias among other types of disparities. We observed missing value

disparity-induced bias in model behavior across different types of classifiers, multiple

causal MAR mechanisms for missing values, and several imputation mechanisms. We

conclude that induced bias through missing value disparity is a common occurrence

and threatens the fairness of machine learning models. (Chapter  4 )
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• Furthermore, we investigate the impact of adversarial training on the group-wise fair-

ness of the classifiers. We study the interaction between model robustness and group-

wise fairness in four facial image classification tasks. In each of these tasks, we obtain

relatively robust classifiers by applying nine variations of adversarial training algo-

rithms and evaluate their performance against state-of-the-art adversarial attacks. We

compare the group-wise fairness of robust classifiers to that of the robustness-unaware

baseline classifiers. We observe that adversarial training introduces bias in model pre-

dictions. In the worst case, adversarial training increased the difference between group-

wise robust accuracy and group-wise false positive rates by a magnitude of 27.6% and

39% respectively. Moreover, the increased disparity is observed in 83.4% of classifier

and adversarial attack combinations considered in our experiment. Similarly, in our

experiment, adversarial training also increased the group-wise disparity in robustness

bias defined in [ 37 ]. The experimental results indicate that, in search of robust mod-

els, state-of-the-art adversarial training often improves the group-wise robustness at

different rates and thus eventually increases the disparity. Since both robustness and

group fairness are desirable in our classifiers, we propose two re-weighting techniques

to improve the group fairness of adversarially trained models while maintaining high

robustness against evasion attacks. Both of them are easy to implement and add min-

imal overhead to the adversarial training. The re-weighting techniques place a higher

emphasis on the more vulnerable group to reduce the disparity in robust accuracies.

Empirical evaluation reveals that the proposed re-weighting techniques typically reduce

the robust accuracy disparity without sacrificing much robustness. (Section  5.1 )

• Finally, we analyzed the fairness implication of over-parameterization of deep neural

networks. We observed that although generalization accuracy monotonically increases

with model complexity, model fairness demonstrates a non-monotonic relation with

model complexity. It indicates that without careful tuning of model complexity, un-

fairness can be introduced from model selections. (Section  5.2 )
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2. BACKGROUND

In this chapter, we introduce the prerequisites required for a comprehensive view of the

research conducted under this dissertation. We first describe the fairness notions found in

ML literature and the proposed fairness metrics used to assess the fairness of ML models.

We then discuss the state-of-the-art fairness interventions proposed in the literature. Typi-

cally, fairness-aware algorithms optimize one or more of the fairness metrics in their process.

Afterward, we present the underlying reasons that delineate the inevitability of missing val-

ues in the ML dataset and offer a categorization of them based on the causal relation of

the missing values and the observed or unobserved data in the dataset. We also introduce

state-of-the-art missing value handling mechanisms typically known as imputations. Finally,

we introduce adversarial sample generation techniques, i.e., evasion attacks and adversarial

training mechanisms developed to achieve robustness against evasion attacks.

2.1 Fairness Metrics

FairML literature has defined an abundance of fairness metrics to assess model fairness.

Each fairness metric caters to certain equality requirements of the context. Three main

family of fairness definitions are group fairness, individual fairness and sub-group fairness

metrics. We describe these fairness notions below.

2.1.1 Group Fairness

Group fairness focuses on statistical equality among sensitive groups. According to [  38 ],

proposed group fairness definitions consider either base rates, group-conditioned accuracy, or

group-conditioned calibration. Let D = {x(k), s(k), y(k)}N
k=1 be the training dataset, where x, s

and y are the set of n features, the sensitive attribute, and the target variable, respectively.

Let s ∈ {p, u}, where p and u denote privileged and unprivileged group, respectively. Let’s

also assume that ŷ is the predicted model outcome. We provide a short description of the

most common group fairness definitions below. For a more comprehensive discussion of

fairness metrics, see [ 38 ,  39 ].
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• Disparate Impact is a fairness metric based on base rates. It defines fairness as equal-

ity between the probability of positive prediction in the unprivileged group and the

privileged group.

P(ŷ+ | u) = P(ŷ+ | p) (2.1)

Here, P(ŷ+ | u) is short form of P(ŷ+ | s = u). The fairness criteria is modelled as a

ratio or a difference to obtain the fairness metric. If θ is the trained model,

DI(D; θ) = P(ŷ+ | u)
P(ŷ+ | p) (2.2)

The closer DI(D; θ) is to 1, θ is considered more fair. Disparate impact can also be

defined as a characteristic of the dataset rather than the model. That means,

DI(D) = P(y+ | u)
P(y+ | p) (2.3)

Calders et al. [ 17 ] formulated the notion of statistical parity (SP) as the difference

between group-wise favorable prediction rates or selection rates (SR) instead of their

ratio. A model is considered fair if the difference between the group-wise favorable

prediction rates is zero. Otherwise, it is either biased towards the privileged group

(> 0) or the unprivileged (< 0). Formally,

SP (θ) = P(ŷ+ | p) − P(ŷ+ | u) (2.4)

• Equal Opportunity is satisfied if the true positive rates of privileged and unprivileged

groups are equal. Formally,

P(ŷ+ | y+, p) = P(ŷ+ | y+, u) (2.5)
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• Equalized Odds is a fairness constraint that requires both the true positive rates and

the false positive rates in both groups to be equal. It follows,

P(ŷ+ | y, p) = P(ŷ+ | y, u) s.t. y ∈ {y+, y−} (2.6)

• Equalized Accuracy is considered fair if the accuracy of prediction in each group is

equal. That means, P(ŷ = y | p) = P(ŷ = y | u).

Following the formulation in (  2.4 ), we capture the equality (or inequality) in accuracy

(ACC) and false positive rates (FPR), as the group-wise differences shown below,

SP (ACC; θ) = P(ŷ = y | p) − P(ŷ = y | u) (2.7)

SP (FPR; θ) = P(ŷ+ | y−, p) − P(ŷ+ | y−, u) (2.8)

Disparate impact can be classified as a metric based on base rates. On the other hand,

equalized odds, equalized opportunity, and equalized accuracy are metrics based on group-

conditioned accuracy. The majority of FairML literature focuses on group-fairness mecha-

nisms.

2.1.2 Individual Fairness

Individual Fairness is defined in [  14 ] as similar treatment towards similar individuals.

Let, a and b be two individuals, a model f maps them to f(a) and f(b). According to

[ 14 ], if d(a, b) is the distance between the individuals, then individual fairness requires that

df (f(a), f(b)) < Ld(a, b) where L > 0 is the Lipschitz constant. That means, the outcome

distribution from a and b is required to be less distinguishable than d(a, b). Individual

fairness have been addressed in representation learning [  14 ], clustering [  40 ], graph learning

[ 41 ], etc. In [  42 ] a post-processing mechanism is proposed to ensure individual fairness.
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2.1.3 Sub-group Fairness

Group fairness mechanisms consider only a handful of groups with respect to a sensitive

attribute. However, the intersectionality of sensitive attributes can lead to a combinatorially

large number of sub-groups in the population. For example, considering only race can split

the population into Caucasians and non-Caucasians whereas adding sex in the set of sensitive

attributes multiplies the number of sub-groups by at least two. On the other hand, individual

fairness considers each individual as a group by themselves. Therefore, sub-group fairness

is an attempt to find a middle ground between group fairness and individual fairness. Sub-

group fairness defines fairness as equality among a rich class of subgroups. Here, subgroups

are indicated by a set of indicator functions G where each indicator gk(x) ∈ G indicates

sample x’s membership of kth subgroup. According to [  24 ,  25 ], a classifier f satisfies γ-

subgroup fairness with respect to fairness metric FM (e.g., statistical parity) if for all k,

α(gk)βF M(f, gk) ≤ γ (2.9)

where, α(gk) = P(gk(x) = 1) (2.10)

βF M(f, gk) = | FM(f) − FM(f | gk(x) = 1) | (2.11)

2.2 Related Work

The goal of fairness-aware machine learning is to develop models whose predicted out-

comes are non-discriminatory with respect to sensitive attributes such as race, sex, marital

status, etc. Fairness interventions are broadly categorized as pre-processing, in-processing,

and post-processing techniques. Pre-processing techniques focus on de-biasing the dataset

to train unfair models. In-processing techniques acknowledge that real-world datasets are

extremely difficult to de-bias perfectly and instead focus on modifying traditional machine

learning techniques to avoid perpetuating bias in model outcomes. Finally, post-processing

techniques consider machine learning models as black-box and modify the outcomes to ensure

equal distributions of the predictions among the sensitive groups. The following sub-sections

contain details on each type of fairness intervention.
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2.2.1 Pre-processing

It is typically assumed that bias in training data eventually leaks into trained models.

Therefore, early work emphasized on pre-processing techniques, i.e., modifying the dataset

to reduce the impact of historical bias [ 6 ,  8 – 10 ]. Among the three bias reduction techniques

proposed by Kamiran et al., [  6 ,  9 ,  10 ], massaging modifies the class labels of individuals closer

to the decision boundary. It reflects the promotion of discriminated individuals and the de-

motion of favored ones. A similar method is recommended by [ 21 ]. In contrast, preferential

sampling [ 10 ] and reweighing [ 9 ] are sampling-based de-biasing algorithms. They sample

the individuals from the sensitive groups such that a desired group-fairness condition holds.

Finally, Feldman et al. [ 8 ] altered the redlining attributes to make them non-predictive of

the sensitive attribute. According to their definition, training data is fair if the sensitive

attributes are not predictable from the features. Their proposed method modifies the redlin-

ing feature distributions, such that an individual’s within-group relative ranking remains

unchanged but the sensitive attributes become unpredictable from the features. A more re-

cent pre-processing technique [  11 ] involves oversampling to obtain a balanced dataset. They

argue that de-biasing with data modification leads to the loss of demographic correlations

with the features and consequently fuels a trade-off between accuracy and fairness. As a

result, they propose generating synthetic samples of under-represented groups so that it

eliminates bias in data.

2.2.2 In-processing

In-processing techniques tend to modify traditional machine learning algorithms to re-

duce unfairness in the predicted outcomes. Authors have proposed modification of existing

algorithms [  12 ,  17 ], fair regularization terms [ 13 ], and optimization with fairness constraints

[ 14 – 16 ] as fairness-interventions. Agarwal et al. [  26 ,  27 ] applied a game theoretic approach

to model the fairness-accuracy tradeoff as a game between two opponents. The solution is

designed as two players taking turns in optimizing one end of the trade-off.
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2.2.3 Post-processing

Post-processing techniques [ 17 – 20 ] modify the predicted outcomes or model parameters

to obtain non-discriminatory predictions. Calders et al. [  17 ] increased P(y+ | u) to reduce

the difference in positive prediction probability among the sensitive groups. In contrast, if

the overall positive prediction rate becomes higher than the rate of positive class labels in the

training data, P(y+ | p) is decreased. The modified prediction probabilities are later used

to build Naive Bayesian models. In [  18 ], the authors derived an equal odds predictor θ̃ from

an existing model θ by solving a linear program with conditional prediction probabilities of

θ. On the other hand, [ 19 ] starts with two group-wise calibrated classifiers and modifies one

of them to equalize weighted odds between the groups.

2.2.4 Others

Applications of causal reasoning have been proposed to remove both direct and indirect

discrimination from either the dataset or the classifiers [  21 – 23 ]. Fairness-aware machine

learning models have been proposed for specific application areas as well, such as natural

language processing [  43 ], graph embedding [ 44 – 46 ], and computer vision [  47 ].

30



3. INTRODUCED BIAS FROM FEATURE DISPARITY

In this section, we focus on the impacts of systemic bias in the form of disparities in feature

distributions. More specifically, we expand on the scenario where the existing features, either

designed, selected, or collected, work better for one group than the other. Such disparity in

feature predictivity is likely to occur due to lower inclusion of unprivileged group members

in model development or, in other cases, due to better resource availability for the privileged

group. In section  3.3 , we refer to several real-world studies that resulted in designing features

more suited to the privileged community. We show that such feature disparity leads to biased

model outcomes even when the underlying data is free from such bias. The existence of such

systemic bias encourages the use of inclusive or participatory design mechanisms so that we

can design or collect better predictors for all the sub-groups.

3.1 Formal Analysis

In this chapter, we show that an optimal classifier can produce unfair outcomes even if

the training data is free from label bias but contains feature disparity. Before moving on to

the analysis, we first define feature disparity as follows,

Definition 3.1.1. Feature Disparity: Feature disparity is a type of bias that appears

from feature design or selection. If the feature set included in the dataset is collectively a

better predictor for one group than the other, then we call it feature disparity. Given feature

vectors x, a binary sensitive attribute s ∈ {p, u} and group-wise optimal classifiers f ∗(x; θs),

feature disparity indicates,

ED[f ∗(x; θp) = y | p] 6= ED[f ∗(x; θu) = y | u]

Let P(p) = βP(u). If one group has a majority in D, i.e., β 6= 1, then the predictions will

be dominated by the majority. The behavior of ML models in such scenarios was investigated

in [ 11 ]. It is shown that the model fairness can be improved by generating synthetic instances

of the minority group. To avoid confounding factors such as dataset imbalance and label bias,

we assume that the dataset doesn’t involve majority or minority groups (or the imbalance

31



has been rectified), it doesn’t contain any discriminatory decision labels and has equal group-

wise prior probabilities. We prove the existence of model-induced bias from feature disparity

even with such balanced and fair datasets.

3.1.1 Fair Balanced Dataset (FBD)

We assume that the fair and balanced training dataset has identical group outcomes (i.e.,

equal base rates and sample count). While all labels are correct, the features are insufficient

for a “perfect” (100% accuracy) classifier. The only distinction between the privileged and

unprivileged groups is that the Bayes-optimal model for each group is different, and without

loss of generality the Bayes-optimal model for the privileged group is more accurate. We

also assume (in keeping with legal requirements in many countries) that we cannot use

the sensitive attributes to explicitly separate the privileged and unprivileged groups when

making predictions, i.e., "fairness-through-unawareness". We show that feature disparity

leads to outcome bias in the joint optimal model.

Let D be an FBD, i.e., DI(D) = 1 and y ⊥⊥ s. If y+ and y− indicate positive and

negative samples, P (y+) = P (y+ | s) = α and P (y−) = P (y− | s) = 1 − α. Assuming

normally distributed features, a feature with a higher distinction between values of the

positive and the negative labeled samples is more predictive. In contrast, a non-predictive

feature’s distribution is independent of its class labels. A proxy measure of feature disparity

is the separation of positive and negative sample distributions. Here, separation sep between

two normal distributions N (µ1, σ), and N (µ2, σ) is,

sep = | µ1 − µ2 |
σ

(3.1)

Let the most predictive feature set for the privileged and unprivileged groups be {x1, x2,

. . . , xr} and {xr+1, xr+2, . . . , x2r} respectively. Let, xsy
i indicate the random variable cor-
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responding to the feature xi of the members of group s in class y and µsy
i = E[xsy

i ]. If

i ≤ r,

xp+
i ∼ N (µp+

i , σ2
i ) xp−

i ∼ N (µp−
i , σ2

i )

xu+
i , xu−

i ∼ N (µpavg

i + δ, σ2
i ) µ

pavg

i = µp+
i + µp−

i
2

Here, δ(= 0) is a constant. Similarly, we define the distributions of xr+1≤i≤2r. Finally,

x2r<i≤n ∼ N (µi, σ2
i ). Without loss of generality, we assume µs−

i < µs+
i .

We consider a Bayesian classifier θ, the theoretical optimal classifier for normally dis-

tributed features. Estimating prediction probabilities with Bayesian boundary and multivari-

ate normal distribution requires generalized chi-squared distribution estimation [ 48 ]. Except

for limited cases such as lower-dimensional linear boundary, the lack of known closed-form

probability estimates has led to several computational methods [ 48 ]. As such, we limit ana-

lytical results to σi 6⊥⊥ y (linear boundary) with r = 1, n = 2 in Section  3.1.2 . Consequently,

the unprivileged group is less separable than the privileged if σ1 < σ2; the groups are equally

separable when σ1 = σ2. We show that even in such a simplified case, the model is expected

to produce outcome bias not present in the training data. When n > 2, let σp = σi such that

1 ≤ i ≤ r. Similarly, we defined σu = σi where r+1 ≤ i ≤ 2r. In this setup, feature disparity

can be imposed by setting σp < σu. We provide computational estimations of introduced

bias for n > 2 in Section  3.2.3 .

3.1.2 Less Separable Unprivileged Group

A Bayesian classifier θ computes µθ
i and σθ

i for each feature xi. For x ∈ D, the decision

boundary of θ is defined as,

P(ŷ+ | x) > P(ŷ− | x) (3.2)
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Here, P(ŷ+ | y+, s) and P(ŷ+ | y−, s) are group-wise true positive rate (TPRs) and false

positive rate (FPRs). Therefore, the group-wise selection rate (SRs) is,

P(ŷ+ | s) = αP(ŷ+ | y+, s) + (1 − α)P(ŷ+ | y−, s) (3.3)

where P(ŷ+ | y, s) =
∫

x s.t.
P (ŷ+|x)>P (ŷ−|x)

P (x | y, s)dx (3.4)

Applying the conditional independence assumption of the Naive Bayesian classifier (NBC)

we expand the decision boundary in Equation  3.2 as shown below.

P (ŷ+ | x) > P (ŷ− | x)

⇒P (ŷ+)P (x | ŷ+)
P (ŷ−)P (x | ŷ−) ≥ 1

⇒
P (ŷ+)

n∏
i=1

P (xi | ŷ+)

P (ŷ−)
n∏

i=1
P (x | ŷ−)

≥ 1 (Conditional independence)

⇒ log α

1 − α
+

n∑
i=1

log
exp

(
−(xi−µθ+

i )2

2(σθ
i )2

)
exp

(
−(xi−µθ−

i )2

2(σθ
i )2

) ≥ 0

⇒cα +
n∑

i=1

(
−(xi − µθ+

i )2

2(σθ
i )2 + (xi − µθ−

i )2

2(σθ
i )2

)
≥ 0

⇒cα +
n∑

i=1

(2xi − µθ−
i − µθ+

i )(µθ+
i − µθ−

i )
2(σθ

i )2 ≥ 0

⇒cα +
n∑

i=1

(xi − µθavg
i )(µθ+

i − µθ−
i )

(σθ
i )2 ≥ 0

⇒cα +
2∑

i=1

(xi − µθavg

i )(µθ+
i − µθ−

i )
(σθ

i )2 ≥ 0 (Since, ∀i > 2r; µθ+
i − µθ−

i = 0 and r = 1)

∴
(x1 − µavg

1 )∆
2(σθ

1)2 + (x2 − µavg
2 )∆

2(σθ
2)2 + cα ≥ 0 (3.5)
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Here, cα = log α
1−α

. The range of feature xi that secures positive prediction is,

bi(xj) ≤ xi < ∞ i, j ∈ {1, 2} s.t. i 6= j (3.6)

Here, bi(xj) = µavg
i − 2(σθ

i )2

∆

(
cα +

(xj − µavg
j )∆

2(σθ
j )2

)

We expand Equation  3.4 as follows,

P (ŷ+ | y, s) =
∫

x s.t.
P (ŷ+|x)>P (ŷ−|x)

P (x | y, s)dx

=
∫

x s.t.
P (ŷ+|x)>P (ŷ−|x)

∏
i

P (xi | y, s)dxi (Using the Naive Bayes assumption.)

=
∞∫

−∞

P (x1 | y, s)


∞∫

x2=
b2(x1)

P (x2 | y, s)dx2

 dx1

=
∞∫

−∞

P (x1 | y, s)
2

[
1 − erf

(
b2(x1) − µsy

2√
2σ2

)]
dx1

∴ P(ŷ+ | y, s) = 1
2 − 1

2Ex1∼P (xsy
1 )

[
erf

(
b2(x1) − µsy

2√
2σ2

)]
(3.7)

Here, erf is the error function [  49 ]. According to [  49 ] and [  50 ],

Ex∼N (µ,σ2) [erf (mx + n)] = erf

(
mµ + n√
1 + 2m2σ2

)
(3.8)

Applying Bayesian classification theory, NBC is expected to yield,

µθ+
i = 1

2(µp+
i + µu+

i ); µθ−
i = 1

2(µp−
i + µu−

i ); σθ
i ≥ σi

By construction,

µ
pavg

2 = µp+
2 µ

pavg

1 − µp+
1 = −∆

2
µ

uavg

1 = µp+
1 µ

uavg

2 − µp+
2 = −∆

2
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To simplify the expressions, we define the following notations,

cdenom = 2
√

2∆
√

(σθ
1)4σ2

2 + (σθ
2)4σ2

1 c2 = 4(σθ
1σθ

2)2

cdenom

c1 = ∆2(σθ
2)2

cdenom

c3 = ∆2(σθ
1)2

cdenom

cavg = c1 + c3

2

Using  3.7 and  3.8 , we get,

P(ŷ+ | y+, s) = 1
2 + 1

2erf [c11s=p + c31s=u + c2] (3.9)

P(ŷ+ | y−, s) = 1
2 − 1

2erf [c11s=p + c31s=u − c2] (3.10)

(3.11)

Having σ1 < σ2 and µs+
i − µs−

i = ∆; ∀i, according to the definition of pooled variance,

σθ
1 < σθ

2. Since the error function is a strictly increasing function, from Equations  3.9 and

 3.10 , we conclude

P (ŷ+ | y+, p) > P (ŷ+ | y+, u) (3.12)

and, P (ŷ+ | y−, p) < P (ŷ+ | y−, u) (3.13)

Equations  3.12 and  3.13 conclude that feature disparity results in imbalanced TPR and

FPR. We now show the introduced disparity in selection rates. More precisely, SRp > SRu

when α < 0.5. Extending  3.3 with  3.9 and  3.10 , it is equivalent to show that:

α [erf(c1 + c2cα) − erf(c3 + c2cα)] > (1 − α) [erf(c1 − c2cα) − erf(c3 − c2cα)] (3.14)

Since σ1 6= σ2, it implies that c1 6= c3. Therefore, from Figure  3.1 , we conclude that:

erf(c1 ± c2cα) − erf(c3 ± c2cα) ∝ d

dx
erf(x)

∣∣∣∣∣
cavg±c2cα

(3.15)
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Figure 3.1. Erf Function with ∆ = 10, σ1 = 2 and σ2 = 5

From Equation  3.14 , Equation  3.15 and the definition of the erf function,

exp (−(cavg − c2cα)2)
exp (−(cavg + c2cα)2) − α

1 − α
< 0

∴ e4cavgc2cα − ecα < 0

∴ (4cavgc2 − 1)cα < 0 (3.16)

With cα < 0, Equation  3.16 holds only when 4cavgc2 > 1. Since σi < σθ
i , it implies that

4cavgc2 > 1. Therefore, Equation  3.14 holds and we conclude that SRp > SRu when α < 0.5

Similarly, we can show that SRp < SRu when α > 0.5. (When α = 0.5, the selection rates

are expected to be equal. To summarize, an NB classifier trained on FBD D with disparate

group-wise optimal model accuracy (due to feature disparity) can result in disparate selection

rates among the groups.

3.1.3 Less Separable Unprivileged Group with Resource Constraints

In real-world scenarios, available resources are often not aligned with the pool of qualified

candidates. The scarcity of resources compels selecting a predetermined portion of quali-

fied candidates. In contrast, to increase utilization, surplus resources are often distributed

with relaxed qualification considerations. The following section discusses the implications of

resource constraints on model performance.
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A typical approach to enforce resource constraints is decision boundary modification.

Resource constraints can also be satisfied by ranking individuals with prediction probabilities

from probabilistic classifiers and picking pre-established portion pres of top-ranked ones.

While the former method approximates the constraint, the latter guarantees exact resource

allocation. Let the decision boundary that best approximates the resource constraints be,

P(ŷ+ | x) > cresP(ŷ− | x) (3.17)

Here, cres is a constant that controls the rate of positive predictions from the model. Using

the constrained decision boundary, we modify Equation  3.6 , Equation  3.9 , and Equation

 3.10 as,
(x1 − µavg

1 )∆
2(σθ

1)2 + (x2 − µavg
2 )∆

2(σθ
2)2 + cα ≥ log cres (3.18)

P(ŷ+ | y+, s) = 1
2 + 1

2erf

c11s=p + c31s=u + c2 − log cres

cdenom

 (3.19)

P(ŷ+ | y−, s) = 1
2 − 1

2erf

c11s=p + c31s=u − c2 + log cres

cdenom

 (3.20)

Equation  3.19 is similar to  3.9 except the term inside erf function is decreased by log cres

cdenom
.

Since cres is independent of s, the relationship in Equations  3.12 and  3.13 still hold.

Insufficient Resources

When resources are scarce, i.e., cres > 1, from  3.19 and  3.20 , we conclude that TPRs

and FPRs are reduced from the unconstrained model. Since the unprivileged group is less

separable than the privileged, qualified privileged individuals will tend to receive higher

positive prediction probabilities than the qualified unprivileged ones. Therefore, qualified

privileged members will be selected more than qualified unprivileged.
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Surplus Resources

With surplus resources, i.e., cres < 1, from  3.19 and  3.20 , we can conclude that TPRs

and FPRs are increased from the unconstrained model. In contrast to the limited resource

scenario, unqualified unprivileged group members are expected to receive higher positive

prediction probabilities than unqualified privileged members. It means that among similarly

unqualified individuals from both groups, the unprivileged are more likely to receive a positive

prediction. As a result, with surplus resource availability, false positives are more common in

the unprivileged group. Assuming that unqualified candidates receiving surplus resources is

detrimental (e.g., college admissions going to individuals who will drop out), the unprivileged

group is again harmed.

3.2 Experimental Results

We now show that the theoretical results are reflected in common classifiers. First, we

investigate the behavior of naive Bayesian classifiers on equally separable privileged and

unprivileged groups. Then, we experiment with an unprivileged group that is less separable

than the privileged group. Finally, we show results for a variety of common classifiers. The

source code of the experiment is available at  https://github.com/rakinhaider/Inherent-A

I-Bias  .

3.2.1 Fair Balanced Datasets

Real-world data typically contain historical unfairness. Instead, we first conduct exper-

iments on synthetic fair balanced datasets (SFBD) so that we can analyze introduced bias

in the absence of label bias. Later, we analyze feature disparity in conjunction with label

bias using real-world datasets. Following Section  3.1 , we generate r group-specific predictive

attributes for each group and n − 2r non-predictive group-independent attributes. The pre-

dictive attributes are sampled conditioned on class labels whereas the n − r non-predictive

attributes are unconditionally sampled from a random normal distribution. For example,

in college admission prediction, privileged samples are generated by sampling xp+
T S and xp−

T S
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Figure 3.2. Example of feature distributions when the unprivileged group
is equally separable to the privileged group, but optimal models are different.
The blue (dotted) and orange (dashed) curves represent positive and negative
sample distributions. The brown (dashdot) curve indicates two distributions
(positive and negative) are overlapping.

from two distinct distributions. In contrast, xp+
GP A and xp+

GP A are sampled from the same

distribution. In this work, each SFBD contains 10000 samples with either 2 (r = 1, n = 2)

or 10 (r = 3, n = 10) attributes. We generate one SFBD for each α ∈ {0.25, 0.5, 0.75}. By

default, we use µp+
i = 13, µu+

i = 10 and ∆ = 10.

3.2.2 Equally Separable Unprivileged Group

We first let the unprivileged group be equally separable to the privileged group. For

n = 2 and n = 10, σi = σj = 2 and σi = σj = 4, respectively such that i ∈ {1, . . . , r}

and j ∈ {r + 1, . . . 2r}. In the college admission scenario, this corresponds to σT S = σGP A.

Figure  3.2 shows a distribution of the attributes where the groups are equally separable.

Here, xp+
1 and xp−

1 are sampled from different distributions while xu±
1 are sampled form

the same distribution. A similar but opposite trend is observed for x2. Since σ1 = σ2,
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Table 3.1. Model performances on an equally separable unprivileged group
with 2 attributes

Classifier α SP (ACC; θ) SP (θ) SP (FPR; θ)

NB

0.2 0.40 0.00 0.00
0.4 0.10 -0.20 -0.40
0.5 -0.10 0.30 0.50
0.6 -0.10 0.20 0.70
0.8 0.00 -0.50 -2.10

Table 3.2. Model performances on an equally separable unprivileged group
with 10 attributes

Classifier α SP (ACC; θ) SP (θ) SP (FPR; θ)

NB

0.2 -0.20 -0.20 -0.20
0.4 -0.10 0.10 -0.20
0.5 0.20 -0.80 -1.50
0.6 0.10 -1.10 -1.40
0.8 0.20 -0.30 -0.10

x1 is equally predictive for the privileged as x2 is for the unprivileged. Tables  3.1 and  3.2 

contain the SRs and FPRs of joint-accuracy NB classifiers trained on the synthetic fair

and balanced datasets with 2 and 10 attributes respectively. The group-wise optimal model

accuracy is denoted by ACs. We observe similar ACs, SRs and FPRs for each s. The tables

show in the absence of feature disparity model performance demonstrated minimal disparity

between the sensitive groups. We further experiment with classifiers beyond NB classifier

and report the disparities in Figures  3.3 and  3.4 . We observe that the disparity between

group-wise accuracy, selection rate, and false positive rates are less than 0.5%, 0.5%, and 2%

respectively from all the classifiers. It further supports that the baseline datasets contain

no label bias or are effectively de-biased such that even fairness-unaware algorithms yield

approximately perfectly fair classifiers.
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Figure 3.3. Equally separated groups with 2 attributes.
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Figure 3.4. Equally separated groups with 10 attributes.

3.2.3 Less Separable Unprivileged Group

We now show classifier performances when the dataset contains feature disparity. Note

that we observed little to no outcome bias from classifiers trained on datasets without any

feature disparity. Keeping everything else unchanged, we introduce feature disparity in

the dataset. Since, keeping everything else unchanged, feature disparity is the only type

of disparity added to the dataset, any outcome bias observed from the classifiers can be

attributed to feature disparity. Following the construction discussed in Section  3.1.2 , we

introduce feature disparity by making the σp < σu which eventually makes the unprivileged

group less separable and difficult to classify. We examine the effects of this feature disparity

on outcome fairness and its interaction with resource constraints.
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Figure 3.5. Example of feature distributions when the unprivileged group is
less separable than the privileged group. The plot colors and patterns convey
similar meanings as described in Figure  3.2 .

Without Resource Constraints

The less separable unprivileged group has a higher standard deviation in predictive at-

tributes. The SFBD with n = 2 and less separable unprivileged group has σT S = σi = 2

and σGP A = σj = 5. For n = 10, we use σi = 4 and σj = 7. Here, i ∈ {1, . . . , r} and

j ∈ {r + 1, . . . , 2r}. Figure  3.5 shows a distribution of x1 (TS) and x2 (GPA) for the priv-

ileged and unprivileged group. This is similar to Figure  3.2 except that σ1 < σ2. Clearly,

x1 is a better predictor for the privileged group than x2 is for the unprivileged. We observe

that all the classifiers achieve lower unprivileged model accuracy on the less separable un-

privileged group in Table  3.3 . We observe a significant disparity in selection rates of the NB

classifier for α 6= 0.5. The selection rate is higher for the privileged group when α < 0.5, but

favors the unprivileged group for α > 0.5. This confirms the theoretical result of Section

 3.1.2 . The higher SRu at α > 0.5 is largely due to the high FPRu. In the running example

of college admission predictions, the trend of disparity in Table  3.3 indicates that highly se-
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Table 3.3. Model performances for less separable unprivileged group

Classifier α
n = 2 n=10

SP (ACC; θ) SP (θ) SP (F P R; θ) SP (ACC; θ) SP (θ) SP (F P R; θ)

NB

0.2 11.30 6.70 -4.00 6.60 1.90 -6.80
0.4 14.70 2.70 -16.20 8.60 0.60 -15.80
0.5 15.00 0.50 -22.90 9.60 -1.20 -21.80
0.6 15.20 -3.70 -32.60 8.90 -1.80 -25.70
0.8 10.90 -6.50 -48.80 6.90 -1.60 -37.50

SVM

0.2 11.30 3.30 -4.30 6.70 1.40 -3.30
0.4 14.40 0.70 -10.80 8.80 1.10 -6.80
0.5 15.20 0.10 -14.50 9.80 -0.60 -11.30
0.6 15.30 -3.10 -21.30 9.00 -2.70 -15.10
0.8 11.10 -3.30 -32.10 7.30 -1.50 -19.90

PR

0.2 11.20 3.80 -4.90 6.70 1.70 -2.90
0.4 14.50 2.40 -9.90 8.50 1.10 -6.60
0.5 15.00 1.50 -13.50 9.50 0.00 -10.10
0.6 15.30 -1.20 -20.60 8.80 -0.30 -12.00
0.8 11.00 -3.80 -36.90 6.80 -2.00 -23.10

RBC

0.2 11.20 0.00 -8.20 6.60 0.10 -4.90
0.4 14.50 0.30 -14.00 8.50 0.20 -8.90
0.5 15.00 1.10 -17.40 9.60 -1.10 -13.10
0.6 15.30 -1.00 -23.40 8.80 -1.70 -16.60
0.8 11.00 -1.50 -34.30 6.80 -0.30 -20.00

lective prestigious colleges offer more admissions to privileged students. With low selectivity,

typically found in predatory colleges, the unprivileged individuals are admitted at a 9.44%

higher rate, but a significant portion of acceptance offers are received by under-qualified

students, with the risk of higher drop-out rate and additional student loan burden among

the unprivileged group.

A generalized experiment, with more (predictive and non-predictive) features dampens

the disparity in selection rate since increasing the number of predictive features increases

model accuracy. However, false positive rate disparity still exists and increases with α.

Table  3.3 reports the disparity in performance for n = 10 features as well. Table  3.3 contains

the disparities found in the prediction rates of four classifiers including two fairness-aware
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Figure 3.6. Disparities in model performances on a less separable unprivi-
leged group with 2 features.
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Figure 3.7. Disparities in model performances on a less separable unprivi-
leged group with 10 features.

algorithms. Traditional models such as SVM demonstrate similar behavior to Naive Bayes.

Notably, we also experimented with decision trees which demonstrated evidence of introduced

bias but didn’t follow a similar trend with α as the other classifiers. Prejudice Remover (PR)

[ 13 ] and Reduction based classifier (RBC) [  26 ] appear inherently less biased than traditional

models. Both reduced the selection rate disparity as they are specifically designed to do so.

However, they still suffer with respect to false positive rates.

The biased outcomes shown in Table  3.3 , vs. the unbiased outcomes in Tables  3.1 and

 3.2 , corroborates our claim that poor feature selection is sufficient to cause outcome bias in

otherwise fair and balanced datasets.
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With Resource Constraints

The problem is exacerbated when resources are constrained. Since Naive Bayes generates

a probability-based score, it is easy to adapt to decisions where the number of positive (or

negative) outcomes is limited; we now show results where resources are scarce (pres = 10%)

and surplus (pres = 90%). Again, we show this where the true need for the resource varies

between α ≤ 0.5, α = 0.5, and α ≥ 0.5. Table  3.4 and Figures  3.8 and  3.9 show that resource

constraints add further detrimental effect on the decision outcomes.

Table  3.4 and Figure  3.8 show that with insufficient resources, privileged individuals are

selected 3 times more than unprivileged ones. Moreover, the ratio of SRu to SRp increases

as α increases. In college admission, this corresponds to selecting far more privileged group

members at highly selective prestigious colleges when the number of applicants is far higher

than the available positions. Unprivileged intake suffers as the competition for positions

increases.
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(c) Disparities in Group-
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Figure 3.8. Disparities in model performances on a less separable unprivi-
leged group with 2 features and insufficient resources.

Table  3.4 and Figure  3.8 indicate that if resources are surplus, unprivileged students re-

ceive higher acceptance. However, a higher SRu is accompanied by a high FPRu. Therefore,

the resources are received by less deserving individuals. We can draw parallels between such

model behavior and predatory colleges, that lure as many students as possible irrespective of

their qualifications. As a result, many less-qualified candidates eventually drop out, having

acquired a student loan burden.
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Table 3.4. Model performances for a less separable unprivileged group with
2 features and resource constraints.

Classifier α
Insufficient Resources Surplus Resources

SP (ACC; θ) SP (θ) SP (F P R; θ) SP (ACC; θ) SP (θ) SP (F P R; θ)

NB

0.2 8.70 7.60 -2.10 3.70 -17.40 -21.80
0.4 6.90 14.20 -0.50 5.00 -16.00 -26.70
0.5 5.50 14.60 -0.30 6.00 -15.20 -30.80
0.6 4.30 15.80 -0.10 7.60 -14.20 -35.40
0.8 3.50 15.80 0.00 8.80 -8.40 -49.40

SVM

0.2 7.70 6.00 -1.70 0.50 -19.40 -24.20
0.4 6.30 14.00 -0.80 4.50 -18.60 -31.70
0.5 4.70 16.40 -0.80 5.80 -18.20 -37.20
0.6 3.50 18.20 -1.10 8.10 -10.80 -28.80
0.8 6.10 19.20 -0.50 8.40 -5.40 -32.70

PR

0.2 11.20 10.20 -0.40 0.10 -4.80 -6.00
0.4 2.20 18.20 0.00 0.40 -18.80 -31.20
0.5 0.90 18.80 0.00 1.00 -17.80 -35.40
0.6 0.40 18.80 0.00 2.10 -17.40 -43.80
0.8 0.20 19.40 0.00 11.00 -13.20 -66.90

RBC

0.2 -2.30 -12.60 -6.30 -20.00 20.00 25.00
0.4 1.20 -5.00 -4.10 -5.80 20.00 15.70
0.5 -7.60 -10.60 0.00 6.90 7.00 -10.20
0.6 -7.50 -12.80 0.00 14.10 -11.60 -39.60
0.8 11.70 20.00 -0.10 12.00 -8.60 -68.20
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(c) Disparities in Group-
wise False Positive Rates.

Figure 3.9. Disparities in model performances on a less separable unprivi-
leged group with 2 features and surplus resources.

Table 3.5. Model performances on COMPAS original and de-biased
Dataset FPRc FNRc FPRa FNRa

COMPAS
original 62.58 14.74 26.01 42.73

COMPAS
de-biased 62.05 18.42 37.79 31.12

While other models are not directly suited to resource-constrained predictions, we adapted

them and obtained similar results when group-wise classifier accuracy is different.

3.2.4 Fairly Sampled Balanced COMPAS Dataset

We also evaluate using the real-world COMPAS dataset [  51 ]. The dataset is partitioned

into independent training (80%) and test (20%) sets. The privileged (also the minority) in

the COMPAS dataset is the Caucasian group, and the unprivileged is the African-American

group. The favored class is no recidivism. Approximately 61% of the Caucasians are in the

favored class, while 48% of the African Americans are in the favored class. To balance the

base positive rates between the two groups, we use a de-biasing algorithm [ 11 ] that generates

synthetic data to augment the unprivileged but favored group. This method generates

synthetic data from the African-American instances that have favored labels in the training

data, using the Synthetic Minority Oversampling Technique (SMOTE) algorithm [  52 ]. We
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Table 3.6. Model performances for COMPAS SFBD de-biased by inflating
privileged unfavored class

α ACp ACu SRp SRu FPRp FPRu

0.25 73.3 74.0 21.1 10.9 15.5 06.5
0.50 61.8 61.6 62.4 41.6 52.1 30.3
0.75 75.9 72.2 89.0 81.9 76.5 68.7

Table 3.7. Model performances for COMPAS SFBD de-biased by inflating
unprivileged favored class

α ACp ACu SRp SRu FPRp FPRu

0.25 74.6 72.5 16.2 05.4 12.0 06.0
0.50 61.2 61.2 75.2 51.1 67.6 34.0
0.75 74.7 73.6 91.7 78.3 83.3 68.7

first randomly select an unprivileged (African American) instance (x, u, y+), then select k

random unprivileged neighbors of x, from the favored class. We randomly choose a neighbor

x′ and generate a synthetic data point by choosing a point between x and x′ in the feature

space. This process is repeated until the groups have similar outcomes in the training set.

Table  3.5 shows naive Bayesian prediction rates for Caucasian and non-Caucasians before

and after de-biasing. Oversampling the favored class in African Americans increases their

false positive rate (FPRa) significantly.

We perform a 70% train and 30% test split on each (α ∈ {0.25, 0.5, 0.75}) resampled

de-biased COMPAS dataset. Since the preprocessed COMPAS dataset [  53 ] contains only

binary variables, we use a Bernoulli distribution for the attributes. Although the de-biased

dataset has little disparity in group-wise optimal model accuracy, we still observe significant

disparity in group-wise selection rates. This can be ascribed to both inherent bias and data

bias. Consistent with the previous sections, the selection rate grows more favorable to the

unprivileged group as α increases.
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3.3 Systemic Bias: Why We Expect These Outcomes

It could be argued that this is purely a hypothetical issue, that in an otherwise fair

world, we would not see accuracy differences between optimal models for privileged and

unprivileged groups. We suggest that this is instead a common and likely form of systemic

bias. ML systems are generally designed by the privileged group, and the features considered

are the ones that seem natural to that group. The (privileged) developers are unaware of

or do not consider features that are more appropriate for unprivileged groups, leading to

inherently more accurate systems for the privileged group.

We can see two well-known examples of this from the domain of medical research. One is

with heart attack symptoms. Western medicine has long taught that chest pain or discomfort

is an early sign of a heart attack. However, women are more likely than men to experience

other symptoms, particularly shortness of breath, nausea/vomiting, and back or jaw pain

[ 54 ]. This is an example where the privileged group (men, who long dominated medical

research) used features that were effective for their group, leaving the unprivileged group

less likely to properly self-diagnose heart attack (lower accuracy.)

A similar situation, although not as tied to feature selection, arose in cancer research.

Cancer research long focused on lung cancer, which at the time disproportionately impacted

males, and at a younger age than many other cancers (average age of diagnosis was 66 in

1975-1999 [  55 ]). Public outcry over this gender disparity led to increased investment in

breast cancer, which became overfunded relative to other cancers in terms of years of life

lost [ 56 ]. While not directly a machine learning issue, we see that cancer investment followed

what impacted the privileged group (initially males in senior leadership; followed by public

outcry from a large voting block). They exemplify situations where features used are obvious

to (and work well for) the privileged, eventually harming the unprivileged.

In this regard, we analyzed feature sets of three popular datasets, i.e., COMPAS, German

Credit [  51 ], and Bank Marketing [  57 ]. The accuracy obtained while predicting the class label

using a single feature f is defined as the predictive power of the feature PPf . We train two

group-wise single-feature models and determine the group-wise predictive powers of f , PP p
f ,

and PP u
f . For better estimates, we performed 10-fold cross-validation and picked the average
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Table 3.8. Predictive powers of each feature in COMPAS dataset.
Feature Avg. PPp Avg. PPu PPD

juv_fel_count 61.25 50.02 11.23
juv_misd_count 62.15 51.68 10.47
juv_other_count 61.82 53.26 8.56

age_cat 60.91 54.96 5.95
c_charge_degree 60.91 55.18 5.73

priors_count 64.91 60.41 4.50

ju
v_

fe
l_c

ou
nt

ju
v_

m
isd

_c
ou

nt

ju
v_

ot
he

r_
co

un
t

ag
e_

ca
t

c_
ch

ar
ge

_d
eg

re
e

pr
io

rs
_c

ou
nt

0

5

10

(a) PPDs in COMPAS
dataset.

ot
he

r_
pa

ym
en

t_
pl

an
s

pr
op

er
ty

_m
ag

ni
tu

de
ex

ist
in

g_
cr

ed
its

nu
m

_d
ep

en
de

nt
s

pu
rp

os
e

ot
he

r_
pa

rti
es ag
e

fo
re

ig
n_

wo
rk

er
ow

n_
te

le
ph

on
e

jo
b

m
ar

ita
l_s

ta
tu

s
re

sid
en

ce
_s

in
ce

in
st

al
lm

en
t_

co
m

m
itm

en
t

em
pl

oy
m

en
t

sa
vi

ng
s_

st
at

us
ho

us
in

g
ch

ec
ki

ng
_s

ta
tu

s
cr

ed
it_

am
ou

nt
du

ra
tio

n
cr

ed
it_

hi
st

or
y0

5

(b) PPDs in German
dataset.

jo
b

ba
la

nc
e

pr
ev

io
us

m
ar

ita
l

ed
uc

at
io

n
de

fa
ul

t
ho

us
in

g
lo

an
co

nt
ac

t
da

y
ca

m
pa

ig
n

pd
ay

s
po

ut
co

m
e

m
on

th

5

0

(c) PPDs in Bank dataset.

Figure 3.10. Predictive Power Difference (PPD) of each feature in COMPAS,
German, and Bank dataset.

PP s
f . The predictive power difference of feature f is PPDf = PP p

f − PP u
f . The maximum

absolute values of PPDf in the three datasets are 11.2%, 9.4%, and 8.9%, respectively. It

suggests that disproportionately predictive features are commonplace in real-world machine

learning datasets. Table  3.8 and Figure  3.10a show the PPDs for features of the COMPAS

dataset. Similarly, the PPD with respect to each feature in the German and Bank datasets

can be found in Figures  3.10b and  3.10c respectively.
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4. INTRODUCED BIAS THROUGH MISSING VALUES

Missing value refers to the situation where one or more features of a sample are missing. A

sample with missing values is called an incomplete sample and a complete sample is otherwise.

Missing value is a common phenomenon due to the uncertain and noisy data collection

mechanisms. For example, if the data is collected through questionnaires, participants are

often not obligated to provide all the information. Moreover, some features inherently contain

missing values. For example, middle name is an attribute that is likely to be missing for

a large portion of the US population. Similarly, a dataset that tracks the addresses of

individuals will have missing values for homeless entities. Finally, features can be mutually

exclusive or conditionally optional. A realistic example of the former is foreign individuals

often are not eligible to have a social security number (SSN). Likewise, college admission

applicants may be required to have at least one TOEFL and IELTS score if not both. Such

requirements lead to conditionally optional attributes with missing values (i.e., if a TOEFL

score exists IELTS score can be missing).

According to [  58 ], missing values can follow three primary patterns, namely, missing

completely at random (MCAR), missing at random (MAR), and missing not at random

(MNAR). Missing completely at random occurs when missingness is independent of observed

and unobserved data. When missingness depends on observed data it is referred to as missing

at random. Finally, MNAR is defined as the type of missingness that also depends on

unobserved data.

Traditional ML expects complete training samples, as do state-of-the-art fairness enhanc-

ing interventions (e.g., [  6 ,  13 – 15 ,  24 ,  26 ].) Unfortunately, missing data is common; about

half of the datasets in the prominent UCI dataset repository contain incomplete samples

with one or more missing values [ 33 ]. Instead of reducing the sample size by ignoring incom-

plete samples altogether, data engineers have developed several techniques to interpolate the

missing values using individual and population level statistics; commonly known as impu-

tations [  59 ]. Recently several studies investigated the fairness implications of missing value

handling mechanisms. Among them Martinez et al. [ 33 ] argued in favor of imputations

instead of dropping since incomplete cases included many fair decision samples. However,
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[ 60 ] and [  61 ] suggested that imputation can both amplify or attenuate existing label bias.

Machine learning fairness is also being studied through the lens of data management which

frequently includes missing value repairing [ 62 ,  63 ]. In short, the impact of missing values

on model fairness was studied under the influence of existing label bias. Previous studies on

the interactions of fairness and missing values [  33 ,  60 – 62 ,  64 ] failed to investigate whether

missing value disparity itself is sufficient to introduce bias.

In this chapter, we show that missing value disparity is sufficient to cause bias in model

behavior. We start with a constructive proof of missing value disparity induced bias involving

simple mechanisms, showing why missing value handling leads to outcome (prediction) bias.

We prove by construction that for a Bayes-optimal classifier, missing value disparity handled

by dropping or mean imputation is sufficient to induce outcome bias when the group-wise

optimal models are different. The use of a Bayes-optimal classifier implies that the find-

ings are also applicable to accuracy-optimal machine learning approaches. We further show

that disparity in missing value rates exacerbates biased outcomes given imbalanced group

sizes. Empirical validation of induced bias from missing data in more complex situations,

including real-world data that may contain several sources of bias, more complex missing

value imputation methods (k-NN imputation [  34 ], MICE [  35 ], matrix completion [  36 ]), and

both traditional (SVM, Neural Network) and state-of-the-art fairness-aware classifiers is also

reported.

The constructive proof formulates an instance of missing value disparity induced bias

in model outcome to prove that missing value disparity alone can induce bias in model

outcome. Experimental results on a synthetic fair and balanced dataset further validate

the theoretical analysis. Even in cases where the changes in prediction probabilities were

too low to alter the predicted labels, we observed that missing value disparity drives the

classifiers to disproportionately promote the relative rankings of one group and demote the

other. Although we mainly focus on missing values in the training data, we found that

induced bias became even more prominent when the test data included missing values. This

is because missing values in test samples inject disparity in the feature distributions of the

test samples; closely tying our results with the ones in [ 65 ] and [  66 ].
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Having shown that missing value disparity is sufficient to induce bias, we further investi-

gate the extent of this induced bias when coupled with other sources of bias. We hypothesize

that missing data disparity will exacerbate existing outcome bias in situations where there

are multiple sources of bias. We validate this with experiments on real-world datasets which

commonly contain selection bias and label bias among other types of disparities. We observed

missing value disparity induced bias in model behavior across different types of classifiers,

multiple causal MAR mechanisms for missing values, and several imputation mechanisms.

We conclude that induced bias through missing value disparity is a common occurrence and

threatens the fairness of machine learning models. It calls for attention towards re-thinking

data collection and cleaning algorithms.

4.1 Fairness with Missing Data

In this section, we discuss common types of missingness, state-of-the-art imputation

techniques, and related works that study fairness implications under the lens of missing

value imputations.

4.1.1 Types of Missingness

Missing values are pervasive in real-world datasets. About 45% of datasets in the UCI

repository contain missing values [ 33 ]. Partial completion of questionnaires, missing by

design, and item non-response are key reasons[ 33 ]. Fatigue or technical issues cause partial

completion. Similarly, features such as middle name, current address, SSN, higher education,

etc., contain missing values by design. Finally, participants avoid responding to questions

regarding criminal offenses, medical history, etc., due to privacy and legal concerns.

Rather than tracing the cause of missingness, a more statistical categorization is pro-

posed in [  67 ]. We extend this formulation to incorporate between-group disparities. Here,

we consider a binary classification task with “privileged” (p) and “unprivileged” (u) group dis-

tinction. Let D = {X, S, Y} is a dataset with N samples, features X = [x1, . . . xN]T ∈ RN×d,

class labels Y ∈ {−, +}N and sensitive attribute S ∈ {p, u}N . For simplicity, we limit our

discussion to a single binary class label and a single sensitive attribute. However, our analysis
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can be easily extended to multiple sensitive attributes with the help of similar group-indicator

functions G as defined in [ 24 ,  25 ] which map the intersections of different sensitive sub-groups

to their levels of privilege. Without loss of generality, we assume that y = + is the favorable

(or positive) class label. The model, θ predicts Ŷ ∈ {−, +}N . Let R = [r1, . . . , rn]T ∈ 1N×d

be an indicator matrix where each element ri,j indicates whether the value of xi,j is missing.

Here, ri = 0̄ and R∗,j = 0̄T indicates the ith sample and the jth feature are a complete case

and a complete feature respectively. Finally, x, r, s, y, ŷ, are random variables indicating the

feature vector, missing value indicator vector, sensitive attribute, class label, and predicted

label. Here, s = p and s = u indicate the privileged and the unprivileged group. For a

simpler notation, we use s = p and p interchangeably. Similarly, instead of s = u, we write

u. With these definitions, missing values can be categorized as,

Missing Completely at Random (MCAR)

In MCAR, missingness is independent of observed and unobserved data. That means,

R 6⊥⊥ D.

Missing at Random (MAR)

If missingness depends on observed data, i.e., R ⊥⊥ Dri,j=0, then it is called missing at

random. MAR is of particular interest in our study since missing value disparity can be

defined as r ⊥⊥ s, i.e., the rate of missingness is dependent on group membership.

Missing Not at Random (MNAR)

Let D(0), D(1) ⊂ D are the sets of observed and unobserved data respectively. Then,

MNAR is formally defined as, R ⊥⊥ D(0) ∪ D(1) = D. For example, individuals with prior

arrests may prefer to omit this information. In contrast, people with no priors probably

will be eager to report it. That means the missing value itself controls the likelihood of its

missingness.

While previous studies have empirically shown fairness is impacted by missing data im-

putation in real-world data [  60 ,  62 ], they do not look at how and why missing data and
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imputation impact fairness. In our study, missing value disparity is defined as differences

in the rates of missing values based on observed sensitive attributes (MAR), a known real-

world phenomenon. We demonstrate that outcome bias appears or increases specifically from

missing data handling methods on MAR missing values.

4.1.2 Missing Value Handling Mechanisms

Missing value handling is typically a pre-processing step. We discuss several of these

techniques below.

Deletion

If the dataset is sufficiently large or incomplete cases are rare, missing values can be

handled by simply discarding the incomplete cases from the training set. Case deletion leads

to a smaller number of samples and a skewed dataset as shown in [  67 ]. Pairwise deletion

uses a correlation matrix to remove missing values appearing in pairwise analysis. Instead

of dropping samples, uncorrelated features with many missing values could also be dropped,

thus preserving the samples.

Hot-deck imputation

This strategy matches the incomplete cases with other complete cases based on one or

more key variables and picks a donor pool from the matched cases [ 68 ]. The missing value

is replaced with the aggregate value of one or more members of the donor pool.

Simple imputation

Simple imputation replaces the missing values with a feature-wise statistic such as mean

or median for numeric attributes and mode for categorical features. Although intuitive, it

often leads to high error imputations.
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Iterative Imputations

Iterative imputations gradually improve their predictions of missing values by training

a model on the currently available samples to predict the missing values at each iteration

until convergence. They often use simple imputation as the initial estimate of missing values.

Among the popular iterative methods MICE [  35 ,  69 ] and MissForest [ 70 ] use linear regression

and random forest respectively.

Matrix Completion

Missing value imputation can be modeled as matrix completion of the feature matrix X.

The most prominent such algorithm, Softimpute, computes a low-rank approximation of X

with matching observed entries [  36 ].

ML Based Imputation

Imputation can also be done with predicted values from ML models such as k-NN [  34 ],

SVM [  71 ], expectation-maximization [  72 ], etc.

Our theoretical analysis covers dropping and mean-imputation approaches to handling

missing values. The experimental study includes techniques too complex for analytical treat-

ment, specifically k-NN imputation, MICE, and Softimpute.

4.1.3 Related Works

Recently, Zhang et al. [ 64 ] estimated fairness on complete cases from an incomplete data

domain. [ 60 ] empirically showed that imputation with an imbalance in missingness exacer-

bates the bias in the model outcome. Finally, [ 62 ] reported that auto-cleaning, performed

to alleviate the poor quality of training data (including both label bias and missing values),

also led to worse fairness outcomes. Although the interaction of missing value and label

bias received attention lately [  60 ,  62 ,  64 ,  73 ], none investigated bias induced from missing

value disparity. As a result, in this work, we focus on missing value disparity induced bias

in model outcomes.
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4.2 Formal Analysis

We prove that a classifier optimizing for accuracy is expected to produce biased model

outcomes given disproportionate group-wise rates of missing values. We assume that the

optimal models for the privileged and unprivileged groups are different, and a system with

“fairness by un-awareness”, i.e., the sensitive attributes are not used by the model. We focus

on missing at random (MAR), i.e., the probability of missing data depends on the observed

sensitive attribute, with considerations of missing not at random (MNAR) when appropriate.

We consider the following MAR causal mechanisms of missing value disparity:

• Disparity in complete case rates, i.e.,

P(r = 0̄ | p) 6= P(r = 0̄ | u)

• Disparity in the likelihood of missing feature of a sample,

P(rj | p) 6= P(rj | u) where j ∈ {1, 2, . . . , n}

We start with a fair dataset (FD) which guarantees equality of group-wise base rates,

and correctness of the ground truth decision labels ys, i.e., no individuals were discriminated

against based on their sensitive attribute. We denote the group-wise positive rate as P(y =

+) = P(y = + | s) = α. Our goal is to show that missing data disparity alone is sufficient

to cause statistical parity unfairness, even in the absence of other sources of unfairness.

Therefore, the equal group-wise base-rate assumption is necessary to eliminate confounding

factors in our analysis. Without such equality, statistical parity unfairness could come from

many other sources. Let P(p) = βp and P(u) = βu be the ratio of privileged and unprivileged

samples in the dataset respectively. Clearly, βp +βu = 1. Note that, for group-wise balanced

datasets, βp = βu = 0.5.

Let x | s, y ∼ N (µsy, Σ) = N sy where µsy ∈ Rd and Σ = diag(σ). Without loss of

generality, we assume µs+ > µs−, µs+ − µs− = δye and µpy − µuy = δse for all s where

δy and δs are constants and e is a vector of 1s. We avoid the extreme case where the
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distributions between groups are completely different by restricting µp− ≤ µu ≤ µp+ and

µu− ≤ µp ≤ µu+. Let M be the set of indices of incomplete features, i.e., ∀m ∈ M;

R:,m 6= 0̄T . The probability of complete and incomplete cases in group s are as follows,

P(rm = 0 | s) = γs and P(rm = 1 | s) = 1 − γs

We define the missing value disparity as γp 6= γu. Without loss of generality, the rest

of the formal analysis assumes γp > γu. If the likelihood of a missing feature value is

independent of other features, i.e., P(rj 6∈M = 0) = 1 and for any m1, m2 ∈ M, rm1 6⊥⊥ rm2 ,

then it turns into an instance of complete case disparity as well.

In the absence of label and selection bias, group-wise disparity in the rates of missing

values is the only source of bias in the dataset. We prove that applying missing value handling

mechanisms on such disparity can induce bias in model outcomes. Specifically, we show that

missing value disparity alone prejudices the trained model towards one of the groups which

leads to disparity in the model outcome.

We consider the Gaussian Bayesian classifier, θ, as it is the theoretically optimal classifier

for normally distributed features. By demonstrating that a Bayes-optimal (maximum accu-

racy) model exhibits unfairness, we show that any method that achieves maximal accuracy

(and thus the same outcome) would be expected to be similarly unfair. Moreover, the con-

ditional independence assumption of the Naive Bayes classifier (NBC) also holds under our

assumptions, simplifying the analysis of Bayes-optimal to the uni-variate means/variances of

Naive Bayes. We expect that if missing data induces unfairness in simple cases, then missing

data induced unfairness will still show up in more complex cases (conditional dependence

among variables, other sources of unfairness, etc.) Section  4.3 empirically validates that

missing data disparity induces unfair statistical parity for other types of classifiers including

SVM, Neural Networks (NN), and state-of-the-art fairness-enhancing interventions, and for

data where conditional independence and other simplifying assumptions do not hold.
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The distribution learned by a naive Bayesian classifier on the complete domain D is

x | y ∼ N (µy
θ , Σy

θ) = N y
θ where µy

θ and Σy
θ = diag(σy

θ) are as follows,

µy
θ = βpµpy + βpµuy (4.1)

σy
θ =

√
σ2 + βpβu(µpy − µuy)2 (4.2)

The KL-divergence between two vectors of independent uni-variate Gaussian distribution is

as follows.

KL(P || Q) =
∫

x
P(x) log P(x)

Q(x)dx

=
∫

x

∏
xi

P(xi) log
(∏

xi P(xi)∏
xi Q(xi)

)
dx (xis are independent of each other.)

=
∫

x

(∏
xi

P(xi)
)(∑

xi

log
(
P(xi)
Q(xi)

))
dx

=
∑
xi

∫
x

∏
xj

P(xj)
(log

(
P(xi)
Q(xi)

))
dx

=
∑
xi

(∫
xi
P(xi) log

(
P(xi)
Q(xi)

)
dxi

)
(xis are independent and

∫
P(x)dx = 1.)

∴ KL(P || Q) =
∑
xi

KL(P(xi) || Q(xi))) (4.3)

We know that the KL-divergence between two uni-variate Gaussians P(xi) = N (µ1, σ1)

and Q(xi) = N (µ2, σ2) is,

KL(P(xi) || Q(xi)) = log σ2

σ1
+ σ2

1 + (µ1 − µ2)2

2σ2
2

− 1
2 (4.4)

Using (  4.1 ), (  4.2 ), (  4.3 ) and (  4.4 ), we derive that in the complete case domain,

KL(N py || N y
θ ) − KL(N uy || N y

θ ) ∝ β2
u − β2

p (4.5)

Equation (  4.5 ) shows that the learned class-wise distributions N y
θ , are equidistant from

the group-wise distributions N sy when βp = βu (group-wise balanced). If βp 6= βu, the
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classifier learns a distribution closer to the group with the higher number of samples. This

is aligned with the reported fairness issues with imbalanced datasets in [  11 ].

4.2.1 Dropping

We start with the simple case of handling missing data by dropping the incomplete cases

from the training dataset. Since new samples are not introduced, the group-wise complete

case feature distributions remain intact. A naive Bayesian classifier learns the class-wise

means and variances from the reduced dataset. The learned mean is the weighted sum of the

group-wise means and the variance is the pooled variance of the sub-groups. Formally, the

class-wise mean and variance learned by an NBC from the reduced dataset are as follows,

µy
θ = γpβpµpy + γuβuµuy

γpβp + γuβu

(4.6)

σy
θ =

√√√√σ2 + (γpβpγuβu)(µpy − µuy)2

(βpγp + βuγu)2

∴ σy
θ =

√√√√σ2 + (γpβpγuβu)(δse)2

(βpγp + βuγu)2 (4.7)

Dropping the missing values modifies (  4.5 ) as follows,

KL(N py || N y
θ ) − KL(N uy || N y

θ ) ∝ γ2
uβ2

u − γ2
pβ2

p (4.8)

Equation (  4.8 ) indicates that upon dropping the incomplete samples, the learned dis-

tributions move closer to the group which has higher γsβs. When the dataset is balanced

(βp = βu), the disparity in learned distribution only depends on γs. According to our as-

sumption γp > γs, the classifier distributions will be skewed towards the privileged group.

Since the balanced dataset avoids all sources of bias except the missing value disparity, we

conclude that the disparity in learned distribution is introduced by missing value disparity.
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4.2.2 Imputation

Imputation allows us to turn the incomplete samples into complete ones. For tractability

of analysis, we show how simple mean imputation results in unfair outcomes. Section  4.3 

empirically demonstrates missing value disparity induced bias from other imputation algo-

rithms. Let D′ = {X′, S, Y} indicate the imputed dataset where each x′
i is either xi itself or

the imputed version of incomplete xi. Imputation preserves the feature distributions except

for feature xm where m ∈ M. Simple mean imputation replaces the missing values of the

mth feature with the complete sample mean,

µm = E[xm | r = 0̄] =
∑

s

γsβs

γpβp + γuβu

µs
m

Here, µs
m = ∑

y P(y | s)µsy
m . After imputation the group-wise conditional means changes

as follows,

µsy′
m = γsµ

sy
m + (1 − γs)µm (4.9)

Using (  4.9 ), we obtain the following group-wise means:

µs′
m = γsµ

s
m + (1 − γs)µm

Mean imputation alters the group-wise conditional variances as well. The group-wise

conditional variance is the pooled variance between the complete sample variance σ2
m and

the variance among the imputed samples (zero).

σsy′
m =

√
γsσ2

m + γs(1 − γs)(µsy
m − µm)2 (4.10)

The naive Bayesian classifier learns the distributions x | y ∼ N (µy
θ , diag(σy

θ)) = N y
θ . The

means and variances of the learned distribution N y
θ are identical to (  4.1 ) and (  4.2 ) except at

the mth(∈ M) index. The learned mean µy′
m;θ is the weighted sum of the imputed group-wise

means.
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µy
m;θ = µy′

m =
∑

s

P(s) ∗ µsy′
m

∴ µy
m;θ =

∑
s

γsβsµ
sy
m +

∑
s

βs(1 − γs)µm (4.11)

Similarly, the learned class-wise variance is the pooled variance between the imputed

group-wise variances.

σy
m;θ = σy′

m =
√∑

s

βs(σsy′
m )2 + βpβu(µpy′

m − µuy′
m )2 (4.12)

Previously, (  4.3 ) established that the KL-divergence of multivariate independent distri-

butions is the summation of independent uni-variate KL-divergences. Therefore, we compare

the uni-variate KL-divergences.

KL(N py
i || N y

i;θ) − KL(N uy
i || N y

i;θ) =
(µpy

i − µy
i;θ)2 − (µuy

i − µy
i;θ)2

2(σy
i;θ)2 (4.13)

By construction, for i 6∈ M, µpy
i − µy

i;θ = µuy
i − µy

i;θ. Therefore, when i 6∈ M,

KL(N py
i || N y

i;θ) = KL(N uy
i || N y

i;θ) (4.14)

Hence, we now concentrate on the KL-divergences between N sy
m and N y

m;θ where m ∈ M.

Case 1: Balanced Training Set, βp = βu = 0.5

When δs > 0, by construction µm < µu+
m < µp+

m . Imputation moves (reduces) µu+′
m , µp+′

m

and their average µ+
m;θ closer to µm. Therefore, µp+

m − µ+
m;θ > µu+

m − µ+
m;θ. Consequently,

( 4.13 ) indicates that when δs > 0, for any m ∈ M,

KL(N p+
m || N +

m;θ) > KL(N u+
m || N +

m;θ) (4.15)
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Likewise, imputation increases µu−′
m , µp−′

m and their average µ−
m;θ towards µm. As a result,

µp−
m − µ−

m;θ < µu−
m − µ−

m;θ. Therefore, the following inequality holds,

KL(N p−
m || N −

m;θ) < KL(N u−
m || N −

m;θ) (4.16)

Using (  4.3 ), (  4.14 ), (  4.15 ) and (  4.16 ) we summarize that,

KL(N p+ || N +
θ ) > KL(N u+ || N +

θ )

KL(N p− || N −
θ ) < KL(N u− || N −

θ )
(4.17)

In contrast, δs < 0 changes the directions of the inequalities in (  4.17 ).

KL(N p+ || N +
θ ) < KL(N u+ || N +

θ )

KL(N p− || N −
θ ) > KL(N u− || N −

θ )
(4.18)

Equations (  4.17 ) and (  4.18 ) indicate that when δs < 0, after imputation, NBC more ac-

curately replicates the distribution of the unprivileged positive group and the privileged

negative group. It implies that the unprivileged positive group will receive more accurate

positive predictions than the privileged positive group and the opposite trend in the negative

group. Thus the classifier ends up inherently disfavoring the privileged. The opposite trend

is expected in the negative samples. For δs > 0, the disparity is inverted from the unprivi-

leged towards the privileged. This completes our constructive proof of training unfair models

on fair and balanced training data free from disparities other than missing value disparity.

Case 2: Imbalanced Training Set, βp 6= βu

For imbalanced datasets, we expand (  4.13 ) as follows,

KL(N py
m || N y

m;θ) − KL(N uy
m || N y

m;θ) = δs [(1 − 2γpβp)(µpy
m − µm) + (1 − 2γuβu)(µuy

m − µm)]
2(σy

m;θ)2

(4.19)

When δs > 0, from (  4.19 ) KL(N p+
m || N +

m;θ) < KL(N u+
m || N +

m;θ) holds when the product

γpβp > 0.5. When both γpβp ≤ 0.5 and γuβu ≤ 0.5, KL(N p+
m || N +

m;θ) > KL(N u+
m || N +

m;θ).
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It implies that with fixed βp and βu, the rates of missing values can control which group

distribution is closely replicated by the Bayesian classifier.

Throughout the above discussion, we assumed that the missing values only appeared

in the training data. When the group-wise distributions are identical, δs = 0, classifier

performance will be similar in both groups. However, if test samples contained missing

values, (  4.10 ) shows that missing value disparity instigates feature disparity; the phenomenon

shown to introduce bias in [  65 ].

We frame our argument using KL-divergence of the original distributions and the learned

distributions. After dropping or imputation, the change in the classifier results in a change

in prediction probabilities. The prediction rates are modified only when one or more of

the changed prediction probabilities crosses the prediction threshold (typically 0.5). On the

other hand, even without a change in the predictions, it changes the overall ranking of the

individuals in the population. In resource-constrained situations where favorable decisions

are distributed among top-ranked candidates, such as selective college admission, alternate

rankings still induce an unfair distribution even if the classification (e.g., meets minimum

standards to succeed in college) does not change.

Equations ( 4.17 ) and (  4.18 ) show that mean-value imputation with missing value dispar-

ity unfairly skews the model toward one group. We avoid complex imputations for the sake

of tractability of the theoretical analysis. In Section  4.3 , we empirically show induced bias

from complex methods, such as k-NN [  34 ] and MICE [  35 ] (summarized in Table  4.1 ) and

classifiers beyond NBC (summarized in Table  4.7 and  4.8 ).

4.3 Experimental Results

We show empirical evidence of induced bias due to missing value disparity. Our ex-

periment involves both balanced synthetic and several imbalanced real-world datasets, three

distinct MAR mechanisms for missing data, five missing value handling mechanisms, and five

different types of classifiers including traditional classifiers (SVM, Neural Networks) and two

state-of-the-art fairness-aware ones. The real-world datasets are publicly available and con-

vey more complex conditions than the ones discussed in the formal analysis. The source code
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of our experiments is available at  https://github.com/rakinhaider/MissingValueDisparity  .

To maintain the reproducibility of the results, we use pre-fixed random seeds in our experi-

ments (further details are found in the README of the above repository).

4.3.1 Synthetic Fair Balanced Dataset

Induced bias studies unfair model outcomes caused by ML components other than his-

torical bias typically appearing in the form of label bias or majority-minority groups. As

real-world datasets rarely conform to fairness guarantees, analysis of induced bias from miss-

ing value disparity is often non-conclusive on these historically biased data. Instead, syn-

thetic data enable us to maintain the absence of majority/minority groups, equality of the

group-wise base rates, and the correctness/fairness of the ground truth labels. It guarantees

that missing value disparity is the only form of disparity among the samples. Thus, we

can validate that even if datasets with strong fairness guarantees existed, unfair outcomes

could still appear due to missing value disparity. Since all confounding factors, such as label

bias, are eliminated, we conclude that the unfair experimental results are due to missing

value disparity. Note that, we do investigate real-world datasets (where outcome bias also

potentially comes from other factors) in Section  4.3.5 .

We generate a synthetic training dataset D with 10000 samples each having two features

x1 and x2, sensitive attribute s, and label y. Each synthetic dataset maintains balance in

the number of samples from both sensitive groups, i.e., P(u) = P(p) = 0.5. The sample

generation process also ensures the base rates P(y = + | p) = P(y = + | u) = α. In our

experiment, we use α = 0.5. To generate a sample, we first randomly assign s and y. We

follow the generative model discussed in Section  4.2 to sample xis. More specifically, the xis

are sampled from xi ∼ N (µsy
i , σ) where µp+

i = 10, δy = 10, δg ∈ {−3, 0, 3} and σ = 5. We

use the same process to generate the synthetic test set.

The process of introducing artificial missing values in the dataset is called amputation.

We induce artificial random missing values in the dataset by first randomly sampling (i, j)

pairs and setting ri,j = 1. Then, using R, we drop the value of the jth feature from the ith

sample, if ri,j = 1. Let, R⊙D is the amputated dataset with incomplete samples. Upon
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Figure 4.1. Scatter plot of identically distributed privileged and unprivileged
samples (i.e., δs = 0) with the solid and dotted line indicating θ and θ′ bound-
aries. The ellipses indicate the group-wise two-variate normal distributions.

dropping or imputation on R⊙D, we obtain the complete dataset D′. This method allows

access to both D and D′, enabling comparison with the baseline models trained on D. In

the following experiment, we assume that the missing values only appear on x2. Since

j(= 2) is fixed, the amputation mechanism only samples indices i from the privileged and

the unprivileged group according to probability 1 − γp and 1 − γu respectively. By default,

we use γp = 0.9 and γu = 0.6. The amputated dataset is later repaired using either dropping

the incomplete samples or applying imputation techniques.

4.3.2 Induced Bias with Independent Features

We begin our discussion with mutually independent features (although correlated with

the outcome). The impact on accuracy in this case is small, but the changes in confidence of

the predictions are notable. To demonstrate this, we look at the changes in the probability

of an outcome as well as ranking with respect to the probability of a positive outcome. Let

θ be the Naive Bayes classifier (NBC) trained on the original complete samples D. We refer

to this model as the baseline model. We further assume θ′ is the NBC trained on D′ which

was obtained after dropping or imputing the amputated dataset R⊙D. Define the positive

prediction probability from classifier t as t(x) = P(ŷ = + | x; t). We rank the individuals

by θ(x) and θ′(x) to obtain rank(x; θ) and rank(x; θ′) respectively. Table  4.1 reports the
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group-wise percentages of individuals who received higher or lower θ′(x) than θ(x) for each

(s, y) pair. Similarly, we report the changes in rank(x; t) from θ(x) to θ′(x). We report

the means and standard deviations over 10 random initiations of the synthetic training data

and corresponding missing values in Table  4.1 and in Figure  4.2 . Intuitively, higher t(x)

is favorable for a positive sample and unfavorable for the negative ones. In addition, an

improved ranking is advantageous since it increases the likelihood of resource allocation. For

example, lower-ranked students are more likely to be admitted.

(0, Mean) (-3, Mean) (-3, k-NN) (-3, MICE) (3, Mean)
(Group-Shift, Method)

20

40

60

80

100

Pe
re

cn
ta

ge
 o

f p
os

iti
ve

 in
di

vi
du

al
s r

ec
ei

vi
ng

re
ce

iv
in

g 
hi

gh
er

 p
re

di
ct

io
n 

pr
ob

ab
ilit

y.

15
.2

4

32
.5

1

27
.6

7

91
.3

6

5.
20

16
.2

7

15
.5

1

12
.2

2

90
.9

0

17
.0

1

Privileged
Unprivileged

(a) Percentage of positive samples receiving
a higher prediction probability after imputa-
tion.

(0, Mean) (-3, Mean) (-3, k-NN) (-3, MICE) (3, Mean)
(Group-Shift, Method)

10

20

30

40

50

60

70

80

Pe
re

cn
ta

ge
 o

f n
eg

at
iv

e 
in

di
vi

du
al

s r
ec

ei
vi

ng
re

ce
iv

in
g 

lo
we

r p
re

di
ct

io
n 

pr
ob

ab
ilit

y.

16
.0

4

5.
57 7.

81

70
.0

7

32
.5

7

15
.7

9

16
.5

4 20
.8

6

46
.7

7

15
.0

3

Privileged
Unprivileged

(b) Percentage of negative samples receiving a
lower prediction probability after imputation.

Figure 4.2. Changes in prediction probabilities in the positive and negative samples.

Identical Group-wise Distributions

We first consider identically distributed privileged and unprivileged groups, i.e., the fea-

ture distributions are independent of the sensitive attribute s. Formally, xi 6⊥⊥ s or δs = 0.

Figure  4.1 shows 100 samples in each (s, y) group, their normal distribution ellipses, and

the joint classifier boundaries. Table  4.1 shows that, with δs = 0, the portion of individuals

receiving lower or higher θ′(x) than θ(x) are similar between (s, +) pairs and (s, −) pairs.

On average, the imputation mechanism equally disfavors the positive samples and equally

favors the negative ones irrespective of s. The results support the theoretical claim that with

δs = 0 and mean imputation, KL(N sy || N y
θ′) will be equidistant for each s. The overlapping
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Table 4.1. Group-wise summaries of changes in positive prediction probabil-
ities and relative rankings of the individuals due to imputation mechanism.
Changes in positive prediction probability and relative ranking are denoted
by δP and δrn respectively. The percentages of samples who received higher
(δP > 0) or lower (δP > 0) positive prediction probabilities and the average
change (∆P = mean(δP)) in positive prediction probability after imputation
are reported. Similarly, the percentage of samples ranked higher (δrn > 0) or
lower (δrn > 0) and the average change in rank (∆rn = mean(δrn)) in each
group after imputation is reported in the latter columns.

δs Method (s, y)
Positive Prediction

Probabilities Rankings
δP < 0 δP > 0 ∆P δrn < 0 δrn > 0 ∆rn

0 Mean

(u, -) 15.79 84.21 8.4e-03 49.57 50.25 5.85
(u, +) 83.73 16.27 -7.5e-03 49.50 50.29 1.38
(p, -) 16.04 83.96 8.1e-03 49.21 50.61 5.26
(p, +) 84.76 15.24 -8.8e-03 51.01 48.84 -12.49

-3 (< 0) Mean

(u, -) 16.54 83.46 1.7e-02 49.71 50.20 4.65
(u, +) 84.49 15.51 -2.4e-03 49.90 49.77 -1.32
(p, -) 5.57 94.43 1.1e-02 48.68 50.95 8.30
(p, +) 67.49 32.51 2.6e-04 51.45 48.42 -11.63

-3 (< 0) k-NN

(u, -) 20.86 79.14 1.5e-02 47.52 52.39 11.79
(u, +) 87.78 12.22 -8.6e-03 48.83 50.94 -10.92
(p, -) 7.81 92.19 1.1e-02 46.15 53.49 14.12
(p, +) 72.33 27.67 -9.6e-03 49.46 50.45 -14.99

-3 (< 0) MICE

(u, -) 46.77 53.23 2.6e-03 41.71 57.69 -0.77
(u, +) 9.10 90.90 2.2e-03 35.22 62.89 -0.74
(p, -) 70.07 29.93 5.7e-04 43.70 55.53 0.63
(p, +) 8.64 91.36 4.8e-03 34.46 64.41 0.88

3 (> 0) Mean

(u, -) 15.03 84.97 2.8e-03 49.08 50.64 7.15
(u, +) 82.99 17.01 -1.7e-02 49.14 50.69 3.32
(p, -) 32.57 67.43 -1.1e-03 49.90 50.00 0.92
(p, +) 94.80 5.20 -1.2e-02 50.94 48.84 -11.39
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sample distributions in Figure  4.1 confirm that any change in the model has a similar effect

on both s.

Non-identical Group-wise Distribution

Realistically, the feature distributions of privileged and unprivileged groups are often

different. Figure  4.3a and  4.3b show privileged and unprivileged samples where they are non-

identically distributed (δs < 0 and δs > 0 respectively). Table  4.1 contains the statistics of

changes in θ′(x) from θ(x) with δs < 0 after mean, k-NN and MICE imputations. We observe

that mean imputation increases the t(x) for 32.5% of individuals in (p, +) as compared

to 15.5% in (u, +). That means, more than twice as many privileged individuals received

improved θ′(x) as unprivileged. A steeper average downward trend is found in the ranking of

the individuals in (p, +) (-11.63) than in (u, +) (-1.32). Since a lower ranking is advantageous,

the privileged group appears to be unfairly favored by θ′. In addition, a larger portion

of (u, −) had δP < 0 than the (p, −). Furthermore, (p, −) encounters a steeper increase

in average ranking than (u, −). This shows that the ability to discern between positive

and negative samples in the unprivileged group has decreased, decreasing the likelihood of

correct/appropriate decisions.

Table  4.1 also shows unfair shifts in t(x) and rank(x, t) for k-NN and MICE imputa-

tions. Similar to mean imputation, k-NN imputation unfairly advantages groups (u, −) and

(p, +), but to a greater extent. On the other hand, MICE imputation favors both positive

and negative privileged samples by moving the prediction probability closer to the ground

truths. We avoid fair ranking metrics such as normalized discounted metrics [ 74 ] since they

concentrate on group-wise top-k recommendation statistics and do not capture the smaller

and more frequent individual changes in rankings studied here.
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Figure 4.3. Scatter plot of non-identically distributed privileged and un-
privileged samples (i.e., δs 6= 0) with the solid and dotted line indicating θ
and θ′ boundaries. The ellipses indicate the group-wise two-variate normal
distributions.

4.3.3 Induced Bias with Correlated Features

We now investigate a case where the features x1 and x2 are correlated and sampled

following the conditional distributions,

x1 | s, y ∼ N (µsy
x1 , σx1) and x2 = a1x1 + a2y (4.20)

Here, µu+
x1 = 10, µu−

x1 = 0, µpy
x1 −µuy

x1 = δs where δs ∈ {−3, 0, 3}. For this section, we use a1 = 1

and a2 = 4. Being a linear combination of x1 and y, x2 also follows the normal distribution,

x2 | s, y ∼ N
(
µsy

x1 + 4y, σ2
x1

)
. Clearly x2 ⊥⊥ x1, y. However, imputation disproportionately

weakens the relation between x2 and y due to missing value disparity and consequently

results in false or unfavorable predictions.

Using (  4.20 ) and 10 different random initiations, we randomly generate 10 synthetic fair

datasets D with missing value disparity similar to the ones described in Section  4.3.1 . The

missing values are handled by either dropping them or imputing them with mean imputation,

MICE [  35 ], k-NN imputation [  34 ], and Softimpute [  36 ]. We train Naive Bayesian classifiers
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Table 4.2. Disparities in group-wise accuracies, base prediction rates, and
false positive rates of NBC on SFBD with correlated features, missing value
disparity, and different values of δs.

δs Method SP (ACC; θ) SP (θ) SP (FPR; θ)

0

Baseline 0.36 (0.02) -0.44 (0.04) -0.80 (0.04)
Drop 0.36 (0.03) -0.44 (0.05) -0.79 (0.07)
Mean 0.15 (0.01) -0.27 (0.03) -0.42 (0.02)
MICE 0.25 (0.06) -0.37 (0.03) -0.61 (0.06)
k-NN 0.15 (0.03) -0.32 (0.04) -0.46 (0.04)

Softimpute 0.28 (0.03) -0.34 (0.02) -0.62 (0.03)

-3

Baseline 0.10 (0.12) -8.06 (0.03) -8.16 (0.12)
Drop 1.17 (0.10) -8.08 (0.04) -9.26 (0.11)
Mean 0.70 (0.09) -8.76 (0.05) -9.46 (0.13)
MICE 0.06 (0.12) -8.12 (0.03) -8.18 (0.13)
k-NN 0.08 (0.14) -9.05 (0.07) -9.13 (0.15)

Softimpute 3.07 (0.06) -8.78 (0.09) -11.86 (0.13)

on the imputed datasets and report the mean SP (θ), SP (ACC; θ) and SP (FPR; θ) (defined

in ( 2.4 ), (  2.7 ) and (  2.8 ) respectively) and their standard deviations in Table  4.2 .

Identical Group-wise Distribution

Table  4.2 reports lower disparity in group-wise accuracies, selection rates, and false pos-

itive rates from NBC after each imputation mechanism when the groups are identically

distributed. We observe that imputation mechanisms often reduce the group-wise dispar-

ities when the underlying group-wise distributions are the same. Since we do not induce

missingness in the test samples, they remain unchanged and follow identical distributions.

Therefore, any model is expected to perform similarly on both p and u. This further corrob-

orates that the synthetic data is free from label bias and does not demonstrate unfair model

predictions even without any fairness interventions.
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Non-identical Group-wise Distributions

Table  4.2 shows the induced disparity in model outcome due to missing value disparity

when the group-wise distributions are different between privileged and unprivileged groups,

i.e., δs 6= 0. The increase in disparity in accuracy and false positive rate is most prevalent in

dropping and Softimpute imputation whereas k-NN imputation shows the highest increase

in positive prediction rate disparity. We further experiment by varying the level of group-

wise disparity. We fix the rate of missing values in the privileged group to γp = 0.1 and

vary the rate of missingness in the unprivileged group between 0.1 to 0.6. Figure  4.4 shows

that with the increase in group-wise missing value disparity, the models exhibit an increased

disparity in false positive rates between privileged and unprivileged groups. We attribute

the increased false positive rate disparity to missing value disparity since all other disparities

are absent in the SFBD.
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Figure 4.4. Variations in group-wise FPRs with 1 − γu.

4.3.4 Missing Values in Test Data

Real-world scenarios may not guarantee the completeness of the test samples. Therefore,

pre-processing imputation pipelines are often needed for test samples as well. Dropping

incomplete samples does not make sense for test data, so we concentrate on imputation. In

this experiment, we follow the synthetic data generation strategy described in  4.3.1 except

for introducing missing value disparity in test samples as well. In Table  4.3 and Figure  4.5 

observed increased induced bias when the test samples contained missing values. Test case

imputation increases false positive rate disparity to as much as 15.26% for k-NN imputation
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Table 4.3. Disparities in group-wise accuracies, base prediction rates, and
false positive rates of NBC classifiers on SFBD with correlated features, miss-
ing value disparity, and incomplete test samples.

Method SP (ACC; θ) SP (θ) SP (FPR; θ)

Baseline 0.10 (0.12) -8.06 (0.03) -8.16 (0.12)
Drop 1.03 (0.08) -8.00 (0.06) -9.03 (0.11)
Mean 3.57 (0.11) -10.63 (0.08) -14.20 (0.18)
MICE 3.24 (0.10) -10.32 (0.05) -13.56 (0.10)
k-NN 4.57 (0.29) -10.69 (0.30) -15.26 (0.52)

Softimpute 4.65 (0.03) -6.24 (0.13) -10.89 (0.13)
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(b) Changes in disparity in selection rates.

Figure 4.5. Changes in prediction rate disparities after repairing the ampu-
tated synthetic dataset with different imputation mechanisms. Here the test
samples were allowed to include missing values and δs < 0.

from a baseline difference of 8.16%. Similarly, the difference in group-wise accuracy was

increased from 0.1% to 4.65% by Softimpute imputation. It means imputation converts

feature x2 into a poor predictor for the unprivileged group than for the privileged. Such a

phenomenon, called feature disparity, is a proven source of induced bias [  65 ].

4.3.5 Real-world Datasets

We investigate the extent of missing value disparity on benchmark datasets studied in

FairML literature. Table  4.4 shows 6 real-world datasets, their number of samples, and the
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list of sensitive attributes among the features (the bold ones are used in our experiments).

The COMPAS dataset is used to predict recidivism (unfavorable) vs no-recidivism (favorable)

among a population of 2103 Caucasians (privileged) and 3175 non-Caucasians (unprivileged).

Following the recommendations in [  75 ], COMPAS is pre-processed to binarize its features.

Predicting high-vs-low incomes of individuals is the goal of the Adult dataset. Recent work

[ 76 ] suggested that Adult covers only an extremely privileged end of the US population.

Its use in fairness studies accompanies certain limitations and is discouraged. Among the

alternative datasets, derived from the US census by the authors of [  76 ], we study FolkIncome

which is used to predict the high (favorable) or low (unfavorable) income of individuals while

the target of FolkCoverage is to predict whether an individual has private (unfavorable)

or public (favorable) medical coverage. The PIMA dataset is tasked with predicting diabetes

among 768 female patients using a range of numeric attributes such as # of pregnancies,

blood pressure, etc. Here, 118 patients who are 45 years or above in age are considered

unprivileged. Another healthcare-related dataset is Heart. Its goal is to predict the presence

or absence of cardiovascular disease among individuals. Compared to the other datasets,

PIMA and Heart are more suitable for mean imputation since their features are typically

numeric. The dataset is pre-processed to convert the sensitive attribute and the target

attribute into binary features. We amputate the complete datasets and later repair them

by either dropping or imputation. We compare outcome fairness with and without the

amputation-imputation processing. In this way, any increase in outcome disparity can be

attributed to missing value disparity since it is the only source of disparity that is added

through amputation.

We partition each dataset into independent train (80%) and test (20%) sets of complete

samples. We generate a missing value indicator matrix R corresponding to the training data

to introduce missing values. Random missing matrix R can be generated by using sampling

strategies that can sample (i, j) index pairs to set ri,j = 1. Instead of the single-column

strategy used in Section  4.3.1 , here we experiment with three different sampling strategies.

We call these (i, j) pair sampling strategies amputation strategies. Each amputation strategy

ensures that the probability of incomplete samples in group s is proportional to γs. The

amputation strategies are discussed below.
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Table 4.4. Benchmark datasets, number of samples and features in each of
them, and their corresponding sensitive attributes. Bold sensitive attributes
are used in our experiments.

Dataset Source Number of
Samples

Sensitive At-
tributes

COMPAS [  3 ] Law 5278 sex, race
Adult [ 77 ] Census 48842 race, sex

FolkIncome [  76 ] Census 196,604 AGEP, RAC1P,
SEX

German [  38 ] Finance 1000 age, sex
PIMA [  78 ] Healthcare 768 Age
Heart [ 79 ] Healthcare 70,000 age, gender

Table 4.5. Group-wise summaries of changes in positive prediction probabil-
ities and relative rankings of the individuals due to imputation mechanism on
real-world benchmark datasets. The column definitions are same as discussed
in Table  4.1 .

Dataset (s, y) Probabilities Ranks
δP < 0 δP > 0 ∆P δrn < 0 δrn > 0 ∆rn

COMPAS

(u, -) 48.25 51.75 -1.8e-04 2.56 0.55 -0.46
(u, +) 43.30 56.70 4.1e-04 4.08 2.25 -0.36
(p, -) 43.42 56.58 7.0e-04 2.82 2.55 0.16
(p, +) 33.52 66.48 1.0e-03 2.17 5.97 0.98

FolkIncome

(u, -) 72.74 27.26 -1.4e-03 43.37 54.60 -5.95
(u, +) 73.24 26.76 -1.5e-03 40.09 59.25 -14.82
(p, -) 66.76 33.24 -5.1e-04 27.39 71.39 20.11
(p, +) 76.92 23.08 -1.5e-03 40.45 58.86 -13.33

German

(u, -) 33.85 66.15 -4.3e-04 22.31 22.31 -0.36
(u, +) 37.31 62.69 1.3e-03 23.08 32.69 0.11
(p, -) 30.85 69.15 1.0e-03 19.79 30.64 -0.03
(p, +) 37.28 62.72 9.7e-04 24.56 28.42 0.03

PIMA

(u, -) 20.91 79.09 7.3e-03 29.09 35.45 0.05
(u, +) 28.33 71.67 4.0e-03 28.33 29.17 0.08
(p, -) 22.60 77.40 4.3e-03 30.52 28.75 -0.03
(p, +) 30.00 70.00 6.1e-03 28.00 23.43 0.04

Heart

(u, -) 15.04 84.94 5.2e-03 33.45 64.40 0.40
(u, +) 14.55 85.40 6.0e-03 35.66 60.87 -0.70
(p, -) 16.71 83.08 4.5e-03 32.66 65.19 4.60
(p, +) 16.37 83.63 5.7e-03 34.37 62.42 -6.89
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• Strategy 1: Randomly sample row indices i with probability γs and randomly sample

feature index j with probability 1
d
. Here, each sample can have at most 1 missing value.

• Strategy 2: The missing values only appear on the most correlated feature (constant

j) with the class label. We randomly sample row indices i with probability γs.

• Strategy 3: The row indices i are sampled with γs and each feature is randomly

picked with probability 0.5 (allowing multiple missing values per sample).

The amputation strategies are analogous to real-world situations. For example, college

applicants may report either GRE scores or IELTS scores but not both. Strategy 1 mimics

such a scenario where the participants may randomly choose to hide one of the criteria. In

COMPAS recidivism prediction, defendants could be willing to hide prior criminal records while

being indifferent towards other information. This influences the design of strategy 2 which

induces missing values only on the most correlated feature. Finally, strategy 3 replicates the

overall poor quality of data from selected demographics.

Since strategy 1 uniformly distributes the missing values over all the features, imputation

is expected to have less effect on the feature distributions than with the other two strategies.

Therefore, we use it to introduce missing values and study the changes in positive prediction

probabilities and relative rankings due to imputation. We experiment with 10 random train-

test splits of each dataset and their corresponding random R sampled using strategy 1. We

report the means and standard deviations of the statistics of changes in predictions over these

random splits in Table  4.5 . Recall that, a higher positive prediction rate and lower ranking

increases the likelihood of resource allocation to the related individual. In addition, the

allocation of resources to the negative samples is also an undesired outcome. In COMPAS

recidivism prediction, mean imputation disfavors the privileged by increasing the rankings

of 5.97% of (p, +) individuals as opposed to 2.25% of (u, +). Similarly, compared to 2.56%

of (u, −) a higher portion of 2.82% of (p, −) receives reduced ranking risking a higher false

incarceration of the privileged. Unfair advantages are also observed when positive prediction

probability is compared.

In FolkIncome, 71% of the samples in (p, −) received an increased ranking after impu-

tation compared to only 54% of samples in (u, −). It implies that mean imputation favors
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the negative individual in the privileged group by protecting them from undesired resource

allocation. On the other hand, the group-wise mean changes of the rankings among the

negative samples are close to each other. However, approximately 3% more individuals from

the unprivileged positive samples received higher positive prediction probability than their

privileged counterparts. An increased positive prediction probability among the positive

samples indicates a higher likelihood of favorable decisions in the unprivileged group. Sim-

ilar to the COMPAS dataset, a big portion of individual rankings remained unchanged after

imputation. However, we observed increased rankings of 30% and 22% of samples in the

negative privileged and unprivileged groups respectively. It suggests that imputation re-

sults in more unfair treatment towards the privileged group. Thus, in both FolkIncome

and German datasets, we observe that imputation mechanisms introduce unfair shifts in the

positive prediction probabilities and the relative ranking of the individuals.

Table  4.5 also reports that mean imputation disproportionately disfavors the (u, +) in

PIMA dataset by increasing the rankings of 6% more individuals than (p, +) However, the

changes in t(x) are relatively close. To summarize, mean imputation improves the positive

prediction probability for a slightly higher (∼1%) portion of (p, +) but it results in a much

larger improvement in their rankings. Finally, compared to the other datasets, Heart shows

the most balanced rates of changes among the privileged and unprivileged groups after

imputation.

Next, we study whether the pattern of missing value occurrence impacts the bias intro-

duced by the missing value handling techniques. In this regard, we compare the increase in

disparities after dropping and imputation across the three amputation strategies. Table  4.6 

and Figure  4.6 report the disparities after dropping or imputing missing values introduced

using each of the three strategies. We observe that strategies 2 and 3 result in higher accuracy

and false positive rate disparities compared to strategy 1. Among the imputation mecha-

nisms, Softimpute introduces the highest accuracy and false positive disparity in conjunction

with strategy 2. Strategy 2 removes the most predictive features from the unprivileged group

at a higher rate than the privileged. Therefore, the prediction behavior worsens compared

to the baseline and strategy 1. Strategy 3 induces a higher number of missing values than
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Table 4.6. Disparities in group-wise accuracies, base prediction rates, and
false positive rates of NBC classifiers on PIMA with missing value disparity
induced using different strategies.

Strat-
egies Method SP (ACC; θ) SP (θ) SP (FPR; θ)

- Baseline 7.72 (10.27) -21.09 (11.25) -15.96 (13.31)

1

Drop 6.88 (11.29) -21.73 (13.26) -16.21 (12.58)
Mean 7.45 (11.50) -21.71 (11.87) -16.40 (13.91)
MICE 7.45 (11.50) -21.71 (11.87) -16.40 (13.91)
k-NN 7.18 (11.15) -21.02 (10.15) -15.42 (13.21)

Softimpute 7.94 (11.70) -21.91 (12.39) -17.53 (16.15)

2

Drop 8.85 (10.41) -21.75 (12.19) -18.00 (15.53)
Mean 8.16 (11.01) -22.12 (13.33) -18.51 (15.77)
MICE 7.64 (10.44) -21.60 (12.69) -16.93 (13.12)
k-NN 8.50 (12.51) -20.92 (12.95) -17.00 (17.28)

Softimpute 9.90 (11.08) -22.80 (13.19) -20.74 (15.74)

3

Drop 9.17 (10.09) -22.62 (13.23) -19.16 (17.23)
Mean 8.76 (11.00) -22.26 (12.61) -18.86 (15.45)
MICE 8.76 (11.02) -22.41 (12.75) -18.96 (15.74)
k-NN 8.31 (10.60) -18.94 (11.63) -13.93 (13.09)

Softimpute 9.58 (8.09) -20.79 (12.95) -18.34 (15.53)
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(a) Changes in disparity in accuracy.
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Figure 4.6. Changes in prediction rate disparities after repairing the ampu-
tated PIMA dataset with different imputation mechanisms where amputation
was performed using several different amputation strategies.

79



both strategy 1 and 2. Although strategy 3 seems to hurt classifier performance more than

strategy 1, strategies 2 and 3 show similar effects.

Finally, we study the impact of missing value disparity on state-of-the-art fairness inter-

ventions. We report the classifier performances on FolkIncome (Table  4.7 ) and PIMA (Table

 4.8 and Figure  4.7 ) as representatives of large and small datasets with the highest and low-

est amount of samples respectively among others. We apply amputation strategy 3 since

it introduces missing values at a higher rate. We report the performance of NBC, SVM, a

shallow (5×5×2) layer neural network (NN), and state-of-the-art fair classifiers such as prej-

udice remover (PR) [  13 ] and reduction-based classifier (RBC) [ 26 ]. On FolkIncome dataset,

both fairness unaware NBC and fairness aware classifiers show increased accuracy and selec-

tion rate disparities after most of the imputation mechanisms. The Softimpute imputation

technique magnified the disparities introduced by the NB classifier most. The state-of-the-

art classifiers induced the highest false positive rate disparities after Softimpute and k-NN

imputation respectively. On PIMA, NBC performs worse after dropping mechanisms. The

fairness-aware classifiers demonstrated the highest disparities after Softimpute and dropping

mechanisms. Among the five imputations, SVM displays the lowest average absolute dispar-

ity in accuracy compared to the other classifiers on both datasets. However, it increases the

prediction rate disparity or false positive disparity at a higher rate. To summarize, missing

value disparity induced bias is observed from different types of classifiers.
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Table 4.7. Disparities in group-wise accuracies, base prediction rates and
false positive rates of different classifiers on FolkIncome with missing value
disparity induced using strategy 3.

θ Method SP (ACC; θ) SP (θ) SP (FPR; θ)

NBC

Baseline 3.30 (0.41) -17.29 (0.60) -12.25 (0.81)
Drop 3.49 (0.48) -16.81 (0.64) -11.54 (0.93)
Mean 3.11 (0.41) -16.88 (0.60) -11.63 (0.82)
MICE 3.27 (0.44) -16.92 (0.60) -11.69 (0.87)
k-NN 3.71 (0.56) -18.36 (1.13) -13.64 (1.65)

Softimpute 5.76 (0.41) -23.82 (0.53) -20.76 (0.71)

SVM

Baseline 3.72 (9.26) -0.32 (4.08) -0.42 (1.97)
Drop 1.90 (10.72) -0.31 (3.10) 0.38 (1.48)
Mean 3.66 (7.47) -0.62 (4.40) -0.20 (1.62)
MICE 4.77 (7.49) -2.55 (3.40) -0.53 (1.60)
k-NN -1.19 (8.18) 1.97 (3.24) 0.74 (2.06)

Softimpute -1.04 (8.65) 1.20 (3.01) 0.56 (1.80)

NN

Baseline 11.42 (4.53) -5.43 (3.26) -2.15 (2.07)
Drop 11.50 (4.37) -4.00 (1.74) -0.83 (1.05)
Mean 10.98 (4.39) -3.77 (1.30) -0.53 (1.44)
MICE 10.23 (3.97) -5.26 (2.12) -1.70 (1.66)
k-NN 11.77 (4.75) -3.36 (1.30) -0.34 (1.28)

Softimpute 13.79 (5.54) -2.05 (2.05) -0.12 (0.87)

PR

Baseline 5.23 (0.42) -14.93 (1.01) -9.35 (1.13)
Drop 5.48 (0.39) -15.15 (0.47) -9.48 (0.63)
Mean 5.18 (0.39) -15.42 (0.66) -10.05 (0.82)
MICE 5.21 (0.38) -15.30 (0.47) -9.76 (0.65)
k-NN 5.57 (0.41) -17.36 (3.66) -11.84 (3.96)

Softimpute 5.36 (0.34) -15.67 (0.41) -9.78 (0.65)

RBC

Baseline 4.41 (0.52) -15.94 (1.27) -11.07 (1.98)
Drop 4.49 (0.57) -16.21 (1.41) -11.73 (2.20)
Mean 4.13 (0.46) -15.61 (1.03) -10.57 (1.48)
MICE 4.45 (0.39) -16.19 (1.33) -11.63 (1.94)
k-NN 4.32 (0.43) -16.46 (1.28) -11.63 (1.94)

Softimpute 4.56 (0.50) -17.65 (0.49) -13.27 (0.78)
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Table 4.8. Disparities in group-wise accuracies, base prediction rates and
false positive rates of different classifiers on PIMA with missing value disparity
induced using strategy 3.

θ Method SP (ACC; θ) SP (θ) SP (FPR; θ)

NBC

Baseline 7.72 (10.27) -21.09 (11.25) -15.96 (13.31)
Drop 9.17 (10.09) -22.62 (13.23) -19.16 (17.23)
Mean 8.76 (11.00) -22.26 (12.61) -18.86 (15.45)
MICE 8.76 (11.02) -22.41 (12.75) -18.96 (15.74)
k-NN 8.31 (10.60) -18.94 (11.63) -13.93 (13.09)

Softimpute 9.58 (8.09) -20.79 (12.95) -18.34 (15.53)

SVM

Baseline -3.65 (9.63) 0.75 (10.06) -4.41 (10.68)
Drop 1.85 (10.72) -5.39 (12.06) -11.71 (13.54)
Mean 2.41 (9.68) -6.19 (12.89) -8.09 (20.67)
MICE 1.10 (8.86) -2.27 (9.36) -5.92 (11.70)
k-NN 2.46 (13.43) 0.49 (16.36) -6.69 (22.68)

Softimpute -0.09 (11.44) 4.86 (17.99) -0.40 (25.40)

NN

Baseline 15.59 (13.91) -0.46 (5.06) -1.40 (4.59)
Drop 15.46 (13.81) 0.36 (8.26) -0.01 (13.78)
Mean 14.16 (8.44) -1.20 (3.20) -0.51 (1.80)
MICE 11.80 (14.86) -2.62 (8.02) 0.57 (5.55)
k-NN 16.28 (10.21) 1.34 (4.28) 0.22 (4.95)

Softimpute 14.73 (10.89) -0.56 (4.88) 0.10 (5.24)

PR

Baseline 11.50 (11.64) -22.51 (11.90) -20.22 (13.23)
Drop 9.41 (11.23) -24.08 (8.73) -19.81 (11.12)
Mean 10.68 (11.65) -26.70 (12.01) -23.17 (12.30)
MICE 9.75 (11.55) -24.57 (9.97) -20.39 (11.87)
k-NN 9.87 (12.83) -25.09 (9.61) -20.93 (13.66)

Softimpute 14.20 (10.04) -30.35 (14.23) -30.69 (15.99)

RBC

Baseline 14.54 (8.55) -26.59 (12.84) -30.60 (15.59)
Drop 15.77 (10.34) -29.70 (9.44) -34.49 (13.77)
Mean 14.88 (11.31) -26.77 (11.24) -30.70 (14.93)
MICE 14.42 (10.28) -26.69 (10.48) -30.18 (14.39)
k-NN 15.09 (10.32) -27.88 (11.68) -31.42 (14.64)

Softimpute 15.09 (11.58) -29.34 (11.17) -33.64 (15.49)
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(a) Changes in disparity in accuracy.
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(b) Changes in disparity in selection rates.

Figure 4.7. Changes in prediction rate disparities after repairing the ampu-
tated PIMA dataset with different imputation mechanisms and several differ-
ent classifiers.
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5. INTRODUCED BIAS THROUGH DISPARITY IN NOISE

TOLERANCE

Machine learning model performance varies largely due to noisy samples in the dataset. Real-

world datasets are collected from both reliable and unreliable resources. Unreliable sources

such as social media, crowd-sourcing, etc., can result in noisy labels and annotations. On

the other hand, tailor-made datasets are often published for specific fields of study such

as medical diagnosis [ 80 ], readmission [  81 ], etc. However, they are not noise-free due to

uncertainty in measurements, human errors, and misclassification (i.e., misdiagnosis). The

prevalence of noisy samples is a threat to model performance. Traditional machine learning

algorithms were designed to avoid noise in data to achieve high generalization accuracy.

However, complex deep learning mechanisms are more prone to overfit noise in the training

data and are also known to be susceptible to small perturbations in the input. Therefore,

the disparity in group-wise rates of noise or the tolerance of noise among the sensitive groups

can lead to disproportionate behavior from deep neural networks.

Real-world datasets can contain both noisy features and noisy ground-truths. Label noise

can result from crowd-sourced annotation by uninitiated annotators, and even from experts’

mistakes in challenging tasks. For example, restaurant ratings collected from Yelp [ 82 ] vary

significantly among the participants since they are untrained critics of the service. Similarly,

illusive medical diagnosis can cause specialist doctors to misdiagnose [  80 ]. On the other hand,

noisy samples can appear naturally due to uncertainty in measurements, or be intentionally

introduced by adversaries to fool the machine learning model. Such intentionally perturbed

noisy samples are called adversarial samples. Since DNNs typically learn a discontinuous

input-output mapping, Szegedy et al. [  83 ] showed that it is possible to efficiently generate

adversarial samples with small additive noise, ε, to the input. Subsequent studies proposed

numerous methods, commonly known as evasion attacks, to generate adversarial samples

[ 84 – 88 ].

The performance of a machine learning model against noisy samples is called its robust-

ness. In deep learning, a more popular notion is adversarial robustness which indicates the

performance of a classifier against adversarially perturbed samples generated by an adver-
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sarial attack. To achieve robustness against adversarial attacks, several defense mechanisms

have been proposed in the literature. The adversarial training mechanism proposed by [ 85 ]

is regarded as one of the most successful defenses against adversarial perturbations. They

proposed feeding the adversarial samples into the training process. This technique is also

the foundation of several other defenses [ 84 ,  89 ,  90 ]. Several adversarial training proposed

robustness-aware regularizations [  91 ,  92 ]. Among them TRADES [ 91 ] achieves best per-

formance by balancing the trade-off between standard and robust accuracy. Other defense

mechanisms highlights the use of external data [  93 – 95 ] (often generated [  96 ,  97 ]), special

architecture [  98 ], etc., to improve adversarial robustness.

In this chapter, we show that prominent adversarial training methods tend to exacer-

bate the disparities in the model predictions. In an attempt to improve the robustness of

a machine learning model, adversarial training ends up sacrificing model fairness. We hy-

pothesize that bias amplification from adversarial training is due to the disparity in noise

tolerance among the protected groups. That means, one group is more noise-tolerant than

the others and the adversarial training mechanisms improve the performance of the noise-

tolerant group at a higher rate than the vulnerable groups. To address this issue we propose

a re-weighted objective function that draws more attention towards the group with lower

noise tolerance or more vulnerable to adversarial attack. Our proposed methods show that

re-weighting improves the fairness of state-of-the-art adversarial training techniques while

sacrificing minimal adversarial robustness.

Furthermore, we analyze the impact of label noise on the fairness of deep neural networks.

Unlike noisy input features, which make it challenging to maintain prediction accuracy, noisy

ground-truths make the training task more challenging to achieve high generalization perfor-

mance from the model. Recently it was reported that the over-parameterized neural networks

are expressive enough to learn highly accurate models on noisy ground-truths. In particular,

[ 99 ] showed that deep neural networks demonstrate a double-descent phenomenon in test

error with model complexity. That means that as the neural network model becomes suffi-

ciently large and is trained sufficiently long, it starts to improve generalization performance.

Although increasing model complexity beyond the interpolation region improves the overall

accuracy of the joint model, it is still unclear whether it also improves the fairness of the
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classifiers. As a result, in this chapter, we further analyze the relations between disparity in

group-wise prediction rates and model complexity under different levels of label noises.

5.1 Fairness Against Adversaries

In this section, we introduce the types of attacks and their threat models. We discuss

established evasion attacks and proposed defenses against them. We also define the robust-

fairness metrics used in our analysis. Finally, we conclude this section by discussing the

5.1.1 Adversarial Attacks

Notable attacks against ML models are evasion attacks, poisoning attacks, extraction at-

tacks, and inference attacks. Poisoning attacks involve altering the training data to degrade

the model performance. The goal of a model extraction attack is to extract or deduce the

parameters of a black-box target model. A model attribute inference attack is a privacy

attack that focuses on inferring individuals’ sensitive attributes from a machine learning

model. Finally, in evasion attacks, an adversary perturbs the input example to force mis-

classification from the model. Let, the dataset D = {x, y, s}N
i=1 where x ∈ Rd (or ∈ [0, 1]m×n

in case of grayscale images) is an input example, y ∈ {1, . . . , k} is the target attribute, and

each s ∈ s is a sensitive attribute such as race, gender, etc. f : Rd → {1, . . . , k} is the

classifier. We assume "fairness-through-unawareness", i.e., the classifier is unaware of the

sensitive attributes of the samples. The parameterized version of the classifier function can

be written as f(x; θ) where θ indicates the classifier parameters. Let the prediction from the

classifier be ŷ = f(x; θ). The objective of an evasion attack is as follows,

Find xadv s.t. f(xadv) 6= y and || xadv − x ||≤ ε

Here, || · || indicates the norm. Since a majority of adversarial attacks are proposed on

image samples, in the remainder of this work we assume x, xadv ∈ [0, 1]m×n.

Evasion attacks can be both white-box attacks [  84 – 86 ,  100 ] and black-box [ 87 ] attacks. In

addition, in the literature, both targeted and untargeted attacks are proposed. Untargeted
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attacks simply focus on forcing a misclassification whereas targeted attacks alter the input

samples in a way such that it is misclassified as a pre-specified incorrect class. We introduce

several well-known evasion attacks below.

L-BFGS attack

Szegedy et al. [ 83 ] formulates the process as finding the smallest additive perturbation,

δ that causes a misclassification as,

minimize || δ ||

s.t. f(x + δ) = y′ 6= y and xadv ∈ [0, 1]m×n
(5.1)

The box constraint in Equation  5.1 makes it difficult to find an exact solution. Instead,

they propose an approximation of δ using box-constrained L-BFGS. Let l(x, y) indicate the

loss function. The following problem is solved to produce an adversarial sample.

minimize c || δ || +l(x + δ, y′) s.t. x + δ ∈ [0, 1]m×n

To find the adversarial sample closest to x, the smallest value of c > 0 is picked that

forces f(x + δ) = y′ 6= y. Line search is used to determine the optimal value of c.

Gradient Descent Attack

Biggio et al. [ 101 ] proposed gradient descent optimization of the following objective func-

tion to find the adversarial sample in a binary classification setting where y ∈ {0, 1}. Here,

the predicted label ŷ = f(x) = 1(g(x) > 0).

x0
adv = arg min

x
(g(x) − λP(x | ŷ = 1)) s.t. || x0

adv − x ||< ε (5.2)

Here, x0
adv indicates adversarial samples where ŷ = 0 but y = 1. The density function in

Equation  5.2 is added to ensure that xadv is within the support of P(x). During optimization,

87



the density function is approximated by the kernel density estimator (KDE). Finally, after

each descent step xadv is clipped within a ε distance from x.

Fast Gradient Sign Method (FGSM)

The fast gradient sign method (FGSM) is one of the most prominent evasion attacks due

to its efficiency in generating adversarial samples. According to [  84 ], adversarial samples can

be computed by perturbing x as follows,

xadv = x + εsign(∇xl(x, y)) (5.3)

The perturbation moves the sample in the direction of the gradient which increases the loss.

After perturbation, the pixels of adversarial images are clipped back to the [0, 1] range.

Equation  5.3 indicates that it is an l∞-bounded adversary, i.e., || xadv − x ||∞ ≤ ε. A small

perturbation may appear benign but due to the high dimensionality of the neural networks its

impact is amplified and forces misclassification. FGSM is popular as the fastest adversarial

sample generation technique.

Projected Gradient Descent (PGD)

Although FGSM is a fast adversarial attack, the adversarial sample may not be the

strongest one. In this regard, Madry et al. [ 85 ] proposed an iterative noise addition mecha-

nism that improves the adversarial sample at each iteration. At each step, perturbation is

performed following  5.3 . Then, the perturbed sample is projected back to the x + S where

S is the set of allowed perturbations. For example, for an l∞ bounded adversary S is an ε

ball around x. Formally,

xt+1 =
∏
x+S

(
xt + αsign(∇xl(x, y)

)
(5.4)
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Basic Iterative Method (BIM)

Basic iterative method (BIM) or iterative fast gradient sign method (IFGSM) [  100 ] is a

multi-step adversarial technique similar to PGD. The l∞ bounded BIM adversary, clamps

the perturbed values within ε distance from x. Moreover, PGD allows starting the iteration

from any random point within x + S whereas BIM starts with perturbation x.

Carlini and Wagner (CW) L2 and L∞ attack

Carlini and Wagner [  86 ] proposes three adversarial attacks with L2, L0 and L∞ adver-

saries. To satisfy the box-constraint in Equation  5.1 , they parameterize the adversarial

sample as,

xadv = 1
2(tanh(w) + 1) (5.5)

The L2 adversary chooses a y′ 6= y and searches for w such that it solves the following

minimization.

minimize || 1
2(tanh(w) + 1) − x ||

2
+ cZ

(1
2(tanh(w) + 1)

)
(5.6)

where Z(x) = max(max({g(x)i : i 6= y′}) − g(x)y′ , −κ)

Here, g(x) indicates the logits of the classifier. The untargeted L2 adversary instead defines

Z(x) as, Z(x) = max(max(g(x)y − {g(x)i : i 6= y}), −κ). Similarly, the L∞ adversary solves

Equation  5.6 with the L∞ norm instead of L2 with a few tweaks to prevent oscillation of

gradient descent.

Others

Several other attacks have been proposed in literature such as variants of FGSM [  90 ,  102 –

 105 ] and PGD [ 87 ], DeepFool [  88 ], Universal Attack Perturbation (UAP) [  106 ], etc. Recently,

an ensemble of parameter-free attacks, combinedly known as AutoAttack [ 87 ], is proposed

as a benchmark of robustness evaluation in RobustBench [ 87 ]. The ensemble includes two

untargeted attacks (APGD and Square) and two targeted attacks (APGDT and FABT ) For
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the sake of brevity, we omit discussion on other attack mechanisms and refer to a survey of

adversarial attacks [ 107 ].

5.1.2 Defenses Against Adversarial Attacks

Although many defenses against adversarial samples have been proposed in recent years,

using more powerful and adapted attacks most of them could be broken. Typical adversarial

training methods feed adversarial samples back to the model to improve robust accuracy.

The adversarial training proposed by Madry et al. [ 85 ] is widely accepted as the most effective

defense mechanism. We refer to this adversarial training process as Madry. They defined

the adversarial training objective as,

minimize
θ

E(x,y)∼D

[
max
δ∈S

l(x + δ, y; θ)
]

(5.7)

It indicates that the goal of adversarial training is to achieve the lowest expected loss

over the adversarial samples. A similar formulation was proposed by Goodfellow et al. [ 84 ]

where the joint minimization objective was defined as follows for α ∈ [0, 1],

minimize
θ

α E
(x,y)∼D

l(x, y; θ) + (1 − α) E
(x,y)∼D

l(x + δ, y; θ) (5.8)

Here, x + δ is the adversarial sample generated using FGSM attack. We refer to this

adversarial training process as Goodfellow. Note that, when α = 0, Goodfellow is essentially

Madry against FGSM attack which was later studied in [  90 ] as “Free" adversarial training.

Training against single-step attacks offers a faster adversarial training mechanism. Using

FGSM instead of PGD offers a faster adversarial training alternative. However, subsequent

studies found that Madry with FGSM achieves robustness by overfitting against single-step

attacks but fails against multi-step attacks such as PGD. As a result, variations of Madry

were proposed in [  90 ,  105 ]. Wong et al. [ 90 ] suggested that Madry with random initialization

and FGSM is as effective Madry with multi-step attacks such as PGD. Other studies proposed

improving the diversity of adversarial samples to reduce overfitting [  105 ].
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Adversarial regularization techniques are also proposed to improve model robustness.

TRADES [ 91 ] the most notable adversarial regularization technique. In this work, the au-

thors studied the trade-off between robustness and accuracy. They decomposed the robust

error, i.e., error against adversarial samples, into two parts. They are the misclassifica-

tion error on the clean samples and the boundary error. Based on the boundary error a

regularization term is proposed which shifts the model boundary away from the data points.

Both adversarial training and adversarial regularization methods are highly dependent

on the produced adversarial samples. Therefore, they might be susceptible to improved at-

tacks that exploit the weaknesses of the defense mechanisms. As a result, researchers have

proposed defense mechanisms with theoretical guarantees of robustness [  108 ,  109 ]. However,

certified defense mechanisms are accompanied by higher computation costs. In addition,

these mechanisms are yet to achieve high performance on large datasets. As a result, we

omit their details. Finally, adversarial training can be interpreted as augmenting the dataset

with adversarial samples. As a result, several recent works introduced unlabelled additional

samples to improve adversarial robustness [ 93 ,  94 ]. Since the availability of additional sam-

ples may be limited, artificially generated samples are also used to improve robustness [  96 ].

5.1.3 Fair-Robustness Metrics

In this section, we discuss the metrics used in assessing the model’s fairness concerning

its group-wise robustness against adversarial samples.

Robust Statistical Parity

We study the statistical parity of the prediction rates of the robust classifiers. That means

we extend the idea of statistical parity in the rates of robust predictions ŷadv = f(xadv). we

define the robust statistical parity as,

SProb(D) =| P(ŷadv = 1 | p) − P(ŷadv = 1 | u) | (5.9)
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Other fairness notions in FairML literature require equality of different performance

statistics, such as equalized accuracy, equalized odds (equality of group-wise false positive

and false negative rates), etc. Following the formulation in Equation  5.9 , we can similarly

define robust equalized accuracy and robust equalized false positive rates as follows,

SProb(D, acc) =| P(ŷadv = y | p) − P(ŷadv = y | u) | (5.10)

SProb(D, fpr) =| P(ŷadv = 1 | y = 0, p) − P(ŷadv = 1 | y = 0, u) | (5.11)

Robustness Bias

Nanda et al. [ 37 ] defined robustness bias as one group lying significantly closer to the

decision boundary than the others. That means, given a noise threshold τ > 0, one sub-

group is more vulnerable to the attacks than the others. If df (x) is the minimal distance of

x from the decision boundary of f , given a binary sensitive attribute s, the robustness bias,

RB(s, τ) = | P(df (x) > τ | p, y = ŷ) − P(df (x) > τ | u, y = ŷ) | (5.12)

This definition can be extended to non-binary sensitive attributes by replacing s = p

and s = u by s = s′ and s 6= s′ for s′ ∈ supp(s). Equation  5.12 is highly dependent on

the choice of τ . As an alternative, [  37 ] proposes the following metric for any sensitive group

s′ ∈ supp(s).

Îs′(τ) = | (x, y) : df (x) > τ, y = ŷ, s = s′ |
| (x, y) : s = s′ |

(5.13)

σ(s′) = (AUC)(Îs′) − (AUC)(Îs 6=s′)
(AUC)(Îs 6=s′)

(5.14)
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Since it is challenging to determine df (x) for high-dimensional neural network boundaries,

[ 37 ] proposed an upper bound for Equation  5.13 using xadv samples produced by attacks such

as CW.

ÎCF
s′ (τ) = | (x, y) : τ ≤|| x − xadv ||, y = ŷ, s = s′ |

| (x, y) : s = s′ |
(5.15)

5.1.4 Related Works

Recently, the interaction between fairness and robustness has received attention in the

literature. For example, Roh et al. [  29 ,  110 ,  111 ] defined robustness as accuracy against

noisy samples. The authors of [ 111 ] used a sanitized validation set to obtain fairer models.

Instead of an additional validation set, [  29 ] modeled the problem as a bi-level optimization

where the outer optimization balances a fairness constraint and the inner level optimizes for

model accuracy. Finally, [ 110 ] proposed a batch-wise re-balancing of noisy samples across

the sensitive groups to improve fairness and accuracy against noisy input. Although these

studies investigated the interactions between random noisy samples and fairness, they do not

consider robustness against tailor-made adversarial samples which are most prone to degrade

the model performance. The interactions between adversarial robustness and fairness of ML

models have recently gained attention [ 37 ,  112 – 115 ]. Zeng et al. [ 114 ] and Mehrabi et al. [ 116 ]

proposed data poisoning attacks against model fairness and defense against such poisoning.

Since poisoning attacks modify the training data, it is expected to directly influence the

model performance. However, we investigate the more subtle impact of evasion attacks on

model fairness. In this regard, [  112 ,  113 ,  117 ] reported that adversarial training against

evasion attacks led to a class-wise disparity in robust accuracy. In [  113 ], it is suggested

that adversarial training emphasizes the easier classes to improve robustness and amplifies

class-wise disparity in the robust accuracy. Moreover, stronger adversarial training leads

to larger class-wise robustness accuracy disparity [  112 ]. Finally, [  37 ] defined robustness

bias as the closeness of each group to the decision boundary. They reported a group-wise

robustness accuracy disparity against evasion attacks due to the disparity in proximity to the
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Table 5.1. Dataset used in the experiments with a corresponding number of
samples, target attributes, and sensitive attributes.

Dataset # samples Target Sensitive Attributes
UTKFace 20K Age Race, Gender
RAFDB 30K Emotions Race, Gender, Age
FairFace 108K Age Race, Gender
Celeba 202K Attractive, Smiling Gender

decision boundary of the samples in each group. None of the previous studies investigated the

influence on group fairness while aiming for adversarial robustness against evasion attacks.

5.1.5 Experimental Results

We experiment with four facial image datasets; UTKFace 

1
 , RAFDB  

2
 , FairFace 

3
 , and

Celeba 

4
 . Their sizes, the target attributes, and the sensitive attributes are listed in Table

 5.1 . Their sizes vary from 20K to 200K. Celeba contains only binary class labels whereas the

others include multi-class target attributes. Similarly, gender is typically a binary sensitive

attribute while race and age are non-binary attributes.

For simplicity and ease of comparison, we analyze the fairness of a binary classifier

between privileged and unprivileged groups, i.e., binary sensitive attributes. Our analy-

sis focuses on gender-based disparities where, without loss of generality, we assume Male

and Female as the privileged and the unprivileged group. We map the multi-class target

attributes into favorable and unfavorable classes. The Age classes in the UTKFace and

FairFace dataset that correspond to age 40 or above are considered unfavorable classes and

the others as favorable. Finally, we assume the positive emotion labels, i.e., Surprise and

Happiness, in RAFDB are favorable classes.

We examine the adversarial training algorithms introduced in section  5.1.2 , Goodfellow,

Madry, and TRADES. Both Goodfellow and Madry feed the adversarial samples back to
1

 ↑ https://susanqq.github.io/UTKFace/
2

 ↑ http://www.whdeng.cn/raf/model1.html
3

 ↑ https://github.com/joojs/fairface
4

 ↑ https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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the training process. We also experiment with different adversarial attacks to generate

adversarial samples during training. We apply each method in conjunction with one of

FGSM, BIM, PGD, and CW(l2) attacks to generate adversarial samples during the training

separately. Since AutoAttack significantly increases the training time, following [ 115 ], we

limit its scope to model evaluation only. In addition to AutoAttack, we analyze the disparities

against FGSM, BIM, PGD, and CW as well.

We pick Resnet-18 [  118 ] architecture to analyze robustness disparities. For faster train-

ing, we use the parameters pre-trained on ImageNet for initialization. For each dataset, the

baseline models are obtained without adversarial training where a Resnet-18 architecture is

trained with Adam [  119 ] optimizer for 30 epochs and 10−4 learning rate. Using the Goodfel-

low adversarial training strategy, we obtain four separate robust models where the training

adversarial sample generation was dictated by FGSM, BIM, PGD, and CW respectively. We

refer to these models as (Goodfellow, attack) where attack is the corresponding attack used

in the training process. Similarly, the combination of Madry adversarial training with four

different adversarial attacks yields four separate robust models each of which is denoted as

(Madry, attack) respectively. In our experiment, each multi-step adversarial attack is allowed

to run for 10 iterations, and the maximum adversarial noise ε = 8/255 (except CW). We

use the same hyper-parameters as a baseline for training both Goodfellow and Madry. Since

we observed slower convergence from Madry than others, a longer training (epochs=50) for

Madry is chosen. Finally, we apply TRADES algorithm to produce a robust classifier where

the hyper-parameters are set following [  91 ]. Interested readers are referred to the shared

repository  https://github.com/rakinhaider/FairnessUnderAttack/ for further experimental

details.

Robust Statistical Parity

In this section, we compare the disparities in robust prediction rates of the adversarially

trained classifiers with the baseline classifiers against a range of attacks. In our analysis,

we use the robust statistical parity metrics defined in Equations  5.10 and  5.11 . Table  5.2 

(Figure  5.1 ) and  5.3 report the statistical parities of robust accuracies and false positive rates
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Table 5.2. Disparities (absolute differences) in group-wise robust accuracy
against each adversarial attack with and without adversarial training.

Dataset Method | SProb(ACC; θ) |

FGSM BIM PGD CW AutoAttack

UTKFace

Baseline 6.2 0.4 0.4 3.1 0.0
(Goodfellow, FGSM) 8.2 0.2 0.3 3.7 0.5
(Goodfellow, BIM) 10.6 10.3 9.9 9.1 11.2
(Goodfellow, PGD) 10.0 10.1 9.8 9.0 10.2
(Goodfellow, CW) 8.5 5.1 5.2 4.0 0.0
(Madry, FGSM) 24.7 24.7 24.7 24.7 24.7
(Madry, BIM) 9.9 9.3 9.1 10.6 9.0
(Madry, PGD) 27.6 27.6 27.6 27.6 27.6
(Madry, CW) 7.7 3.2 5.0 4.4 0.8

TRADES 12.2 12.9 12.6 9.3 13.0

RAFDB

Baseline 5.7 0.0 0.1 1.1 0.0
(Goodfellow, FGSM) 9.6 0.1 0.0 1.6 0.0
(Goodfellow, BIM) 10.0 11.6 11.0 10.3 10.8
(Goodfellow, PGD) 9.4 10.5 10.6 9.3 10.1
(Goodfellow, CW) 10.0 2.5 3.2 4.4 0.4
(Madry, FGSM) 9.1 10.6 10.8 11.4 7.8
(Madry, BIM) 8.9 8.8 8.9 8.5 8.79
(Madry, PGD) 9.2 9.4 9.4 9.2 9.4
(Madry, CW) 8.8 3.4 5.2 7.5 1.0

TRADES 9.8 10.7 10.6 8.4 10.7

FairFace

Baseline 0.8 0.0 0.0 1.3 0.0
(Goodfellow, FGSM) 3.7 0.0 0.0 0.8 0.0
(Goodfellow, BIM) 0.8 8.0 8.2 2.9 0.0
(Goodfellow, PGD) 2.5 1.1 3.0 4.7 0.0
(Goodfellow, CW) 2.3 0.0 0.1 5.8 0.0
(Madry, FGSM) 4.3 0.0 0.0 0.1 0.0
(Madry, BIM) 9.7 9.8 9.7 9.9 10.8
(Madry, PGD) 9.6 9.6 9.6 9.7 9.8
(Madry, CW) 2.1 0.1 0.0 3.4 0.0

TRADES 10.4 7.8 8.2 10.7 1.3

Celeba

Baseline 4.8 0.1 0.1 4.2 0.0
(Goodfellow, FGSM) 4.0 4.5 0.5 22.5 0.2
(Goodfellow, BIM) 4.8 5.3 5.3 0.6 5.3
(Goodfellow, PGD) 3.8 4.0 3.9 1.3 4.0
(Goodfellow, CW) 11.1 3.2 4.1 1.4 2.8
(Madry, FGSM) 11.5 18.1 18.0 20.9 12.5
(Madry, BIM) 12.7 12.8 12.8 6.7 12.9
(Madry, PGD) 11.0 11.3 11.3 5.7 11.3
(Madry, CW) 19.5 5.8 7.8 3.5 4.7

TRADES 3.3 3.2 3.1 2.1 3.2
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Table 5.3. Disparities (absolute differences) in group-wise false positive rates
against each adversarial attack with and without adversarial training.

Dataset Method | SProb(FPR; θ) |

FGSM BIM PGD CW AutoAttack

UTKFace

Baseline 13.7 4.6 8.5 10.0 9.6
(Goodfellow, FGSM) 11.0 8.7 10.7 10.2 2.5
(Goodfellow, BIM) 8.6 8.3 9.3 8.2 5.6
(Goodfellow, PGD) 9.8 9.0 9.2 9.2 7.7
(Goodfellow, CW) 7.5 6.4 7.1 7.2 7.4
(Madry, FGSM) 21.4 21.4 21.4 21.4 21.4
(Madry, BIM) 2.4 2.0 2.1 1.9 2.3
(Madry, PGD) 4.8 4.8 4.8 4.8 4.8
(Madry, CW) 8.2 4.7 4.9 7.4 6.3

TRADES 4.6 4.6 4.7 7.1 4.2

RAFDB

Baseline 3.5 0.1 0.5 1.8 0.8
(Goodfellow, FGSM) 3.4 3.0 1.0 2.9 2.7
(Goodfellow, BIM) 1.5 1.4 1.2 3.0 1.4
(Goodfellow, PGD) 2.4 0.8 1.0 3.7 1.7
(Goodfellow, CW) 2.4 0.9 2.8 0.6 2.4
(Madry, FGSM) 1.7 1.0 2.3 2.3 1.5
(Madry, BIM) 1.0 1.0 1.0 1.4 0.9
(Madry, PGD) 1.9 2.1 2.1 1.7 2.1
(Madry, CW) 1.5 1.8 0.9 4.8 1.1

TRADES 3.7 5.6 4.9 5.1 5.5

FairFace

Baseline 13.4 9.8 14.2 14.0 14.0
(Goodfellow, FGSM) 15.8 7.5 10.1 13.0 8.7
(Goodfellow, BIM) 4.3 3.9 3.5 9.9 3.6
(Goodfellow, PGD) 8.5 6.7 7.1 11.1 6.4
(Goodfellow, CW) 14.6 12.3 13.0 17.0 12.6
(Madry, FGSM) 18.4 11.4 11.1 16.8 13.1
(Madry, BIM) 0.0 0.0 0.0 0.0 0.0
(Madry, PGD) 0.2 0.2 0.2 0.1 0.2
(Madry, CW) 14.5 12.2 12.3 18.8 12.1

TRADES 0.0 0.0 0.0 0.1 0.0

Celeba

Baseline 3.0 0.2 0.1 0.1 0.0
(Goodfellow, FGSM) 35.7 5.3 5.9 27.1 0.3
(Goodfellow, BIM) 36.1 35.3 35.3 38.5 35.2
(Goodfellow, PGD) 37.2 36.8 36.9 39.1 36.7
(Goodfellow, CW) 29.0 5.4 7.3 38.2 5.0
(Madry, FGSM) 23.1 26.2 26.3 23.9 15.7
(Madry, BIM) 28.9 28.7 28.7 32.9 28.7
(Madry, PGD) 29.8 29.5 29.5 32.8 29.4
(Madry, CW) 33.8 7.5 10.4 38.1 6.0

TRADES 15.4 15.5 15.5 16.3 15.5
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Table 5.4. Disparities (absolute differences) in group-wise robust selection
rates against each adversarial attack with and without adversarial training.

Dataset Method | SProb(θ) |

FGSM BIM PGD CW AA

UTKFace

Baseline 18.0 14.5 14.4 19.5 10.2
(Goodfellow, FGSM) 15.1 15.0 11.7 19.2 11.6
(Goodfellow, BIM) 9.1 9.5 9.6 7.0 8.6
(Goodfellow, PGD) 9.3 9.8 9.9 7.7 9.6
(Goodfellow, CW) 11.6 15.3 13.8 15.2 10.1
(Madry, FGSM) 11.7 11.7 11.7 11.7 11.7
(Madry, BIM) 0.5 0.3 0.5 0.2 0.3
(Madry, PGD) 2.7 2.7 2.7 2.7 2.7
(Madry, CW) 11.3 11.9 11.3 14.9 9.7

TRADES 6.8 8.1 7.9 6.1 8.3

RAFDB

Baseline 4.3 1.7 2.5 0.1 1.4
(Goodfellow, FGSM) 4.8 4.1 4.4 1.1 4.7
(Goodfellow, BIM) 5.6 6.3 6.2 5.7 5.5
(Goodfellow, PGD) 4.6 6.0 6.0 3.9 4.6
(Goodfellow, CW) 7.5 0.2 2.0 1.8 1.2
(Madry, FGSM) 3.8 4.9 4.1 5.4 2.1
(Madry, BIM) 0.6 0.5 0.6 0.8 0.2
(Madry, PGD) 1.5 1.6 1.6 1.3 1.6
(Madry, CW) 4.4 2.2 0.2 1.1 5.1

TRADES 3.0 2.8 2.9 1.6 2.9

FairFace

Baseline 7.9 6.7 6.4 8.9 6.1
(Goodfellow, FGSM) 11.8 7.8 9.2 11.3 10.6
(Goodfellow, BIM) 5.6 6.0 5.7 9.2 5.4
(Goodfellow, PGD) 7.3 6.2 6.5 8.7 7.0
(Goodfellow, CW) 11.3 8.2 7.8 13.1 6.5
(Madry, FGSM) 11.9 7.4 7.4 11.2 8.6
(Madry, BIM) 0.0 0.0 0.0 0.0 0.0
(Madry, PGD) 0.1 0.1 0.1 0.1 0.2
(Madry, CW) 10.7 6.3 6.0 13.6 7.3

TRADES 0.1 0.1 0.0 0.0 0.0

Celeba

Baseline 6.3 16.1 16.1 6.7 16.1
(Goodfellow, FGSM) 49.9 26.1 29.4 5.2 40.2
(Goodfellow, BIM) 37.4 35.8 35.9 46.4 35.7
(Goodfellow, PGD) 38.3 36.8 36.9 47.4 36.7
(Goodfellow, CW) 1.0 34.4 32.3 42.3 34.8
(Madry, FGSM) 23.0 0.6 1.7 5.8 20.4
(Madry, BIM) 29.2 28.6 28.6 36.1 28.5
(Madry, PGD) 29.9 29.3 29.4 36.6 29.2
(Madry, CW) 0.7 33.6 30.9 51.1 34.9

TRADES 14.1 13.5 13.5 24.5 13.3
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Figure 5.1. Disparities in group-wise robust accuracy with and without ad-
versarial training on UTKFace dataset.

of each classifier against five state-of-the-art attacks. Except (Goodfellow, FGSM) classifier,

adversarial training exacerbated the disparity in robust accuracy on the UTKFace dataset

irrespective of the adversarial attack. The maximum disparity in robust accuracy is observed

from (Madry, PGD) classifier. It shows a steady 27.6% disparity against all of the attacks.

Among the 45 combinations of UTKFace classifiers and adversarial attacks (nine variations

of robust classifiers each analyzed against five adversarial attacks), we observed an increased

disparity in robust accuracy compared to the baseline in 42 of them. That means the

adversarial training on the UTKFace dataset exacerbates the robust accuracy approximately

93% of the time. Furthermore, adversarial training increased the disparity in false positive

rates but it is observed less frequently compared to the group-wise robust accuracy disparity.

Only 15 of the 45 (33%) combinations of the UTKFace classifiers and adversarial attacks

produced higher false positive rate disparity than the baselines. Similarly, except for a

single classifier, adversarial training amplifies the disparity in group-wise emotion prediction
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accuracy using the RAFDB dataset. Here, (Goodfellow, BIM) and (Madry, FGSM) against

AutoAttack and FGSM respectively demonstrate the maximum disparity in robust accuracy

(10.8%) whereas TRADES against AutoAttack demonstrates the highest disparity in robust

false positive rates. About 95% and 75.5% of the RAFDB robust classifier and attack

combinations resulted in an increased robust accuracy disparity and robust false positive

rate disparity respectively.

The adversarially trained classifiers on the FairFace dataset often performed poorly

against stronger attacks such as AutoAttack and often resulted in very low (∼ 0%) group-

wise accuracy. Otherwise, the robust classifiers on both FairFace and Celeba demonstrate

bias amplification concerning accuracy and false positive rates. In FairFace and Celeba,

the disparity in robust accuracy is increased in 66.7% (30 of 45) and 80% (36 of 45) of

the classifier and attack combinations. On larger datasets, we observed that Goodfellow

algorithm contributes less towards bias amplification but more effective defenses such as

Madry and TRADES tend to increase bias at a higher rate. In addition, robust Celeba

classifiers increased false positive disparity significantly higher than the baseline. Finally, we

observe little evidence of selection rate disparity (defined in Equation  5.9 ) amplification by

adversarial training. Further details on selection rate disparity can be found in Table  5.4 .

Robustness Bias

Nanda et al. [ 37 ] defines the robustness bias curve as the ÎCF
s (τ) by τ . A lower robustness

bias curve indicates that a larger portion of samples are susceptible to smaller noises. As a

result, σs, in Equation  5.14 , compares the areas under the robustness bias curve (AUC) to

determine whether there exists a disparity in group-wise vulnerability to adversarial attacks.

We analyze the absolute values of σ(s) since we focus more on the increase in disparity

instead of its direction. Figures  5.2a and  5.2b show robustness bias curves without and

with adversarial training respectively. We observe that the gap between the group-wise

robustness bias curves is increased by adversarial training mechanisms. This is made further

evident in Table  5.5 where we compare the disparities in group-wise AUCs of adversarial

training with the baseline models on each dataset. We observe that the group-wise disparity
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(a) Without adversarial training.
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(b) With adversarial training (Madry, CW).

Figure 5.2. Robustness bias curves with and without adversarial training on
UTKFace dataset.

Table 5.5. Magnitudes of disparity in area under robustness bias curve
(abs(σ(p))) in each dataset with and without adversarial training.

Method Magnitudes of σ(p)
UTKFace RAFDB FairFace Celeba

Baseline 0.043 0.200 0.031 0.074
(Goodfellow, FGSM) 0.058 0.151 0.016 0.222
(Goodfellow, PGD) 0.076 0.074 0.058 0.001
(Goodfellow, CW) 0.125 0.153 0.059 0.177
(Goodfellow, BIM) 0.069 0.089 0.014 0.002

(Madry, FGSM) 0.321 0.108 0.104 0.209
(Madry, PGD) 0.443 0.009 0.006 0.001
(Madry, CW) 0.148 0.067 0.008 0.075
(Madry, BIM) 0.027 0.018 0.037 0.001

TRADES 0.084 0.079 0.282 0.024
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in the UTKFace dataset is enhanced by every adversarial training method in consideration

except (Madry, BIM). Adversarial training enhances this disparity on large-scale datasets

about 50% of the time. Notably, RAFDB demonstrates the maximum baseline disparity

between group-wise AUCs, and this disparity is greatly alleviated by the adversarial training

processes.

5.1.6 Fair Re-weighted Adversarial Training

FGSM BIM PGD CW FGSM BIM PGD CW
Evasion attacks used during Training

0

5

10

15

20

25

SP
ad

v(
,A

CC
)

Fair Re-weighted AT
Goodfellow
Goodfellow LinRW
Goodfellow ExpRW
Madry
Madry LinRW
Madry ExpRW
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(c) Disparities in robust accuracy against
PGD.
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Figure 5.3. Disparities in robust accuracy with and without re-weighting
(linear and exponential).

102



Table 5.6. Difference of group-wise robust accuracies against adversarial
attack after adversarial training without and with re-weighting.

Method Weights
| SProb(ACC; θ) | Robust Accuracy

Test Attack Test Attack

FGSM BIM PGD CW FGSM BIM PGD CW

(Goodfellow,
FGSM)

- 8.2 0.2 0.3 3.7 51.2 2.0 2.4 8.9
LinRW 10.0 0.2 0.2 2.4 51.6 1.0 1.3 6.1
ExpRW 7.1 0.2 0.1 1.9 52.7 1.2 1.6 6.6

(Goodfellow,
BIM)

- 10.6 10.3 9.9 9.1 53.2 50.4 50.9 57.6
LinRW 7.6 7.5 7.4 7.7 53.9 50.5 51.1 57.0
ExpRW 7.4 6.7 7.2 8.4 54.2 51.3 51.5 57.0

(Goodfellow,
PGD)

- 10.0 10.1 9.8 9.0 52.8 49.1 49.5 57.6
LinRW 7.7 7.7 7.8 7.8 54.0 51.3 51.8 57.2
ExpRW 8.3 8.0 7.7 7.7 53.6 50.8 51.3 57.4

(Goodfellow,
CW)

- 8.5 5.1 5.2 4.0 42.7 10.5 12.4 29.9
LinRW 9.0 3.8 4.4 5.3 42.2 9.1 11.5 26.7
ExpRW 8.6 3.7 4.2 3.8 42.2 9.0 11.1 26.7

(Madry,
FGSM)

- 24.7 24.7 24.7 24.7 54.7 54.7 54.7 54.7
LinRW 10.9 10.9 11.3 11.1 54.2 28.2 30.7 34.1
ExpRW 10.7 11.4 11.1 9.4 54.3 34.2 36.3 38.8

(Madry,
BIM)

- 9.9 9.3 9.1 10.6 55.3 54.7 54.7 57.0
LinRW 9.9 9.0 9.0 10.5 55.2 54.4 54.6 57.0
ExpRW 9.5 8.7 8.8 10.5 55.3 54.7 54.8 57.2

(Madry,
PGD)

- 27.6 27.6 27.6 27.6 55.6 55.6 55.6 55.6
LinRW 9.0 8.7 8.9 10.0 55.1 54.2 54.2 57.1
ExpRW 9.4 8.9 8.9 9.5 55.0 54.3 54.4 57.2

(Madry,
CW)

- 7.7 3.2 5.0 4.4 44.8 13.1 14.7 32.0
LinRW 6.6 3.4 4.0 5.6 43.7 11.7 13.8 29.9
ExpRW 5.1 4.1 4.6 2.8 43.5 12.0 13.5 28.2
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Figure 5.4. Group-wise learning curves of (Madry, PGD) classifiers with and
without re-weighting.

In this section, we discuss a method to reduce bias amplification by adversarial training

while maintaining the robustness of the classifier against attacks. To reduce this group-wise

disparity, we propose assigning higher emphasis on the samples that are members of the group

that is most prone to misclassification subject to adversarial attacks. In other words, we

propose re-weighting the samples at a rate that is proportional to their corresponding group-

wise error rates. Here, we use the group-wise average loss as a proxy for group-wise error

rates. Let’s assume that the group-wise average loss at an iteration is Ls
adv = E[l(xadv, y) | s].

Instead of using the average adversarial loss Ladv = E[l(xadv, y)] during back-propagation,

we propose the application of the weighted sum of the group-wise adversarial losses as shown

below,

Ladv =
∑

s

wsNP(s)Ls
adv (5.16)

At each iteration, we first compute the average group-wise adversarial losses, Ls
adv. We

compute the weight, wi corresponding to the ith sample, (xi, yi, si) as,

wi = Lsi
adv

NP(p)Lp
adv + NP(u)Lu

adv

(5.17)
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We refer to this technique as Linear Re-weighting (LinRW). To put further emphasis on

the group with higher loss, we can exploit the Exponential Re-weighting (ExpRW) technique

where each wi is as follows,

wi = exp(Lsi
adv)

NP(p)exp(Lp
adv) + NP(u)exp(Lu

adv) (5.18)

Note that, both of the re-weighting strategies guarantee that ∑N
i wi = 1. At each iter-

ation, the wis are considered constants and not updated during the back-propagation step.

Figure  5.4 shows the learning curves of the (Madry, PGD) with and without the re-weighting.

Re-weighting minimizes the gap between the group-wise loss and eventual error rates. Ta-

ble  5.6 and Figure  5.3 shows the performance of LinRW and ExpRW with Goodfellow and

Madry on UTKFace dataset. We observe that the reweighting techniques reduce the dispar-

ity in robust accuracy while maintaining equally high robustness against adversarial samples.

Except (Goodfellow, CW), re-weighting achieves a lower disparity than the corresponding

adversarial training irrespective of the attack. Notably, the disparities from (Madry, PGD)

and (Madry, FGSM) classifiers were reduced by a factor of two by re-weighting. Re-weighting

often improves the robustness of the classifier but sacrifices the robustness significantly when

trained against weaker attacks such as (Goodfellow, FGSM) and (Madry, FGSM).

5.2 Fairness under Noisy Labels

The classical bias-variance trade-off theory states that models with higher complexity

have lower bias and higher variance. Hence, after the model complexity is sufficiently in-

creased it starts overfitting the training data and deteriorates generalization performance.

However, large-scale neural networks with millions of parameters, often enough to even fit

random labels [  118 ], are known to outperform smaller models in many challenging tasks. To

explain the improved generalization of large neural networks it was shown that generaliza-

tion performance follows a double-descent phenomenon with increasing model complexity.

It suggests that although the under-parameterized regime follows the bias-variance trade-off,

in the over-parameterized regime, classifier performance improves with model complexity.
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In this section, we compare the fairness of the under-parameterized and the over-pa-

rameterized regimes. It means we investigate how disparities in group-wise prediction rates

change with model complexity.

5.2.1 Deep Double Descent

The deep double descent phenomenon is frequently observed in a variety of tasks, archi-

tectures, and optimization techniques. Nakkiran et al. [  99 ] proposed an explanation of deep

double descent using effective model complexity (EMC). Given a training procedure T and a

set of samples D = {(xi, yi)}n
i=1 sampled from a distribution P, let the resulting classifier be

denoted by T (D). EMC is defined as the maximum number of samples n required to achieve

approximately zero training error using T . Let Error(T (D)) indicate the mean error of the

model T (D) on training set D. Formally, [  99 ] defined EMC for a classification small error

ε > 0 as follows,

EMCP,ε(T ) = max{n : ED∼Pn [Error(T (D))] < ε} (5.19)

The definition of EMC divides the training task with training data containing n samples

into three regimes.

• Under-parameterized regime: If EMCP,ε(T ) is sufficiently smaller than n, then

increasing EMC decreases test error.

• Over-parameterized regime In the over-parameterized refime, EMCP,ε(T ) is suffi-

ciently larger than n. In this regime, increasing the EMC also decreases test error.

• Critically parameterized regime: When EMCP,ε(T ) ≈ n, it is called the critical

regime. In this regime, increasing the EMC typically hurts the generalization perfor-

mance.

Equation  5.19 defines the joint effective model complexity of a classification task. How-

ever, given a sensitive attribute s the classification could be much more complex for one group

than the other. Therefore, we can define the group-wise effective complexity as follows,
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EMCP,ε(T , s) = max{n : EDs∼Pn|s[Error(T (Ds))] < ε} (5.20)

Here, Ds is a set of samples from the conditional distribution of P | s. The group-

wise EMC can be used to measure the disparity in the complexity of the classification task

within each group. The group-wise disparity in effective model complexities poses a severe

dilemma in model selection since increasing model complexity could simultaneously degrade

and improve generalization performance for different groups.

EMC of a given classification task is dependent on a variety of model choices such as

the number of training epochs, the number of parameters in the classifier, and the inherent

complexity of the classification task. In addition, increased label noise tends to increase EMC

as it increases the challenges of the training process. That means, given a classification task

and fixed training hyper-parameters, EMC can also be influenced by the rate of label noise.

Here, we empirically study the fairness implications concerning varying EMCs. We study

the changes in disparities in model predictions with increased model complexity and label

noise. Furthermore, we study whether there exists a disparity in effective model complexities

in traditional classification tasks.

5.2.2 Experimental Results

In our experiments, we investigate group-wise model performances on facial image clas-

sification tasks. We use RAFDB adm UTKFace datasets in our experiments. The RAFDB

dataset is used to train classifiers to identify one of 7 emotions from a facial image. On the

other hand, the classification task in the UTKFace dataset is to classify individuals into their

corresponding Age groups. The age of the individuals in this dataset spans from 0 to 105.

For simplicity, the Age attribute is quantized into 6 bins of 20-year intervals. Both RAFDB

and UTKFace contain gender of the corresponding individual in the image. In addition to

Male and Female annotations, RAFDB gender attribute also includes unknown for individ-

uals who were difficult to identify as either Male or Female. In our analysis, we use gender

as the sensitive attribute where Males are considered as privileged individuals and others as

unprivileged. A prediction of young (less than 40 years) is considered a favorable/ positive
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prediction in the UTKFace. Similarly, the favorable/positive predictions in the RAFDB

dataset are the positive emotions such as Surprise and Happiness.

To experiment with model complexity, we train Resnet18 architecture by varying the

width (number of filters) of the convolution layers as suggested in [  99 ]. That means, the

layers widths of the Resnet18 architecture are parameterized by k and set to [k, 2k, 4k, 8k]

respectively where k ∈ {1, 2, 4, 8, 16, 32, 64}. Each Resnet18 architecture is trained with

Adam optimizer with a learning rate of 0.0001 and 200 epochs. We further experiment with

different rates of label noise, p ∈ {0.0, 0.1, 0.2}. Here, p = 0.0 indicates the clean dataset

whereas the others indicate that we randomly assign incorrect labels with probability p (only

once at the beginning of training; not per epoch).
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(b) Group-wise selection rates vs model com-
plexity.

Figure 5.5. Error rates and selection rates with varying model complexity.

RAFDB

Figures  5.5 and  5.6 show the changes in group-wise model performance with variations

in model complexity. Similar to the results in [ 99 ], we observe that not only the overall

accuracy but also the group-wise accuracies satisfy the double descent phenomenon with

increasing model complexity. However, we often observe a gap between group-wise model

accuracies in both under-parameterized and over-parameterized regimes. In figure  5.5a we

observe that the training process reaches the critical regime near k = 4, 4, and 8 for label
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noise p = 0.0, 0.1, and 0.2 respectively. We observe minimal disparity in group-wise false

positive rates across the model complexities in Figure  5.6a . However, except at the critical

regime, a relatively higher disparity in group-wise selection rates and false negative rates are

observed. Notably, least selection rate disparity near the critical regions. In short, although

increasing model complexity beyond the critical regime monotonically improves accuracy, it

doesn’t show monotonic improvement in group-wise disparities.
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(a) Group-wise false positive rates vs model
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(b) Group-wise false positives rates vs model
complexity.

Figure 5.6. False positive and negative rates with varying model complexity.

To identify disparity in group-wise effective model complexities, we train group-wise

models from the RAFDB dataset and analyze their performances on the corresponding group

of individuals. In Figure  5.7 , we denote the Male, Female, and Unknown group by 0, 1, and

2 respectively. In Figure  5.7a , we observe that when p = 0.0 the Male, Female and Unkown

group reaches the critical regime near k = 2, 4, and 8 respectively. That means, inside this

region increasing model complexity simultaneously improves the generalization performance

of the Male individuals but might degrade performance for the others. We further observe

that increasing label noise moves the critical regimes disproportionately among the three

groups. For example, for label noise probability p = 0.2, the three groups reach the critical

regimes near k = 8, 4, and 4 respectively. Here, the classifier on Male individuals reaches

the critical regime later than the other two groups. Finally, analyzing the training errors we

find that the classifier on individuals with unknown gender, achieves close to zero training
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error at a faster rate than the others. It indicates that the effective model complexity of the

classification task within the unknown gender group could be smaller than the others. As a

result, given a training procedure T any changes to increase the effective model complexity

could simultaneously degrade the generalization performance on one and improve the other.

These results highlight the importance of proper model complexity selection to obtain the

most fair classifier.
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Figure 5.7. Train and test errors from group-wise models on RAFDB.

UTKFace

Similar to RAFDB, we observe a double descent phenomenon in the UTKFace classifi-

cation task in Figure  5.8a . However, the disparities in group-wise performance don’t show

monotonicity with increasing model complexity.

Finally, we analyze the training and test errors of group-wise models to unveil evidence

of group-wise disparity in effective model complexities. Figure  5.10a indicates that for each

p both the Male (0) and Female (1) groups reach the critical regime at a similar model

complexity. In contrast, the train errors in Figure  5.10b show that the group-wise classifier

on the Female individuals tends to attain approximately zero training error faster than the

other group-wise model. Therefore, we conclude that in UTKFace the disparity in group-wise

EMC is minimal, if any.

110



0 1 2 3 4 5 6
ln(k)

25

30

35

40

45

50

55

Te
st

 E
rro

r

0.0, Unpriv
0.0, Overall
0.0, Priv
0.1, Unpriv
0.1, Overall
0.1, Priv
0.2, Unpriv
0.2, Overall
0.2, Priv

(a) Group-wise Error Rates vs Model Com-
plexity.

0 1 2 3 4 5 6
ln(k)

60

65

70

75

80

85

90

95

Se
le

ct
io

n 
Ra

te
 (S

R)

Unpriv
Overall
Priv
Unpriv
Overall
Priv
Unpriv
Overall
Priv

(b) Group-wise Selection Rates vs Model
Complexity.

Figure 5.8. Error Rates and Selection Rates with varying model complexity.
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(a) Group-wise False Positive Rates vs Model
Complexity.
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Figure 5.9. False Positive and Negative rates with varying model complexity.
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Figure 5.10. Train and test errors from group-wise models on UTKFace.

112



6. CONCLUSION

The rampant development of artificial intelligence and machine learning systems in recent

years has made autonomous decision-making systems inextricably linked to our daily lives.

Decisions made by an autonomous system undergo the same lens of scrutiny as the ones made

by a human agent. Therefore, the fairness of machine learning systems has been brought to

attention in recent literature. The foundation of the majority of the studies on the fairness

of machine learning systems lies in the conventional wisdom that biased ground truths in

the training data lead to biased models. The overarching goal of this thesis is to establish

that label bias is not a necessary condition of unfairness in machine learning and identify

other sources of biases that contribute to introducing bias in model outcomes.

The main contribution of this thesis is identifying several sources of biases in model pre-

dictions other than label bias. The studied instances typically arise from often unavoidable

development choices during data collection or training. As a result, these introduced biases

can be labeled as systemic bias which is defined as setting up the system, policy, and/or in-

stitution in a way to inherently support unfair outcomes by disadvantaging one group more

than the others. While label bias-induced unfair predictions are simply an end-product of

including discriminatory patterns in training, systemic biases are the driving forces that lead

to unfairness in machine learning. Identification of such sources of biases unveils limitations

of machine learning under current development practices and could lead to model develop-

ment with theoretical fairness upper bounds. Therefore, we study the scopes of systemic

discrimination through disparately effective feature sets, the disparity in group-wise rates of

missing values, the disparity in group-wise noise tolerance, and the disparity in group-wise

classification complexity. We investigate the conditions where such discrimination can cause

unfair outcomes. This thesis lays the groundwork to identify sources of bias, encourage dis-

cussions on systemic bias in FairML, and develop benchmarks for pre-deployment audits of

autonomous decision-making systems.

First, we demonstrate model-induced bias, as opposed to label-induced bias. We show

that a Bayes-optimal classifier can be expected to induce biases in the outcome that are

otherwise absent in the data. Experimental results validate that if group-wise optimal model
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accuracies for demographic groups are different, the joint optimal Bayesian model trained on

a fair dataset demonstrates disparate impact. We show that disparity in group-wise accuracy

can arise from a disproportionately predictive feature set. It is tempting to address this by

using separate models for different groups, but this may violate ethical and legal standards

(e.g., U.S. civil rights laws, E.U. GDPR Article 9). A second approach is to optimize for

fairness rather than accuracy [  26 ], as in [  120 ] and many more recent works. We suggest that a

better approach is to eliminate the underlying disparity, using methods such as participatory

design to assess [ 121 ] and propose better predictive features for all.

Secondly, we investigate missing value disparity induced bias. We show that, under

the influence of missing value disparity, missing value handling techniques shift the model

towards group-wise disparities. In particular, we show that missing value disparity is ex-

pected to move the class-wise classifier distributions closer to one group than the other. Our

theoretical analysis established that mean imputation on disproportionate group-wise rate

of missing values, results in optimal Bayesian classifiers that represents one demographic

sub-group in each class better than the others. Experiments on synthetic datasets shows

that missing value disparity induced bias extends further in other imputation mechanisms

as well. Although the aftermath of imputation doesn’t always change the prediction for an

individual, usually it unfairly promotes or demotes the individual in ranking. Therefore, in

resource-constrained scenarios such as college admission prediction disparity in missing value

rates in training data leads to bias negatively impacting groups with higher missing data

rates. We also report that missing value disparities can further exacerbate existing unfair-

ness in real-world datasets. Our findings suggest developers of high-stake decision-making

systems must carefully asses the changes in model behavior due to missing value treatments.

Finally, we show empirical evidence that disparity in group-wise tolerance to noise can

be detrimental to model fairness. The experimental results suggest that established adver-

sarial training mechanisms often exacerbate the disparity in robustness between groups of

individuals. We observe significant increases in the difference between group-wise robust

accuracy and false positive rates introduced by adversarial training on facial image classifi-

cation tasks. To mitigate this increased disparity, we propose a fair re-weighting technique to

improve disparity in adversarially trained robust models. Our proposed method significantly
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reduces the disparity introduced by adversarial training against iterative adversarial attacks

without sacrificing the robustness of the overall models. Since both robustness and fair-

ness are pressing concerns of autonomous decision-making systems, a conflict between them

highlights that model choices to optimize for robustness can sacrifice fairness or introduce

biases.

We envision multiple future directions of deeper investigations of introduced bias. For

example, we studied disparity among a set of numeric features. However, in computer vision,

the input samples can be in the form of images or videos. It is worth identifying the types

of visible or subtle group-wise disparities in the inputs that lead to dissimilarities in group-

wise learned representations. Similarly, the recent trend of large language models can also be

investigated as they are trained on unregulated publicly available web-crawled data. Existing

disparities in internet usage among racial sub-groups are likely to be captured in the text

corpus. Since text streams are rarely annotated with sensitive attributes, identifying and

balancing group-wise representation in the text corpus could be a challenging line of research.

Furthermore, our experiments unveiled that fairness requirements conflict with robust-

ness objectives. It calls for attention to introduced bias from other desired model properties

such as privacy, explainability, distributed learning, etc. For example, differential privacy

mechanisms often add small privatization noise to obfuscate the contribution of a specific

individual to the results of a function. The level of privatization noise could be amplified

by downstream processing and have a striking effect on model fairness. Moreover, added

constraints such as spatially separated data or computation resources ushered in the de-

velopment of distributed and federated learning algorithms. Recently, it was reported that

distributed algorithms often perform unfairly compared to their centralized alternatives [  122 ].

In federated learning, maintaining model fairness is even more challenging due to the het-

erogeneity of data and resources among the clients, uneven querying between the server

and the clients, and a lack of global group-wise statistics to measure group fairness. Such

disconnects between the individual clients can likely exacerbate the existing label biases or

introduce biases in resulting models. We encourage a line of research that investigates bias

amplification from federated learning methods, unveiling characteristics that lead to unfair
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models in a distributed setup, and possibly designing mitigation mechanisms to improve the

fairness of federated learning algorithms.

In conclusion, studies on the introduced bias are vital for understanding the limitations

of machine learning models in achieving fairness under current learning practices. Since

the pre-conditions of introduced bias are often systemic in nature, mitigation techniques

should involve a system-wise overhaul. Rather than developing algorithmic mitigations for

introduced bias, we focus on developing a thorough understanding of the root causes of

unfairness in machine learning. We expect that further studies on introduced bias will enrich

computer science ethics standards such as IEEE P7003 [ 123 ] and develop a pre-development

checklist of sources of bias.
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